
Geometric Numerical Integration
Exercises

Adrien Laurent

August 15, 2024

The exercises are not mandatory. They aim at helping you practice the main concepts
of the course for the exam. A correction or some hints can be provided upon request. A
solution is also generally provided in the associated references.

1 The flow and its properties
Exercise 1: Consider the following differential equation on U � R2ztp0, 0qu.

9p � p

p2 � q2 , 9q � q

p2 � q2 .

1. Show that the flow is symplectic on U .

2. Show that the system is locally Hamiltonian on U .

3. Show that the system is not globally Hamiltonian on U .

Hint: Hpp, qq � �ℑplogpp� iqqq � const, logpzq � log |z| � i argpzq,
Principal definition of logarithm: logpzq � log |z| � 2i arctan

�
ℑz

ℜz�|z|

	
(z P CzR�).

Exercise 2: Consider a differential equation of the form y1 � fpzq, z1 � gpyq. Compute the
first terms of the Taylor expansion of the flow. Present an algebraic structure that allows to
represent conveniently the expansion of the flow. What is the condition for symplecticity?
for preservation of an invariant Ipy, zq? for volume preservation?
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2 Splitting and composition methods
Exercise 1: Compute the conditions of order up to 4 of a splitting method. Check that
the Takahashi-Imada splitting is of order 4.

Exercise 2: Let Φh be a symmetric numerical method of order 2. Construct a composition
method of the form

Ψh � Φγ5h � Φγ4h � Φγ3h � Φγ2h � Φγ1h

such that γ1 � γ2 and which is of order 4.

Exercise 3: ([2]) Let a splitting method with coefficients ai, bi:

ψh � φB
bsh � φA

ash � � � � � φB
b1h � φA

a1h.

Denote χt � φB
t � φA

t .

1. Let Xh � hX1 � h2X2 � . . . such that χh � exppXhq. Compute the Xi, i ¥ 3. What
is the adjoint method χ�h? Show that χ�h � expp�X�hq.

2. Give conditions on the γi such that

ψh � χγ2s�1h � χ�γ2s�2h � � � � � χ�γ2h � χγ1h.

You can use γ0 � γ2s � 0 for simplicity. Deduce that ψh is of order 1 if and only if

ş

i�1
ai �

ş

i�1
bi �

2s�1̧

i�1
γi � 1.

We observe that the splitting method ψh is of order p iff the composition method ψh

is of order p.

3. Find f1, f2, f3,1, f3,2 in terms of the γi such that

ψh � expphf1X1 � h2f2X2 � h3pf3,1X3 � f3,2rX1, X2sq � Oph4qq.

Deduce the conditions on the γi to have order 3 at least.

4. Assume the method has at least order 3. Using that signpx3�y3q � signpx�yq, show
that at least one ai and one bi are (strictly) negative.
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3 Runge-Kutta methods
Exercise 1: Show that the Störmer-Verlet method, given by the following pair of Butcher
tableaux, is symplectic for a Hamiltonian system:

0 0 0
1 1/2 1/2

1/2 1/2

1/2 1/2 0
1/2 1/2 0

1/2 1/2

Show that the method is actually explicit for a partitioned problem of the form 9y � fpzq, 9z �
gpyq.

Exercise 2:

1. We consider a Runge-Kutta method yn�1 � Φhpynq with coefficients aij , bi (i �
1, . . . , s). Show that the inverse of the numerical flow Φ�1

h can still be expressed
as a Runge-Kutta method for any sufficiently small step size h, and provide the cor-
responding coefficients.

2. If Φh is the numerical flow, we define the adjoint of this flow as Φ�
h � Φ�1

�h. What is
the adjoint method to the explicit Euler method?
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4 Runge-Kutta methods and geometry
Exercise 1: This exercise aims to prove the following result.

