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Introduction
The objective of this project is to give a numerical introduction to stochastic differ-
ential equations (SDEs). Then, we will present integrators to approximate SDEs
and we will study their weak convergence. Approximating SDEs has great appli-
cations in fields subject to random perturbations such as finance [9] and molecular
dynamics [7]. In Section 1, we will follow [4] to define SDEs and we will present the
Euler-Maruyama (EM) method. In Section 2, we will study strong and weak con-
vergence of the EM method and in Section 3 we will deduce weak order conditions
for Runge-Kutta methods and present and implement a second order Runge-Kutta
method.

1 Numerical introduction to SDEs
Let x0 be a point in Rd and f : Rd ÝÑ Rd be a smooth Lipschitz vector field.
Then, the ordinary differential equation (ODE)

"

dx
dt

ptq “ fpxptqq, t ą 0,

xp0q “ x0,

has a unique solution x : r0, 8q ÝÑ Rd which has the integral formulation

xptq “ x0 `

ż t

0
fpxpsqqds.

However, experimentally measured trajectories rarely behave as predicted and they
have perturbations many times. Therefore, it is convenient to include a random
variable disturbing the system. It can be written this way:

"

dXptq “ fpXptqqdt ` gpXptqqdW ptq, t ą 0,
Xp0q “ X0,

(1.1)

where g : Rd ÝÑ Mdˆl is a matrix function and W is a l-dimensional Wiener
process or Brownian motion. Now the solution X is no longer a deterministic
variable but a random variable. Also notice that we do not write dW ptq{dt since
the Brownian motion is nowhere differentiable almost surely. The system (1.1) is
called a stochastic differential equation.

Remark 1. If g ” 0 and X0 is deterministic, then the system (1.1) becomes a
deterministic ordinary differential equation dXptq{dt “ fpXptqq, with Xp0q “ X0.
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Under some conditions, it can be proven that the system (1.1) has a unique
solution. As shown in [2], if f and g are continous and Lipschitz, there exists a
unique solution of (1.1) which has the integral formulation

Xptq “ X0 `

ż t

0
fpXpsqqds `

ż t

0
gpXpsqqdW, t ą 0. (1.2)

Remark 2. A linear stochastic differential equation is of the form

dXptq “ λXptqdt ` µXptqdW ptq, Xp0q “ X0, λ, µ P R, (1.3)

and its explicit solution is Xptq “ X0 exp ppλ ´ 1
2µ2qt ` µW ptqq. However, for

solving most SDEs numerical methods such as the Euler-Maruyama method are
required.

Now we will define the Brownian motion W and the stochastic integral
şt

0 ¨ ¨ ¨ dW .

1.1 Brownian motion
Definition 1 (Brownian motion). A real-valued Brownian motion or Wiener pro-
cess is a stochastic process W ptq over r0, T s which satisfies these three conditions:

1. W p0q “ 0,

2. The random variable given by the increment W ptq ´ W psq is Np0, t ´ sq for
0 ď s ă t ď T ,

3. For 0 ď s ă t ă u ă v ď T the increments W ptq ´ W psq and W pvq ´ W puq

are independent.

Let us now consider a discretized Brownian motion: Set h “ T {N for a positive
integer N and denote Wj as W ptjq with tj “ hj. From condition 1 we get W0 “ 0
and from conditions 2 and 3 we get

Wj “ Wj´1 ` dWj, j “ 1, ..., N,

where each dWj is an independent random variable with distribution
?

hNp0, 1q.
This allows us to simulate a Brownian path with MATLAB.

1 % Brownian Motion simulation
2

3 randn('state',10) % seed of the random number generator
4 T = 10; N = 1000; dt = T/N;
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5 dW = zeros(1,N);
6 W = zeros(1,N);
7

8 dW(1) = sqrt(dt)*randn; % first increment
9 W(1) = dW(1);

10 for j = 2:N
11 dW(j) = sqrt(dt)*randn; % general increment
12 W(j) = W(j−1)+dW(j);
13 end
14

15 plot([0:dt:T],[0,W],'r−')
16 xlabel('t','FontSize',12)
17 ylabel('W(t)','FontSize',12)

Figure 1: Plot of one trajectory of a Brownian motion with N “ 1000, T “ 10

Here, the random number generator randn is used, each time producing an inde-
pendent number from the Np0, 1q distribution. In order to make the simulations
repeatable, we set arbitrarily the seed of the generator randn to be 10. Then we
plot W over the interval r0, 10s.

The Brownian motion can be easily extended to Rn. We say that the stochas-
tic process W “ pW 1, ..., W nq is an n-dimensional Brownian motion if W k is a
1-dimensional Brownian motion.
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1.2 Stochastic integrals
We refer to [5] for mathematical details in the construction of the stochastic inte-
gral.

