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1 Introduction
In this project I will be giving an introduction to Fourier series, some theory about
their convergence and some applications for solving PDE’s, in my case the heat
equation. The goal is to give an overview of the topic of Fourier series, as well
as some applications. I have come across the topic Fourier series in many of the
courses here at university, which is not surprising as I have learned that Fourier
series have a lot of applications. The application that I will be focusing on in this
thesis is for solving partial differential equations, namely the heat equation.

In the first section of the thesis, I introduce Fourier series, including the
derivation of the coefficients. Following this introduction, I will discuss some
convergence-theorems, and I will prove some completeness of Fourier series. Fol-
lowing this I will look at what happens to Fourier series that have jump disconti-
nuities (Gibbs phenomenon). Lastly I will show how to use the theory on Fourier
series for solving the inhomogeneous heat equation, which is a useful application
as mentioned above. At the end of the thesis, there will be a short introduction to
a numerical approach, called the method of finite differences for solving the heat
equation.

My supervisors for this project are Adrien Ange André Laurent and Frédéric
Fernand Jacques Valet.

2 Theoretical part
For the first part of this thesis, I will be introducing theory regarding Fourier
series, and a theoretical approach to its applications.

2.1 Preliminaries
In this section, I introduce some definitions and formulas that I use in the thesis.
All the definitions and theorems below are from the book "Partial differential equa-
tions - an introduction" by Walter A. Strauss, unless another refrence is specified.

Definition 2.1. [2] Periodic function: A function f(x) is periodic with period p if
fpx ` pq “ fpxq.

Definition 2.2. [2] Even and odd functions: A function f(x) is even if fp´xq “

fpxq, and odd if fp´xq “ ´fpxq. An important example for us is that cos nθ is
an even function, and sin nθ is an odd function.

Facts about even and odd functions:

1. The integral of odd functions over symmetric intervals is zero.
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2. The sum of two even functions is even and the sum of two odd functions is
odd

3. The product of one even function and one odd function is odd

4. The product of two even functions or two odd functions is even

DeMoivre formulas
$

’

’

&

’

’

%

sin θ “
eiθ ´ e´iθ

2i

cos θ “
eiθ ` e´iθ

2

(2.1)

Eulers formula:
eiθ

“ cos piθq ` i sin piθq (2.2)

Definition 2.3. Inner product: The inner product of two complex valued functions
f(x) and g(x) on the interval (a,b) is defined as

pf, gq “

ż b

a

fpxqgpxqdx

where gpxq is the complex conjugate of g. In case of real valued functions f(x) and
g(x):

pf, gq “

ż b

a

fpxqgpxqdx

Definition 2.4. [4] Orthogonal set of functions: Let fnnPZ be a sequence of complex
valued functions on [a,b] such that their inner product is zero:

ż b

a

fnpxqfmpxqdx “ 0, pn ‰ mq.

Then the sequence of functions is an orthogonal set of functions on the interval. If
additionally

şb

a
|fnpxq|2dx “ 1 for all n, the sequence of functions is orthonormal.

2.2 What are Fourier series?
Fourier series are used to represent periodic functions as sums of cosine and sine
functions. This works well because cosine and sine are periodic. For some function
f(x) on an interval ´l ă x ă l, the full real Fourier series is given by:

fpxq “
1
2a0 `

8
ÿ

n“1
pan cos

´nπx

l

¯

` bn sin
´nπx

l

¯

q (2.3)
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The series consists of the Fourier cosine series, and the Fourier sine series, which
are respectively even and odd. It is possible to rewrite (2.3) as the complex Fourier
series by using the DeMoivre formulas (2.1) [2]:

fpxq “
1
2a0 `

8
ÿ

n“1
pan cos

´nπx

l

¯

` bn sin
´nπx

l

¯

q

“
1
2a0 `

8
ÿ

n“1

˜

an
e

inπx
l ` e

´inπx
l

2 ` bn
e

inπx
l ´ e

´inπx
l

2i

¸

“
1
2a0 `

8
ÿ

n“1

˜

an
e

inπx
l

2 ` an
e

´inπx
l

2 ´ ibn
e

inπx
l

2 ` ibn
e

´inπx
l

2

¸

“
1
2a0 `

8
ÿ

n“1

ˆˆ

an ´ ibn

2

˙

e
inπx

l ` p

ˆ

an ` ibn

2

˙

e
´inπx

l

˙

Now this is written in a complex form, and I will rename the coefficients by
the following relations:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

c0 “
1
2a0

cn “

ˆ

an ´ ibn

2

˙

c´n “

ˆ

an ` ibn

2

˙

which can be rewritten as:
$

’

&

’

%

a0 “ 2c0

an “ cn ` c´n

bn “ ipcn ´ c´nq

I can rewrite the complex form of the Fourier series by using these relations:

fpxq “
1
22c0 `

8
ÿ

n“1

´

cne
inπx

l ` c´ne
´inπx

l

¯

“

8
ÿ

´8

cne
inπx

l
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So the complex Fourier series is:

fpxq “

8
ÿ

´8

cne
inπx

l (2.4)

In the following sections, I will show how to derive the coefficients an, bn and
cn of the Fourier series. In order to derive the Fourier coefficients it is necessary
to familiarize the notion of orthogonlity.

2.2.1 Orthogonality

In order to derive the coefficients, I make use of the property of orthogonality,
defined in 2.4. This property is particularly useful in the case of cosine and sine
function to derive the coefficients of the real Fourier series. Here I can use the fact
that

ż l

´l

sin
´nπx

l

¯

sin
´mπx

l

¯

dx “ 0 for m ‰ n (2.5)

Proof. The proof that I provide here is based on the book "Partial differential
equations - an introduction" by Walter A Strauss. Using the trigonometric identity
sin paq sin pbq “ 1

2 cos pa ´ bq ´ 1
2 cos pa ` bq, the left hand side of (2.5) can be

rewritten as:
ż l

´l

sin
´nπx

l

¯

sin
´mπx

l

¯

dx “

ż l

´l

1
2 cos

ˆ

pn ´ mqπx

l

˙

´
1
2 cos

ˆ

pn ` mqπx

l

˙

dx

“
1
2

ż l

´l

cos
ˆ

pn ´ mqπx

l

˙

dx ´
1
2

ż l

´l

cos
ˆ

pn ` mqπx

l

˙

dx

“
1
2

„

l

pn ´ mqπ
sin

ˆ

pn ´ mqπx

l

˙ȷl

´l

´
1
2

„

l

pn ` mqπ
sin

ˆ

pn ` mqπx

l

˙ȷl

´l

Here there are three cases to consider; one where m ‰ n, one where m “ n ‰ 0
and lastly the case where m “ n “ 0. For the first case, when m ‰ n, all terms
will disappear as I get sine of some integer multiplied by π in every case. For
the second case, when m “ n ‰ 0, there will be an issue because of zero in the
denominator. To avoid this, I go back to the stage of the integral where
ż l

´l

sin
´nπx

l

¯

sin
´mπx

l

¯

dx “
1
2

ż l

´l

cos
ˆ

pn ´ mqπx

l

˙

dx´
1
2

ż l

´l

cos
ˆ

pn ` mqπx

l

˙

dx
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and I put in m=n:

“
1
2

ż l

´l

cos p0qdx ´
1
2

ż l

´l

cos
ˆ

2mπx

l

˙

dx

“
1
2

ż l

´l

dx ´
1
2

ż l

´l

cos
ˆ

2mπx

l

˙

dx

“
1
2 rxs

l
´l ´

1
2

„

l

2mπx
sin

ˆ

2mπx

l

˙ȷl

´l

“ l

For the third case, when m “ n “ 0,
şl

´l
sin

`

nπ0
l

˘

sin
`

mπ0
l

˘

dx “
şl

´l
0 “ 0

To conclude, I have the following the property:
ż l

´l

sin
´nπx

l

¯

sin
´mπx

l

¯

dx “

"