Theorem ([10]). There is no Runge-Kutta method that exactly preserves the energy of
polynomial Hamiltonian systems. However, for a fixed polynomial Hamiltonian, such a
Runge-Kutta method exists.

For a Hamiltonian system 9y � fpyq � J�1∇Hpyq with the Hamiltonian Hpyq assumed
to be regular, consider the AVF (Average Vector Field) numerical method defined by

yn�1 � yn � h

» 1

0
fpθyn � p1 � θqyn�1qdθ.

1. Show that this method is well-defined for sufficiently small h.

2. Show that for any sufficiently small h, we have» 1

0

yn�1 � yn

h
� ∇Hpθyn � p1 � θqyn�1qdθ � 0,

with the notation u � v � uT v.

3. Deduce that the numerical method exactly conserves energy, i.e., given yn and con-
sidering yn�1 well-defined for sufficiently small h, we have:

Hpyn�1q � Hpynq.

4. Show that this integration method is not a Runge-Kutta method.
Hint: Consider quadrature problems 9yptq � fptq.

5. Show that a consistent Runge-Kutta method cannot preserve the Hamiltonian for all
polynomial Hamiltonian systems.
Hint: In dimension d � 1, set Hpp, qq � p � ³q

0 gptqdt where gptq is an arbitrary
polynomial.

6. In the case of a fixed polynomial Hamiltonian, show that a Runge-Kutta method can
be constructed that exactly preserves the energy.
Hint: Introduce a quadrature formula.

Exercise 2: Let Rpzq be an analytic function around z � 0 such that Rp0q � R1p0q � 1.
Recall that Rpzq � °

k akz
k induces an application on matrices close to 0 by RpAq �°

k akA
k.

1. Show that if Rpzq � exppzq, then for any A P Rd�d such that TrpAq � 0, we have
detpRpAqq � 1.

2. Show that if for every A P Rd�d such that TrpAq � 0, we have detpRpAqq � 1, then
Rpzq satisfies Rpµ� νq � RpµqRpνq for µ, ν close to 0.
Hint: Consider matrices of the form A � diagpµ, ν,�µ� ν, 0, . . . , 0q.
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3. Deduce that Rpzq � exppzq if and only if for every A P Rd�d such that TrpAq � 0, we
have detpRpAqq � 1.

4. Show that a Runge-Kutta method for the problem y1 � λy, where λ P C, writes as
yn�1 � Rphλqyn for a specific R. Show that such a method is symmetric for the
problem y1 � λy if and only if R satisfies Rp�zq�1 � Rpzq. Provide an example of
such a method.

Exercise 3: We are interested in matrix ODEs of the form Y 1 � AY , Y p0q � Id with
Y ptq P Rd�d where A P Rd�d is constant and satisfies TrpAq � 0.

1. Explicitly state the solution of this ODE and show that detpY q is a first integral.
Deduce that the volume is preserved for the problem on Rd, y1 � Ay, yp0q � y0.

2. Given a consistent Runge-Kutta method (of order at least 1) and denoting Rpzq its
stability function (see previous exercise), we assume it preserves the determinant
detpY q. Using the previous exercise, show that the stability function must satisfy
Rpzq � exppzq.

3. Deduce that a Runge-Kutta method cannot preserve the determinant.

4. Prove the following theorem.

Theorem. In dimension d ¥ 3, there is no Runge-Kutta method that preserves all
polynomial invariants of degree d.

Hint: The determinant is a polynomial of degree d.
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5 Butcher series and algebraic structures
Exercise 1: Provide the list of trees τ P T with a number of nodes |τ | ¤ 5 in the set T
of trees. For each of them, calculate the coefficients γpτq and σpτq as defined in the course.
Show that the RK4 method is generally of exact order 4. Show it by simply using Taylor
expansions and no trees.

Exercise 2:

1. Suppose f : Rd Ñ Rd is linear. Show that the elementary differential F pτq is zero for
any tree τ P T , unless τ is a "bamboo."