Given a real valued function f , the integral
şT

0 fptqdt can be approximated by
the Riemann sum

N´1
ÿ

j“0
fptjqptj`1 ´ tjq, (1.4)

where we use the same discretization of r0, T s used in Section 1.1. The sum con-
verges to the integral as h Ñ 0.
Similarly, we may consider the approximation of the stochastic integral

şT

0 fptqdW ptq
with a sum of the form

N´1
ÿ

j“0
fptjqpW ptj`1q ´ W ptjqq,

which is called the Itô integral.

We could also use another Riemann sum approximation of
şT

0 fptqdt different
from (1.4) given by

N´1
ÿ

j“0
f

ˆ

tj ` tj`1

2

˙

ptj`1 ´ tjq.

This sum also converges to the integral as h Ñ 0. From this we obtain a differ-
ent approximation of the stochastic integral

şT

0 fptqdW ptq called the Stratonovich
integral of the form

N´1
ÿ

j“0
f

ˆ

tj ` tj`1

2

˙

pW ptj`1q ´ W ptjqq.

We can compare both approximations using MATLAB. As an example, we
will compute the Itô and Stratonovich integrals of the function fpxq “ x over the
interval r0, 10s.

1 % Approximation of stochastic integrals
2 % Ito and Stratonovich integrals of f dW
3 % f(x)=x
4

5 randn('state',10) % set the state of randn
6 T = 10; N = 1000; dt = T/N;
7
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8 dW = sqrt(dt)*randn(1,N); % increments
9 W = cumsum(dW); % cumulative sum

10 f = @(x) x;
11

12 ito = sum(f([dt:dt:T]).*dW)
13 strat = sum(f(0.5*([0:dt:T−dt]+[dt:dt:T])).*dW)

Here instead of using a for loop to compute the Brownian motion we use vectorized
commands for computational efficiency. The command randn(1,N) generates an
N -vector of independent values of the distribution Np0, 1q and cumsum computes
the cumulative sum of all the previous increments.
We get ito=−7.5445 and strat=−7.5483. Both results are very similar.

1.3 The Euler-Maruyama Method
Solving SDEs usually requires numerical methods. For that we discretize the
interval r0, T s with h “ T {N and tj “ jh for some big natural number N . From
the integral form (1.2) of an SDE, notice that

Xptjq “ Xptj´1q `

ż tj

tj´1

fpXpsqqds `

ż tj

tj´1

gpXpsqqdW psq.

Considering the Itô integral and denoting the numerical approximation of Xptjq

as Xj, the Euler-Maruyama (EM) method consists of
"

X0 “ Xp0q,
Xj “ Xj´1 ` fpXj´1qh ` gpXj´1qpW ptjq ´ W ptj´1qq, j “ 1, ..., N.

Note that in the deterministic case (g ” 0) the EM method reduces to the Euler
method.

We will use MATLAB to implement the Euler-Maruyama method to the linear
stochastic differential equation (1.3) with λ “ 2, µ “ 1, X0 “ 1 in the interval
r0, 1s.

1 % Euler−Maruyama method on linear SDE
2 % SDE is dX=lambda*X dt + mu*X dW, X(0) = Xzero
3 %
4 % Discretized Brownian path over [0,1] with dt = 2^(−6)
5

6 randn('state',10) % set the state of randn
7 lambda = 2; mu = 1; Xzero = 1; T = 1; N = 2^6; dt = T/N;
8 dW = sqrt(dt)*randn(1,N); % increments
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9 W = cumsum(dW); % discretized Brownian motion
10

11 Xtrue = Xzero*exp((lambda−0.5*mu^2)*([dt:dt:T])+mu*W);
12 plot([0:dt:T],[Xzero,Xtrue],'m−'), hold on
13

14 Xem = zeros(1,N);
15 Xtemp = Xzero;
16 for j = 1:N
17 Xtemp = Xtemp + dt*lambda*Xtemp + mu*Xtemp*dW(j);
18 Xem(j) = Xtemp;
19 end
20

21 plot([0:dt:T],[Xzero,Xem],'r−−*'), hold off
22 xlabel('t','FontSize',12)
23 ylabel('X','FontSize',12,'HorizontalAlignment','right')
24 legend({'Exact solution','EM ...

approximation'},'Location','northwest')
25 emerr = abs(Xem(end)−Xtrue(end))

Here we compute the exact solution as Xtrue. Then we compare the exact solution
with the EM approximation Xem at the endpoint t “ T . We compute the absolute
error between XpT q and XN , named as emerr, which was found to be 2.9858.
Taking smaller steps h “ 2´10 and h “ 2´12 produce endpoint errors of 0.4900
and 0.0801 respectively.

Figure 2: Plot of the exact and the EM approximated linear SDE
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2 Weak Convergence Analysis
Convergence of a numerical method is measured by comparing the exact solution
Xptjq and the approximation Xj. However, since Xptjq and Xj are random vari-
ables, in order to measure their difference the expected values are used. There are
two different ways:
A method is said to have strong order of convergence equal to p if there exists a
constant C such that

E|Xj ´ Xptjq| ď Chp, j “ 0..., N, (2.1)

for h sufficiently small.
Similarly, a method is said to have weak order of convergence equal to r if there
exists a constant C such that

|EϕpXjq ´ EϕpXptjqq| ď Chr, j “ 0, ..., N, (2.2)

for any smooth test function ϕ and h sufficiently small.