0 if m ‰ n or m “ n “ 0
l if m “ n

(2.6)

Similarly, I have:

ż l

´l

cos
´nπx

l

¯

cos
´mπx

l

¯

dx “

$

&

%

0 if m ‰ n
l if m “ n ‰ 0
2l if m “ n “ 0

(2.7)

In this case, when m=n=0, we have
şl

´l
cos

`

nπ0
l

˘

cos
`

mπ0
l

˘

dx “
şl

´l
1dx “

rxs
l
´l “ 2l The rest of the proof is omitted since it is a lot like the previous proof.

The last orthogonality property that we will be using is:
ż l

´l

cos
´nπx

l

¯

sin
´mπx

l

¯

“ 0 (2.8)

This is true because cosine is an even function, and sine is an odd function, and
since an even function multiplied by an odd function is odd, I have the integral
over -l to l (symmetric about 0) of an odd function. This is always 0.

2.2.2 The coefficients

Now I will be using property (2.6), (2.7) and (2.8) to find the coefficients of (2.3).

Finding a0:
To find the coefficient a0, I take the integral on both sides of (2.3):
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ż l

´l

fpxqdx “

ż l

´l

1
2a0 `

ż l

´l

8
ÿ

n“1
pan cos

´nπx

l

¯

` bn sin
´nπx

l

¯

q

“
1
2a0

ż l

´l

1dx `

8
ÿ

n“1

ż l

´l

an cos
´nπx

l

¯

dx `

8
ÿ

n“1

ż l

´l

bn sin
´nπx

l

¯

qdx

“
1
2a0

ż l

´l

1dx

“ a0l

Thus, a0 is given by:
ż l

´l

fpxqdx “ a0l

a0 “
1
l

ż l

´l

fpxqdx

(2.9)

Finding an:
For finding an, I multiply both sides of (2.3) by cos

`

mπx
l

˘

and integrate on both
sides of the equal sign so that I can use the orthogonality properties (2.7) and
(2.8):

ż l

´l

fpxq cos
´mπx

l

¯

dx “
1
2a0

ż l

´l

cos
´mπx

l

¯

`

8
ÿ

n“1

ż l

´l

an cos
´nπx

l

¯

cos
´mπx

l

¯

dx

`

8
ÿ

n“1

ż l

´l

bn sin
´nπx

l

¯

cos
´mπx

l

¯

dx

The first term on the right hand side,

1
2a0

ż l

´l

cos
´mπx

l

¯

.....her må det stå noe. The last term,
8
ÿ

n“1

ż l

´l

an cos
´nπx

l

¯

cos
´mπx

l

¯

dx

, is also 0, by (2.8). The second term,
ř8

n“1
şl

´l
an cos

`

nπx
l

˘

cos
`

mπx
l

˘

dx, is 0 when-
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ever m ‰ n. For the cases where m=n I have to consider m = 0 and m ‰ 0.
For m “ 0, I get:

ż l

´l

an cos
´nπx

l

¯

cos
´mπx

l

¯

dx “

ż l

´l

an cos
´nπx

l

¯

dx

which is 0.
For the case where m “ n ‰ 0, I get:

ż l

´l

an cos
´nπx

l

¯

cos
´mπx

l

¯

dx “

ż l

´l

an cos2
´nπx

l

¯

dx

“ an

ż l

´l

1
2

„

cos
ˆ

2nπx

l

˙

` 1
ȷ

dx

“
an

2

„
ż l

´l

cos
ˆ

2nπx

l

˙

dx `

ż l

´l

1dx

ȷ

“
an

2

«

„

l

2nπ
sin

ˆ

2nπx

l

˙ȷl

´l

` rxs
l
´l

ff

“
an

2 r0 ` 2ls

“ anl

So I have that all terms on the left side disappear, except anl, which gives me
the expression for an:

ż l

´l

fpxq cos mπx

l
dx “ anl

an “
1
l

ż l

´l

fpxq cos mπx

l
dx

(2.10)

Finding bn: To derive bn I multiply (2.3) by sin
`

mπx
l

˘

and integrate on both
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sides of =:
ż l

´l

fpxq sin
´mπx

l

¯

dx “
1
2a0

ż l

´l

sin
´mπx

l

¯

dx `

8
ÿ

n“1
an

ż l

´l

cos
´nπx

l

¯

sin
´mπx

l

¯

dx

`

8
ÿ

n“1
bn

ż l

´l

sin
´nπx

l

¯

sin
´mπx

l

¯

dx

“ 0 ` 0 ` bnl

(By the orthogonality properties). So I am left with
ż l

´l

fpxq sin
´mπx

l

¯

dx “ bnl

bn “
1
l

ż l

´l

fpxq sin
´mπx

l

¯

dx

(2.11)

2.3 Complex form of the Fourier series
The complex form of the Fourier series is given by:

fpxq “

8
ÿ

n“´8

cne
inπx

l

I recall that cn “ an´ibn

2 from the relations in section 2.2. Now that I know what
an and bn are, I can put them into the equation:

cn “
an ´ ibn

2

“

1
l

şl

´l
fpxq cos

`

mπx
l

˘

dx ´ i1
l

şl

´l
fpxq sin

`

mπx
l

˘

dx

2

“
1
2l

ż l

´l

fpxq

”

cos
´mπx

l

¯

´ i sin
´mπx

l

¯ı

dx

“
1
2l

ż l

´l

fpxqe
imπx

l dx

9



So the coefficient for the complex Fourier expansion is:

cn “
1
2l

ż l

´l

fpxqe
´inπx

l (2.12)

2.4 Completeness
In order to discuss the completeness of the Fourier series, I must introduce some
theorems. All of the theorems and definitions below are from the book "Partial
differential equations - an introduction" by Walter A. Strauss, with some changes
on the notation.

2.4.1 Convergence theorems

Definition 2.5 (Pointwise convergence). An infinite series of functions
ř8

n“1 fnpxq

converges pointwise in (a,b) if for each a ă x ă b,

|fpxq ´

N
ÿ

n“1
fnpxq| ÝÑ

NÑ8
0

Definition 2.6 (Uniform convergence). An infinite series of functions
ř8

n“1 fnpxq

converges uniformly to f(x) in [a,b] if

max
aďxďb

|fpxq ´

N
ÿ

n“1
fnpxq| ÝÑ

NÑ8
0

Definition 2.7 (L2-convergence). An infinite series of functions
ř8

n“1 fnpxq con-
verges in the L2 sense to f(x) in (a,b) if

ż b

a

|fpxq ´

N
ÿ

n“1
fnpxq|

2dx ÝÑ
NÑ8

0

Theorem 2.8. Uniform convergence of Fourier series: The Fourier series of f(x)
on [a,b] converges uniformly to f(x) if

1. The function, as well as its first and second derivatives exist and are contin-
uous on [a,b]

2. The function satisfies the boundary conditions.

Theorem 2.9. L2 convergence of Fourier series: The Fourier series converges to
f(x) in the sense of L2 on (a,b) if

şb

a
|fpxq|2dx is finite.
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Theorem 2.10. Pointwise convergence of Fourier series: The Fourier series con-
verges pointwise to f(x) on the interval (a,b) if f(x) is continuous and f’(x) is
piecewise continuous for x P ra, bs. If f(x) is only piecewise continuous and f’(x)
is piecewise continuous as before, and f(x) is 2l-periodic, then the Fourier series
converges to 1

2 |fpx`q ` fpx´qs at every point x P p´8, 8q.