2. What does the B-series expansion of the exact solution become in the case where
fpyq � λy and λ P C? Verify that the expected development is obtained by comparing
it with the solution of y1 � fpyq.

3. Deduce the value of the coefficients apτq for each bamboo-type tree τ in the B-series
associated with the midpoint method.

Exercise 3:

1. For each τ̂ P T , show that there exists y0 and a vector field f : Rq Ñ Rq with q � |τ̂ |
such that F pτ̂qpy0q � 0 and F pτqpy0q � 0 for all τ P T with τ � τ̂ and |τ | � |τ̂ |.
Hint: For a tree τ̂ with q � |τ̂ |, number its nodes as 1, 2, . . . , q (each node has a
different index). Then, for each node of the tree with index i and indices of roots
i1, . . . , ik, where k is the number of branches, set

fipyq �
k¹

j�1
yij , pwith fipyq � 1 if k � 0q.

You may look at examples of trees with few nodes.

2. Deduce that the order conditions of Runge-Kutta methods indexed by Butcher trees
are necessary and sufficient.

Exercise 4: Compute the first terms of the composition of two Runge-Kutta methods by
first using Taylor expansions and then by using the Butcher-Connes-Kreimer Hopf algebra
structure.
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6 Backward error analysis
Exercise 1: Calculate the terms f2, f3, f4 in the modified equation for the backward error
analysis

9ry � fpryq � hf2pryq � h2f3pryq � h3f4pryq � . . .

for the explicit Euler method applied to the following ODEs:

1. 9y � y,

2. 9y � y2,

3. 9y � fptq,
4. 9y � fpyq.

Use the method of your choice (Taylor expansions or Butcher series).

Exercise 2: For the ODE system 9y � fpyq, consider a numerical method yn�1 � Φhpynq
with a modified equation for the backward error analysis

9ry � fhpryq � fpryq � hf2pryq � h2f3pryq � h3f4pryq � . . .

Show that the adjoint method yn�1 � Φ�
hpynq has the modified equation

9ry � f�hpryq � fpryq � hf2pryq � h2f3pryq � h3f4pryq � . . .

Verify this result for the first terms of the explicit and implicit Euler methods. Deduce that
if the method is symmetric, its modified equation has a development in even powers of h.

Exercise 3: Compute the first terms of the modified Hamiltonian for the midpoint method
applied to a general Hamiltonian problem. Use the method of your choice (Taylor expan-
sions or Butcher series).
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7 Going further
The exercises in this section will not appear at the exam in any way. They are here if you
want a challenge or want to go further. There are a variety of different fields of mathematics
represented in geometric numerical integration, that we aim to showcase here. If you find
some (even partial) solutions to the open questions or if you want more details, feel free to
ask me.

Exercise 1: This exercise studies some topological properties of Butcher series (see [18, 8,
24]). Consider the topology of formal series: a sequence of Butcher series Bf

hpanq converges
to Bf

hpaq if for all τ P T , anpτq Ñ apτq. Show that Runge-Kutta methods are dense in the
space of B-series.

Exercise 2: This exercise aims at observing properties of aromatic forests from different
points of view (see [13, 19, 24, 25, 3, 22, 21, 5]).

1. Combinatorics: Let tpzq � °8
n�1 tnz

n with tn the number of trees with n nodes and
apzq � °8

n�0 anz
n with an the number of multiaromas with n nodes (a0 � 1 by

convention).

(a) Compute the first values.
(b) Show that tn corresponds to the number of functions t1, . . . , n�1u Ñ t0, . . . , n�

1u modulo the symmetric group Sn�1 and that t satisfies

tpzq � z exp
�

8̧

k�1

1
k
tpzkq

�
.

(c) Show that an corresponds to the number of functions t1, . . . , nu Ñ t1, . . . , nu
modulo the symmetric group Sn and that a satisfies

apzq �
8¹

k�1

�
1 � tpzkq

	�1
.