In simpler words, strong convergence measures ’the expected value of the error’
and weak convergence ’the error of the expected values’. The strong order always
satisfies p ď r, since it is a more demanding measurement of the error. Weak ap-
proximation focuses on the law of the process and does not require the knowledge
of W .

We will focus on the weak convergence. We will do numerical tests to study
both strong and weak convergence orders of the EM method but we will give a
proper theoretical proof only for the weak convergence.

2.1 Strong Convergence of the EM Method
It can be shown that the EM method has strong order of convergence 1{2. We will
test this numerically. As in [4], we will focus on the error at the endpoint t “ T ,
so we let

estrong
∆t :“ E|XL ´ XpT q|, L∆t “ T,

denote the endpoint error in the strong sense.

Since we know its explicit solution, we will use the linear SDE (1.3) with
λ “ 1, µ “ 0.5 and X0 “ 2. We compute 4000 different Brownian paths over the
interval r0, 0.1s with δt “ 2´12. For each path, the EM method is applied with 6
different step sizes: ∆t “ 2q´1δt for 1 ď q ď 6. Therefore the EM method needs
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the general increment W pj∆tq ´ W ppj ´ 1q∆tq. Setting R “ 2q´1, the increment
is given by

W pj∆tq ´ W ppj ´ 1q∆tq “ W pjRδtq ´ W ppj ´ 1qRδtq “

jR
ÿ

k“pj´1qR`1
dWk.

This is computed as Winc = sum(dW(R*(j−1)+1:R*j)) in line 21.

Then, the endpoint error in the sth sample path with the qth stepsize is stored
in Xerr(s,q) in line 24. Then the command mean is used to average all sample
paths by replacing each column of Xerr by its mean. Therefore, the qth element
of mean(Xerr) is an approximation of estrong

∆t for ∆t “ 2q´1δt.

Now, assuming that the inequality (2.1) holds approximate equality and that
the strong order of convergence is 1/2, taking logs we have

log estrong
∆t « log C `

1
2 log ∆t.

So from a log-log plot of estrong
∆t against ∆t we expect to see a line of slope 1/2.

This plot is produced with blue asterisks in line 29 with command loglog. We
also added a dashed red line with slope 1/2 for reference in line 30. We see in Fig-
ure 3 that the two lines appear to match, suggesting that the order of convergence
of the EM method is indeed 1/2.

Finally, we assume there exists a relation estrong
∆t “ C∆tp for some constants C

and p. Then, from the equality log estrong
∆t “ log C ` p log ∆t, we compute a least

square fit for log C and p in line 37. We get the value p=0.5060 with a least
squares residual of resid=0.0199.

1 % Test strong convergence of EM
2 %
3 % dX=lambda*X dt + mu*X dW, X(0)=Xzero,
4 % where lambda=1, mu=0.5 and Xzero=2.
5 % Discretized Brownian path over [0,0.1] with dt=2^(−12)
6 % EM uses 6 different timesteps: 32dt, 16dt, 8dt, 4dt, 2dt, dt.
7

8 randn('state',10)
9 lambda = 1; mu = 0.5; Xzero = 2; T = 0.1; N = 2^12; dt = 1/N;

10 M = 4000; % number of paths sampled
11

12 Xerr = zeros(M,6); % we will store the endpoint errors here
13 for s =1:M
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14 dW = sqrt(dt)*randn(1,N);
15 W = cumsum(dW);
16 Xtrue = Xzero*exp((lambda−0.5*mu^2)+mu*W(end));
17 for q = 1:6
18 R = 2^(q−1); Dt = R*dt; L = N/R; % L steps of size Dt=R*dt
19 Xtemp = Xzero;
20 for j = 1:L
21 Winc = sum(dW(R*(j−1)+1:R*j));
22 Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc;
23 end
24 Xerr(s,q) = abs(Xtemp − Xtrue);
25 end
26 end
27

28 Dtvals = dt*(2.^([0:5]));
29 loglog(Dtvals,mean(Xerr),'b*−'), hold on
30 loglog(Dtvals,(Dtvals.^(1/2)),'r−−'), hold off
31 axis([1e−4 1e−2 1e−2 1e−1])
32 xlabel('\Delta t'), ylabel('Sample average of | X(T) − X_L |')
33 legend({'Sample average of |X(T)−X_L|','Reference line with ...

slope 1/2'},'Location';'northwest')
34

35 % Least squares fit of error = C*Dt^p to find p
36 A = [ones(6,1), log(Dtvals)']; logerr = log(mean(Xerr)');
37 sol = A\logerr; p = sol(2)
38 resid = norm(A*sol − logerr)

Figure 3: Test of strong convergence of EM
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2.2 Weak Convergence of the EM Method
Now we will see that the EM method has weak order of convergence of 1. First, as
in Section 2.1, we will do a numerical test and then we will prove it theoretically
using local weak convergence orders.