Theorem 2.11. If
ř8

n“1 fnpxq converges uniformly to f(x), then
ř8

n“1 fnpxq also
converges in the L2-sense to f(x).

Proof. I let the series
ř8

n“1 fnpxq be uniformly convergent in [a,b], so

max
aďxďb

|fpxq ´

N
ÿ

n“1
fnpxq| ÝÑ

NÑ8
0,

or in other words:

lim
NÑ8

max
aďxďb

|fpxq ´

N
ÿ

n“1
fnpxq| “ 0.

I have that:

0 ď |fpxq ´

N
ÿ

n“1
fnpxq| ď max

aďxďb
|fpxq ´

N
ÿ

n“1
fnpxq|

02
ď |fpxq ´

N
ÿ

n“1
fnpxq|

2
ď max

aďxďb
|fpxq ´

N
ÿ

n“1
fnpxq|

2

ż b

a

0dx ď

ż b

a

|fpxq ´

N
ÿ

n“1
fnpxq|

2dx ď

ż b

a

max
aďxďb

|fpxq ´

N
ÿ

n“1
fnpxq|

2dx

lim
NÑ8

0 ď lim
NÑ8

ż b

a

|fpxq ´

N
ÿ

n“1
fnpxq|

2dx ď lim
NÑ8

ż b

a

max
aďxďb

|fpxq ´

N
ÿ

n“1
fnpxq|

2dx

0 ď lim
NÑ8

ż b

a

|fpxq ´

N
ÿ

n“1
fnpxq|

2dx ď

ż b

a

lim
NÑ8

max
aďxďb

|fpxq ´

N
ÿ

n“1
fnpxq|

2dx

0 ď lim
NÑ8

ż b

a

|fpxq ´

N
ÿ

n“1
fnpxq|

2dx ď

ż b

a

0dx

With the assumption that
ř8

n“1 fnpxq is uniformly convergent in [a,b], I have by
the dominated convergence theorem theorem that the limit and the integral can
be interchanged, as in the fifth line. Since I assumed uniform convergence, I have
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that the right hand side of the inequality goes to zero, which means that

0 ď

ż b

a

|fpxq ´

N
ÿ

n“1
fnpxq|

2dx ď 0

Which means that
şb

a
|fpxq ´

řN
n“1 fnpxq|2dx

NÑ8
Ñ 0 which is the definition of

L2-convergence.

2.5 Alternative proof of pointwise convergence
In this section, I will be giving an alternative proof for pointwise convergence of
Fourier series. The proof is based on the proof of pointwise convergence published
in American Mathematical Monthly by Paul R. Chernoff. I will be following the
structure of exercise 13 of section 5.5 in the book "Partial differential equations
- an introduction" by Walter A. Strauss, with the help of the proof by Chernoff
[1]. Since I will be assuming that the function in question is C1, this is a weaker
proof than the usual proof, which can be found in the appendix, A. The proof of
Chernoff is extended to deal with jump discontinuities as well, but I will omit this.

Proof. As mentioned, I start by letting fpxq be a C1 function with period 2π. I
first want to show that I may assume f(0)=0. For this, I construct a function
hpxq “ fpxq ´ fp0q. Since f(x) is 2π-periodic, I have that:

hpx ` 2πq “ fpx ` 2πq ´ fp0q “ fpxq ´ fp0q “ hpxq,

so h(x) is 2π-periodic and hp0q “ 0. The function f(x) shares the same properties
as h(x), so I may assume that f(0) = 0.