(d) Deduce the generating series of the number of aromatic trees.

2. Geometric integration:

(a) Open question: Create an aromatic B-series method that preserves volume. One
could start from the method defined in [26]. Starting from Runge-Kutta methods
and adding aromas here or there will not work.

(b) Extend the Liouville theorem to the study of volume preservation on a Lie group,
using the frozen flow methods described in the homework.

(c) Open questions: how do aromatic series extend on homogeneous manifolds?
Does the characterisation using backward error analysis extend?

3. Algebra: Show on examples that the composition of aromatic S-series indexed by (un-
ordered) aromatic forests can be described by a BCK Hopf algebra. The substitution
law cannot be described straightforwardly by Hopf algebra techniques and relies on a
lift to the tensor symmetric algebra over aromatic trees (called clumped forests).
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4. Variational calculus: We give details on the aromatic De Rham complex seen in the
course.

(a) Prove that d2 � 0.
(b) There exists a homotopy operator h : Ωn Ñ Ωn�1 such that hd�dh � id (difficult,

see [1, 22]). Show that the aromatic complex is exact, that is, Kerpdq � Impdq.
(c) Define the Euler operator on multiaromas γ P Ω0:

Eγ �
¸
vPV

p�1q|Πpvq|DΠpvqγv,

where Πpvq contains the predecessors of v, and DΠpvqγv detaches all the prede-
cessors of v and sum all the possible ways (with multiplicity) to plug them back
on any node of γ different from v. Show that Ed � 0 on Ω1. This newly
obtained complex can be further extended into the Euler-Lagrange variational
complex, which is an adimensional subcomplex of the standard Euler-Lagrange
complex, where the Noether theorems are formulated.

(d) Open questions: how does the Euler-Lagrange complex extends on manifolds?
Is it still exact?

Exercise 3: The course only gives partial details on the proofs of the Hopf algebra structure
over rooted forests. Show that the algebraic structures indeed are Hopf algebras and that
the expressions of the antipodes are valid (see [7, 14, 6, 11, 18, 12, 9, 8, 17]).

Exercise 4: In this exercise, we extend some results of the course to stochastic numerical
integration (see [29, 27, 28, 15, 16, 23, 4, 5]). We consider a stochastic differential equation
of the form

dX � fpXqdt� dW,

where f is smooth, Lipschitz, and W is a d-dimensional Brownian motion defined on a
probability space satisfying the usual assumptions. We approximate the law upt, xq �
ErϕpXptqqs. It satisfies the following PDE

Btu � Lu, Lϕ � ϕ1f � 1
2∆.

A stochastic Runge-Kutta method takes the form

Hi � Yn � h
ş

j�1
aijfpHjq �

?
hdiξn,

Yn�1 � Yn � h
ş

i�1
bifpHiq �

?
hξn,

where the ξn are independent standard Gaussian vectors. Let us create a method of (weak)
order two.

1. Give the first terms of the Taylor expansion of u.
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2. We introduce decorated nodes to the Butcher forests. They are numbered by integers,
only appear as leaves, and always come in pairs (the numbers do not matter and just
serve as a way to identify the pairs). In particular, F p 1 1 qrϕs � ∆ϕ � °

i ϕ
2pei, eiq,

with ei the canonical basis of Rd. Propose a formalism of forests (called exotic) that
allows to represent the Taylor expansion of u.

3. Following the idea of the Grossman-Larson Hopf algebra, write uph, xq � expphLqrϕs
explicitly in terms of exotic forests (give the coefficient map). Hint: the symmetry
coefficient is the number of automorphisms of the forest.

4. Give the expression in exotic forests of ErϕpY1qs for the first orders. For the expression
at any order, use [20].

5. Create a stochastic Runge-Kutta method of weak order two.

6. Observe that order conditions are indexed by forests and not trees. Identify the
primitive elements and give the minimal number of order conditions.
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