Similarly to the strong convergence, we will focus on the error at the endpoint
t “ T . Also, we will focus on the case ϕ ” 1 in (2.2) for simplicity. So let

eweak
∆t :“ |EXL ´ EXpT q|, L∆t “ T,

denote the endpoint error in the weak sense.

We will use the linear SDE (1.3) with λ “ 2, µ “ 0.1 and X0 “ 1. We com-
pute 15000 different Brownian paths over the interval r0, 1s with ∆t “ 2q´10 for
1 ď q ď 5.

The sample average of the endpoint XL with the qth stepsize ∆t is stored in
Xerr(q) in line 20. The exact solution of ErXptqs is computed in line 22 following
from equation (1.3). Vector Xerr stores the weak enpoint errors.
In Figure 4 we see how the weak error varies with the different ∆t on a log-log
scale. Again, we added a red dashed line with slope 1 for reference. We see that
the two lines appear to match, supporting our hypothesis that the weak order of
convergence of the EM method is 1.

1 % Test weak convergence of EM
2 %
3 % dX = lambda*X dt + mu*X dW, X(0)=Xzero,
4 % where lambda=2, mu=0.1 and Xzero=1.
5 % Discretized Brownian path over [0,1] with dt=2^(−9)
6 % EM uses 5 different timesteps: dt, 2dt, 4dt, 8dt, 16dt
7

8 randn('state',10)
9 lambda = 2; mu = 0.1; Xzero = 1; T = 1; dt=2^(−9);

10 M = 15000; % number of paths sampled
11

12 Xem = zeros(5,1);
13 for q =1:5
14 R = 2^(q−1); Dt = R*dt; L = T/Dt; % L steps of size Dt
15 Xtemp = Xzero*ones(M,1);
16 for j = 1:L
17 Winc = sqrt(Dt)*randn(M,1);
18 Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp.*Winc;
19 end
20 Xem(q) = mean(Xtemp); % sample average of X_L
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21 end
22 Xtrue = exp(lambda*T); % true solution for E[X(T)]
23 Xerr = abs(Xem − Xtrue);
24

25

26 Dtvals = 2.^([1:5]−10);
27 loglog(Dtvals,Xerr,'b*−'), hold on
28 loglog(Dtvals,Dtvals,'r−−'), hold off
29 axis([1e−3 1e−1 1e−3 1])
30 xlabel('\Delta t'), ylabel('| E[X(t)] − Sample average of X_L |')
31 legend({'|E[X(T)] Sample average of X_L|','Reference line ...

with slope 1'},'Location','northwest')
32

33 % Least squares fit of error = C*Dt^q
34 A = [ones(q,1), log(Dtvals)']; logerr = log(Xerr);
35 sol = A\logerr; r = sol(2)
36 resid = norm(A*sol − logerr)

Finally, similarly to the strong convergence, we compute a least square fit for the
constant log C and the weak order r in line 35. We get the value r=1.0093 with
a least squares residual of resid=0.0609.

Figure 4: Test of weak convergence of EM

Now, we will present a proper proof for the weak convergence of the EM
method. First, we will present the necessary notation and assumptions.
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We consider the stochastic differential equation (1.1) of the form

dXptq “ fpXptqqdt ` gpXptqqdW ptq,

where f : Rd ÝÑ R is a vector field, g : Rd ÝÑ Mdˆl is a matrix function and W
is a l-dimensional Brownian motion.

Assumption 2.1. We assume that f and g are both smooth and globally Lips-
chitz.

Assumption 2.2. We assume deterministic initial condition X0. Also, assume
that the numerical schemes pXjqj“0,...,N considered here have bounded moments of
any order, that is

Er|Xn|
2m

s ď Cm ă 8,

for any integer m. See [8] for further details.

Definition 2. We say that a numerical scheme has local weak order r if the weak
error after one step satisfies

|ErϕpX1q|X0 “ xs ´ ErϕpXphqq|Xp0q “ xs| ď Chr`1,

where C is independent of h and ϕ is a test function.

Now we will present and prove a theorem linking the local and the global weak
orders.

Theorem 2.1 (Global weak convergence theorem).
Let pXjqj“0,...,N be a numerical scheme approximating X from (1.1) at time tj “ jh,
for fixed T ą 0, natural number N and h “ T {N . Under Assumption 2.1 and
2.2, if the scheme has local weak order r, then for all test function ϕ there exists
a positive constant C such that

|ErϕpXjq|X0 “ xs ´ ErϕpXptjq|Xp0q “ xs| ď Chr, j “ 0, ..., N.

Proof. We use the notation Xx for a random variable X where we know that the
initial condition is x. Let’s begin from the last step, that is, from the time j “ N .