Next up is to show that gpxq “
fpxq

eix´1 is a continuous function. The numerator
is just f(x) which I already assume is C1, so discontinuities may appear when the
denominator is zero:

eix
´ 1 “ 0
eix

“ 1
cospxq ` isinpxq “ 1

which is the case whenever x “ 2nπ. Since sine is 2π-periodic, it is enough to
show continuity when x=0 as it will attain the value 0 for each n=1,2,3.... To

12



show continuity, I need to show that limxÑ0gpxq “ gp0q

limnÑ0gpxq “
0
0

(L’hôpital)

“ limnÑ0
f 1pxq

ieix

“
f 1pxq

i

Knowing that f(x) is C1, so f’(x) is continuous , and i is the imaginary unit which
is non-zero, I can conclude that g(x) is a continuous function.

Letting Cn be the complex Fourier coefficient of f(x) and Dn the complex
coefficient of g(x). In part b, I concluded that g is everywhere continuous, and I
showed that it is bounded when the denominator goes to 0. Because g(x) is finite,
şπ

´π
|gpxq|2dx is also finite. I can use Bessels inequality to state that:

8
ÿ

n“1
D2

n

ż π

´π

|e´inx
|
2

ď

ż π

´π

|gpxq|
2

which is finite so is less than 8. Now if n Ñ 8, Dn Ñ 0 for this inequality to hold
(because the right hand side of the inequality is finite).

Next, I will show that Cn “ Dn´1 ´ DN so that the series
ř

Cn is a telescoping
series. I recall that a telescoping series is a series such that the terms an can be
written as bn ´ bn`1. The partial sum of a telescoping series consists only of the
first and the last term, as every other term cancels out.(ref) In this case, we have
fpxq “ gpxqpeix ´ 2q. Fourier expanding:

1
π

ż π

´π

fpxqe´inπdx “
1
π

ż π

´π

gpxqpeix
´ 1qe´inxdx

1
π

ż π

´π

fpxqe´inπdx “
1
π

ż π

´π

gpxqpeixp1´nq
´

1
π

ż π

´π

gpxqe´inxdx

Cn “ Dn´1 ´ Dn

N
ÿ

n“´M

Cn “

N
ÿ

n“´M

Dn´1 ´ Dn

Because Dn Ñ 0, and since we have proved that the Fourier coefficient of f(x), Cn,
can be written as a telescoping series of Dn´1 ´ Dn we know that Cn is 0 at x =
0, and thus the Fourier series of f(x) at x=0 converges to 0. Hence I have proved
the pointwise convergence of the Fourier series for a C1 function.
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2.6 Gibbs phenomenon
Given a function f(x) that has jump discontinuities, the partial sum SN is defined
to approximate the jumps. It turns out by Gibbs phenomenon, that SN differs
from the function by around 9% ("overshoot"). The width of the jump goes to zero
whenever N goes to infinity, but the height remains at 9%. In other words,

limNÑ8max|SN pxq ´ fpxq| ‰ 0,

even though limNÑ8|SN pxq ´ fpxq|
NÑ8
ÝÝÝÑ 0 whenever there is not a jump[5].

One example of a function with a jump, from [5] is the following: fpxq “ 1
2 for

0 ă x ă π, and fpxq “ ´1
2 for ´π ă x ă 0 The Fourier sine series for this function,

which is odd, is:
8
ÿ

n“1

2
nπ

sinpnπq.

Using the Dirichlet Kernel from previously, the partial sums are:

SN pxq “ p

ż π

0
´

ż 0

´pi

qKN px ´ yq
dy

4π
“ p

ż π

0
´

ż 0

´π

q
sinrpN ` 1

2px ´ yqs

sinr1
2px ´ yqs

dy

4π

Defining M “ N ` 1
2 and using change of variables θ “ Mpx ´ yq in the first

integral and θ “ Mpy ´ xq in the second.