ErϕpXx
ptN qq ´ ϕpXx

N qs “

N
ÿ

j“1
ErϕpXXx

N´j ptjq ´ ϕpXXx
N´j`1ptj´1qs

“

N
ÿ

j“1
ErϕpXX

Xx
N´j phq

ptj´1qq ´ ϕpXX
Xx

N´1
1 ptj´1qqs.
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Now consider the test function ϕ̃ipxq “ ϕ ˝ Xxptj´1q. Then, from the local weak
convergence of order r, we know that for any integer k

|Erϕ̃ipX
Xx

N´j phqqs ´ Erϕ̃ipX
Xx

N´j

1 qs| ď Chr`1
p1 ` Er|Xx

N´j|
k
sq.

From Assumption 2.2, we know that for any k there exists a positive constant Ck

such that
Er|Xx

N´j|
k
s ď Ck.

Therefore, we deduce

|ErϕpXx
ptN qq ´ ϕpXx

N qs| ď

N
ÿ

j“1
|Erϕ̃ipX

Xx
N´j phqqs ´ Erϕ̃ipX

Xx
N´j

1 qs|

ď Chr`1
N
ÿ

j“1
p1 ` Er|Xx

N´j|
k
sq

ď C̃Nhr`1
“ C̃pNhqhr

“ C̃Thr.

Now we are finally ready to prove the following theorem:

Theorem 2.2. The Euler-Maruyama method has global weak order of convergence
of 1.

Proof. First we calculate the local error. In order to simplify notation we will use
for a given natural number k

ϕpkq
pa1, ..., ak

q “

d
ÿ

i1,...,ik“1

Bkϕ

Bxi1 ...Bxik

pxqa1
i1 ...ak

ik
,

where ϕ : Rd ÝÑ R and ai P Rd, i “ 1, ..., k.

We will use Taylor expansions for one step as in [10]. The EM method gives
for the first step the expression

X1 “ X0 ` hfpX0q `
?

hgpX0qξ,

where ξ is a random vector with distribution Np0, Ilq.
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Therefore, using the Taylor expansion of ϕ at point X0, the expected value of
ϕpX1q knowing that X0 “ x is

ErϕpX1q|X0 “ xs “ Erϕpx ` hfpxq `
?

hgpxqξqs

“ Erϕpxq ` ϕ1
phf `

?
hgξq `

1
2ϕ2

phf `
?

hgξ, hf `
?

hgξq ` ...s

“ ϕpxq ` hϕ1
pfq `

h

2Erϕ2
pgξ, gξqs ` Oph2

q

“ ϕpxq ` hϕ1
pfq `

h

2ϕ2
pg, gq ` Oph2

q.

Note that we have used the fact that Erξs “ 0 and Erξξs “ 1. This follows from
the Isserlis’ theorem.

Let upx, tq “ ErϕpXptqq|X0 “ xs “ ExrϕpXptqqs. Then, for x P Rd and t ą 0,
upx, tq fulfils the backward Kolmogorov equations

"

Bu
Bt

“ Lu,

upx, 0q “ ϕpxq,

where the differential operator L is defined as

Lϕ “ ϕ1
pfq `

1
2ϕ2

pg, gq.

See [8] for further details in the Kolmogorov equations and differential operator L.

Therefore, the expected value of ϕpXphqq knowing that the initial condition is
x is

ExrϕpXphqqs “ upx, hq “ upx, 0q ` h
Bu

Bt
`

h2

2
B2u

Bt2 u ` ...

“ ϕpxq ` hLϕ `
h2

2 L2ϕ ` ...

Now, we see that the difference between both expected values is

|ExrϕpX1qs ´ ExrϕpXphqqs| “ Oph2
q.

So there exists a positive constant C independent of h such that

|ExrϕpX1qs ´ ExrϕpXphqqs| ď Ch2.

In other words, the EM scheme has local weak order of 1. From Theorem 2.1 it
follows that the EM scheme has global weak order of 1.
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3 High Order Integrators

Now we will only focus on the stochastic differential equations of the form

dXptq “ fpXptqqdt ` σdW ptq, (3.1)

where Xptq P Rd is the solution with deterministic initial condition X0, the vector
field f : Rd ÝÑ Rd is smooth and globally Lipschitz, σ is a positive constant and
W ptq is a d-dimensional Brownian motion.

In this section we will study the order conditions of Runge-Kutta (RK) type
schemes of the form

Yi “Xn ` h
s

ÿ

j“1
aijfpYjq ` diσ

?
hξn, i “ 1, ..., s,

Xn`1 “Xn ` h
s

ÿ

i“1
bifpYiq ` σ

?
hξn, (3.2)

where aij, bi, di are the real coefficients defining the RK scheme, and ξn are inde-
pendent random vector with distribution Np0, Idq.

3.1 Weak order conditions for Runge Kutta methods

We will use exotic aromatic forests in order to simplify notation and perform ex-
pected values more easily. We refer to [6] for further details on this methodology.

Let us perform a Taylor expansion for the first step as in Theorem 2.2. The
RK method gives for the first step the expression

X1 “X0 ` h
s

ÿ

i“1
bifpYiq ` σ

?
hξ

“X0 ` h
s

ÿ

i“1
bif

˜

X0 ` h
s

ÿ

j“1
aijfpYjq ` diσ

?
hξ

¸

` σ
?

hξ,

where ξ is a random variable with distribution Np0, Idq.
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Using Taylor expansion of f at point X0 knowing that X0 “ x we get

Xx
1 “ x ` ∆x “ x ` σ

?
hξ ` h

s
ÿ

i“1
bi

«

fpxq ` f 1

˜

?
hdiσξ ` h

s
ÿ

j“1
aijfpYjq

¸

`
1
2f2

˜

?
hdiσξ ` h

s
ÿ

j“1
aijfpYjq,

?
hdiσξ ` h

s
ÿ

j“1
aijfpYjq

¸

` ...

ff

“ x `
?

hσξ ` h
s

ÿ

i“1
bif ` h

?
hσ

s
ÿ

i“1
bidif

1ξ ` h2f 1

s
ÿ

i“1

s
ÿ

j“1
biaijfpYjq

` h2 1
2σ2

s
ÿ

i“1
bid

2
i f

2
pξ, ξq ` ...

Let us set the sum
řs

j“1 aij as ci. We will then use ∆x as

∆x “
?

hσξ ` h
s

ÿ

i“1
bif ` h

?
hσ

s
ÿ

i“1
bidif

1ξ ` h2
s

ÿ

i“1
bicif

1f ` h2 1
2σ2

s
ÿ

i“1
bid

2
i f

2
pξ, ξq.

Now, we apply the test function ϕ to X1. Performing the Taylor expansion to ϕ
at point x we get

ϕpXx
1 q “ ϕpxq ` ϕ1

p∆xq `
1
2ϕ2

p∆x, ∆xq `
1
6ϕ3

p∆x, ∆x, ∆xq `
1
24ϕp4q

p∆x, ∆x, ∆x, ∆xq ` ...

“ ϕpxq `
?

hσϕ1ξ ` h
s

ÿ

i“1
biϕ

1f ` h
?

hσ
s

ÿ

i“1
bidiϕ

1f 1ξ ` h2
s

ÿ

i“1
biciϕ

1f 1f

` h2 σ2

2

s
ÿ

i“1
bid

2
i ϕ

1f2
pξ, ξq ` h

σ2

2 ϕ2
pξ, ξq ` h

?
hσ

s
ÿ

i“1
biϕ

2
pξ, fq

` h2 1
2p

s
ÿ

i“1
biq

2ϕ2
pf, fq ` h2σ2

s
ÿ

i“1
bidiϕ

2
pf 1ξ, ξq ` h

?
h

1
6σ3ϕ3

pξ, ξ, ξq

` h2 1
2σ2

s
ÿ

i“1
biϕ

3
pf, ξ, ξq ` h2 1

24σ4ϕp4q
pξ, ξ, ξ, ξq ` ...

Now we compute the expected value of ϕpX1q and we get

ExϕpX1q “ ϕpxq ` hE

«

s
ÿ

i“1
biϕ

1f `
σ2

2 ϕ2
pξ, ξq

ff

` h2E

«

s
ÿ

i“1
biciϕ

1f 1f `
σ2

2

s
ÿ

i“1
bid

2
i ϕ

1f2
pξ, ξq `

1
2p

s
ÿ

i“1
biq

2ϕ2
pf, fq

` σ2
s

ÿ

i“1
bidiϕ

2
pf 1ξ, ξq `

σ2

2

s
ÿ

i“1
biϕ

3
pf, ξ, ξq `

σ4

24ϕp4q
pξ, ξ, ξ, ξq

ff

` Oph3
q.
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Now we will use exotic aromatic trees [3, 6] in order to compute the expected val-

ues easier. For example, the expression ϕ1f2pξ, ξq gives the tree . The node on
the bottom (called root) represents the test function ϕ. The edge going upwards
connecting the root to the other node mean that the root ϕ is derived once. The
other nodes represent the function f . See that in our example this node has two
edges going upwards meaning f is derived twice. Lastly the crosses represent the
random variable ξ.

Therefore, using trees we get for the expected value of ϕpX1q the expression

ExϕpX1q “ ϕpxq ` hE

«

s
ÿ

i“1
bi `

σ2

2

ff

` h2E

»

–

s
ÿ

i“1
bici `

σ2

2

s
ÿ

i“1
bid

2
i `

1
2p

s
ÿ

i“1
biq

2

` σ2
s

ÿ

i“1
bidi `

σ2

2

s
ÿ

i“1
bi `

σ4

24

ff

` ...