SN pxq “ p

ż Mx

Mpx´πq

´

ż ´Mx

´Mpx`πq

q
sinpθq

2Msinp θ
2M

q

dθ

2π

“ p

ż Mx

´Mx

´

ż ´Mπ`Mx

´Mπ´Mx

q
sinpθq

2Msinp θ
2M

q

dθ

2π

Since the integral is even, I have:

“ p

ż Mx

´Mx

´

ż Mπ`Mx

Mπ´Mx

q
sinpθq

2Msinp θ
2M

q

dθ

2π

The max of the first integral here, is given by setting its derivative equal to zero.
This is the case whenever sin((Mx) = 0, thus x “ π. Then I have:

SN p
π

M
q “ p

ż π

´π

´

ż Mπ`π

Mπ´π

q
sinpθq

2Msinp θ
2M

q

dθ

2π

For M>2: π
4 ă r1 ´ 1

M
sπ

2 ď θ
2M

ď r1 ` 1
M

sπ
2 ă 3π

4 So sinp θ
2M

q ą 1?
2 , which

means the second integral is less than
şMπ`π

Mπ´π
1 ¨ r2M?

2 s2 dθ
2π

“ 1?
2M

which goes to

14



0 when M goes to infinity. The first integral, |θ| ď π and 2Msinp θ
2M

q
MÑ8
ÝÝÝÝÑ θ

uniformly in |θ| ď π. Taking the limit of Sn as M goes to infinity gives me:
SN p π

M

MÑ8
ÝÝÝÝÑ

şpi

´π
sinpθq

θ
dθ
2π

» 0, 59 which is the Gibbs 9 percent overshoot. This
presentation of the Gibbs phenomenon, as well as the example is entirely based
section 5.5 of the book of Strauss mentioned earlier.

2.7 Application of Fourier series for solving a partial dif-
ferential equation

In this section, I will be showing how Fourier series can be applied to solve par-
tial differential equations. Later on, in section 3, I will solve the heat equation
numerically. In this section will specifically be solving the heat equation with inho-
mogeneous boundary conditions and a source term. Physically, the heat equation
in one dimension paired with its boundary conditions and initial condition de-
scribes the rate that the temperature changes along a rod. The inhomogeneous
heat equation with a source term and Dirichlet boundary conditions is given by
the following:

$

’

&

’

%

ut ´ uxx “ fpx, tq

up0, tq “ 0, upl, tq “ 0
upx, 0q “ u0pxq

(2.13)

Where f(x,t) is the source term. Fourier expanding u(x,t) by the Fourier sine series

upx, tq “

8
ÿ

n“1
unptqsinp

nπx

l
q

where
un “

2
l

ż l

0
upx, tqsinp

nπx

l
qdx

Letting

ut “

8
ÿ

n“1
vnptqsinp

nπx

l
q

where
vn “

2
l

ż l

0

Bu

Bt
sinp

nπx

l
qdx

also letting

uxx “

8
ÿ

n“1
wnptqsinp

nπx

l
q

15



where
wn “

2
l

ż l

0

B2u

Bt2 sinp
nπx

l
qdx

I want to use Greens second identity:
ż b

a

p´X2
1 X2 ` X1X

2
2 qdx “ p´X 1

1X2 ` X1X
1
2q|

b
a

I make

X1 “ sinp
nπx

l
q, X 1

1 “ p
nπ

l
qcosp

nπx

l
q, X2

1 “ ´p
nπ

l
q

2sinp
nπx

l
q

and
X2 “ u, X 1

2 “ ux, X2
2 “ uxx

Putting this into Greens second identity:
ż l

0

´nπ

l

¯2
sin

´nπx

l

¯

udx ´

ż l

0
sin

´nπx

l

¯

uxxdx “

”

´

´nπ

l

¯

cos
´nπx

l

¯

u ` sin
´nπx

l

¯

ux

ıl

0

Note that the last term on the left hand side ´
şl

0 sin
`

nπx
l

˘

uxxdx “ ´ l
2wnptq. In

other words, we now have:

wnptq “ ´
2
l

„
ż l

0

´nπ

l

¯2
sin

´nπx

l

¯

udx `

”