“ ϕpxq ` h

˜

s
ÿ

i“1
bi `

σ2

2

¸

` h2

¨

˝

s
ÿ

i“1
bici `

σ2

2

s
ÿ

i“1
bid

2
i `

1
2p

s
ÿ

i“1
biq

2

` σ2
s

ÿ

i“1
bidi `

σ2

2

s
ÿ

i“1
bi `

σ4

8

¸

` Oph3
q.

Now, similarly to Theorem 2.2, we compare the expected value of ϕpX1q to the
expected value of ϕpXphqq. We know that ϕpXphqq has the following expansion

ExrϕpXphqqs “ ϕpxq ` hLϕ `
h2

2 L2ϕ ` ...

where the differential operator L is defined as Lϕ “ ϕ1f ` σ2

2 ∆ϕ. In order to get
weak order conditions up to 2, we need to compute the expression for L2ϕ.

In tree notation, we have

Lϕ “ `
σ2

2 .
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Now, applying L to Lϕ we get

L2ϕ “ Lp `
σ2

2 q “ Lp q `
σ2

2 Lp q “ ` `
σ2

2 `
σ2

2

˜

` ` 2 `
σ2

2

¸

“ ` ` σ2
`

σ2

2 ` σ2
`

σ4

4 .

Now we can compare ExϕpX1q and ExϕpXphqq to get the weak order conditions:

RK scheme (3.2) has weak order 1 if

ExϕpX1q ´ ExϕpXphqq “ Oph2
q ðñ

s
ÿ

i“1
bi “ 1.

RK scheme (3.2) has weak order 2 if

ExϕpX1q´ExϕpXphqq “ Oph3
q ðñ

s
ÿ

i“1
bi “ 1,

s
ÿ

i“1
bici “

1
2 ,

s
ÿ

i“1
bid

2
i “

1
2 ,

s
ÿ

i“1
bidi “

1
2 .

Remark 3. Note that setting σ ” 0, the SDE (3.1) becomes deterministic and the
values di disappear in the RK method. We can see that the conditions

ř

bi “ 1
and

ř

bici “ 1
2 are indeed the standard order 2 conditions for deterministic RK

methods.

3.2 Numerical tests for order 2 schemes
Now that we know the order conditions, we can create a RK method of weak order
2. For example, for s “ 2, the values

A “

ˆ

0 0
1{2 1{2

˙

, b “

ˆ

1{2
1{2

˙

, c “

ˆ

0
1

˙

, d “

ˆ

0
1

˙

fulfil the conditions for convergence of weak order 2. Using these values the RK
scheme (3.2) can also be written as

Xn`1 “ Xn `
h

2fpXnq `
h

2fpXn`1q ` σξn.

This method is implicit which means that it will require more computational
time. In every step we will need to solve a non-linear equation or use a fixed point
method.
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We will test its convergence using both a linear SDE and then a non-linear
SDE. First, we will use the linear equation dXptq “ λXptqdt ` σdW ptq where
λ “ 1.5, σ “ 0.1 and X0 “ 1. We compute 100000 different Brownian paths
over the interval r0, 1s with ∆t “ 2q´7 for 1 ď q ď 5. Since the RK scheme is
implicit, for every step we will perform the fixed point method. The tolerance for
this method is set to be tol=10^(−6).

Finally, we compute a least square fit for the constant log C and the weak
order r in line 42. We get the value r=1.8293 with a least squares residual of
resid=0.7136.

1 % Test weak convergence of RK
2 %
3 % dX = lambda*X dt + sigma dW, X(0)=Xzero,
4 % where lambda=1.5, sigma=0.1 and Xzero=1.
5 % Discretized Brownian path over [0,1] with dt=2^(−6)
6 % RK uses 5 different timesteps: dt, 2dt, 4dt, 8dt, 16dt
7

8 randn('state',10)
9 lambda = 1.5; sigma = 0.1; Xzero = 1; T = 1; dt=2^(−6);

10 M = 100000; % number of paths sampled
11 tol = 10^(−6); % accepted tolerance
12

13 Xem = zeros(5,1);
14 for q =1:5
15 R = 2^(q−1); Dt = R*dt; L = T/Dt; % L steps of size Dt
16 Xtemp = Xzero*ones(M,1);
17 for j = 1:L
18 Winc = sqrt(Dt)*randn(M,1);
19 Xnew = Xtemp;
20 gnew = g(Xtemp,Xnew,lambda,sigma,Winc,Dt);
21 while norm(Xnew−gnew)>tol % fixed point method
22 Xnew = gnew;
23 gnew = g(Xtemp,Xnew,lambda,sigma,Winc,Dt);
24 end
25 Xtemp = gnew;
26 end
27 Xem(q) = mean(Xtemp); % sample average of X_L
28 end
29 Xtrue = exp(lambda*T); % true solution for E[X(T)]
30 Xerr = abs(Xem − Xtrue);
31

32

33 Dtvals = 2.^([1:5]−10);
34 loglog(Dtvals,Xerr,'b*−'), hold on
35 loglog(Dtvals,Dtvals.^2,'r−−'), hold off
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36 axis([1e−3 1e−1 1e−6 1e2])
37 xlabel('\Delta t'), ylabel('| E[X(t)] − Sample average of X_L |')
38 legend({'|E[X(T)] Sample average of X_L|','Reference line ...

with slope 2'},'Location','northwest')
39

40 % Least squares fit of error = C*Dt^r
41 A = [ones(q,1), log(Dtvals)']; logerr = log(Xerr);
42 sol = A\logerr; r = sol(2)
43 resid = norm(A*sol − logerr)
44

45 function Xn = g(X0,X1,lambda,sigma,Winc,h)
46 Xn = X0 + 0.5*h*lambda*(X0+X1) + sigma*Winc; % RK method
47 end

Figure 5: Test of weak convergence of RK with linear SDE

Now we will do the same but with a non-linear SDE. We will use the equation
(3.1) with fpXptqq “ sin pXptqq. Since we do not know the exact solution, we
will approximate the exact solution with a much smaller h. In line 31 we take
the reference stepsize dt_ref = 2^(−6)*dt and then we use our algorithm to
compute the ’exact’ solution.

1 % Test weak convergence of RK on non−linear SDE
2 %
3 % dX = sin(X) dt + sigma dW, X(0)=Xzero,
4 % where sigma=0.25 and Xzero=1.
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5 % Discretized Brownian path over [0,1] with dt=2^(−4)
6 % RK uses 5 different timesteps: dt, 2dt, 4dt, 8dt, 16dt
7

8 randn('state',10)
9 sigma = 0.25; Xzero = 1; T = 1; dt=2^(−4);

10 M = 100000; % number of paths sampled
11 tol = 10^(−6); % accepted tolerance
12

13 Xem = zeros(5,1);
14 for q =1:5
15 R = 2^(q−1); Dt = R*dt; L = T/Dt; % L steps of size Dt
16 Xtemp = Xzero*ones(M,1);
17 for j = 1:L
18 Winc = sqrt(Dt)*randn(M,1);
19 Xnew = Xtemp;
20 gnew = g(Xtemp,Xnew,sigma,Winc,Dt);
21 while norm(Xnew−gnew)>tol % fixed point method
22 Xnew = gnew;
23 gnew = g(Xtemp,Xnew,sigma,Winc,Dt);
24 end
25 Xtemp = gnew;
26 end
27 Xem(q) = mean(Xtemp); % sample average of X_L
28 end
29

30 Xtemp_true = Xzero*ones(M,1); % true solution for E[X(T)]
31 dt_ref = 2^(−6)*dt; L = T/dt_ref;
32 for j = 1:L
33 Winc = sqrt(dt_ref)*randn(M,1);
34 Xnew_true = Xtemp_true;
35 gnew = g(Xtemp_true,Xnew_true,sigma,Winc,dt_ref);
36 while norm(Xnew_true−gnew)>tol
37 Xnew_true = gnew;
38 gnew = g(Xtemp_true,Xnew_true,sigma,Winc,dt_ref);
39 end
40 Xtemp_true = gnew;
41 end
42 Xtrue = mean(Xtemp_true);
43 Xerr = abs(Xem − Xtrue);
44

45

46 Dtvals = 2.^([1:5]−10);
47 loglog(Dtvals,Xerr,'b*−'), hold on
48 loglog(Dtvals,Dtvals.^2,'r−−'), hold off
49 axis([1e−3 1e−1 1e−6 1e2])
50 xlabel('\Delta t'), ylabel('| E[X(t)] − Sample average of X_L |')
51 legend({'|E[X(T)] Sample average of X_L|','Reference line ...

with slope 2'},'Location','northwest')
52
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53 % Least squares fit of error = C*Dt^r
54 A = [ones(q,1), log(Dtvals)']; logerr = log(Xerr);
55 sol = A\logerr; r = sol(2)
56 resid = norm(A*sol − logerr)
57

58 function Xn = g(X0,X1,sigma,Winc,h)
59 Xn = X0 + 0.5*h*sin(X0)+0.5*h*sin(X1) + sigma*Winc;
60 end

Computing the least square fit for the constant log C and the weak order r in line
55, we get the value r=1.8157 with a least squares residual of resid=0.6594.

Figure 6: Test of weak convergence of RK with non-linear SDE

Conclusion
We have found first and second weak order conditions for RK methods for ap-
proximating SDEs of the form (3.1). We have seen that for order 1 there is 1
condition and for order 2 there are 4 conditions. However, we have not considered
RK methods to approximate SDEs with multiplicative noise, that is, SDEs (1.1)
with a matrix function g : Rd ÝÑ Mdˆl instead of a positive constant σ. In [1]
Runge-Kutta methods are presented for approximating SDEs with multiplicative
noise and it was found that there are 9 conditions for order 1 schemes and 59
conditions for order 2 schemes.
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