´

´nπ

l

¯

cos
´nπx

l

¯

u ` sin
´nπx

l

¯

ux

ıl

0

ȷ

“ ´
2
l

´nπ

l

¯2
ż l

0
sin

´nπx

l

¯

udx ´
2
l

”

´

´nπ

l

¯

cos
´nπx

l

¯

u ` sin
´nπx

l

¯

ux

ıl

0

“ ´
2
l

ż l

0

´nπ

l

¯2
unptq

The last term disappears because of the boundary conditions. I am now left with
only

wnptq “ ´
2
l

ż l

0

´nπ

l

¯2
unptq

The PDE is ut ´ uxx “ fpx, tq, which in terms of the coefficients means that we
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require:

vnptq ´ wnptq “
2
l

ż l

0
utsinp

nπx

l
q `

´nπ

l

¯2
unptqdx “ fnptq

This way the partial differential equation can be rewritten into an ordinary differ-
ential equation, and may be solved given the source term and initial condition.

3 The method of finite differences for heat equa-
tion

In the previous section, 2.7, I solved the heat equation with a source term by
using Fourier expansion. In this section, I will show a numerical method for
approximately solving the heat equation, with and without a source term. Partial
differential equations, such as the heat equation involve derivatives, which I will
approximate numerically using the difference formulas. From the definition of
the derivative, f 1pxq “ limhÑ0

fpx`hq´fpxq

h
, and for a sufficiently small (non-zero)

h, the derivative, f 1pxq can be approximated by f 1pxq «
fpx`hq´fpxq

h
. This is the

forward difference. The backward difference is f 1pxq «
fpxq´fpx´hq

h
. The central

difference is really just the mean of these the forward difference and the backward
difference: f 1pxq «

fpx`hq´fpxq`fpxq´fpx´hq

2h
“

fpx`hq´fpx´hq

2h
. The central difference

for the second derivative is f2pxq «
fpx`hq´2fpx´hq

2h
. The finite difference formula,

as well as what follows below in this section is based on the book "A First Course
in the Numerical Analysis of Differential Equations" by Arieh Iserles [3].

3.1 The finite difference scheme for the heat equation with-
out source term

The heat equation, here with Dirichlet boundary conditions and without source
term, given by the following

$

’

&

’

%

ut “ uxx

up0, tq “ 0, upl, tq “ 0
upx, 0q “ u0pxq,

(3.1)

is a PDE that depends on time, t, and space, x. A PDE that depends on both
space and time is called an evolutionary equation [3]. However, in order to use the
finite difference formulas from above it must be dependent of only one variable. I
discretize x by defining the step size along the x-axis to be ∆x “ L

d`1 , where L is
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the length of the rod and d P Z`. Each xℓ “ ℓ∆x denotes a grid point along x.
The step size of the time is ∆t “ T

M
where M P Z`. Each node in the grid provides

a solution at some time t. The central difference method for approximating second
derivatives, as presented above, now yields:

B2upx, tq

Bx2 «
upx ´ ∆x, tq ´ 2upx, tq ` upx ` ∆x, tq

p∆xq2 ` Opp∆xq
2
q

where Op∆xq2 denotes the error. I use the forward difference formula for the first
derivative of u with respect to t:

Bupx, tq

Bt
«

upx, t ` ∆tq ´ upx, tq

∆t
` Op∆tq.

Putting these back into the PDE (3.1):

upx, t ` ∆tq ´ upx, tq

∆t
`Op∆tq “

upx ´ ∆x, tq ´ 2upx, tq ` upx ` ∆x, tq

p∆xq2 Opp∆xq
2
q.

Multiplying on both sides with ∆t and then moving ´upx, tq and the error to the
right hand side I get:

upx, t ` ∆tq “ upx, tq ` ∆t
upx ´ ∆x, tq ´ 2upx, tq ` upx ` ∆x, tq

p∆xq2 ` Op∆tq ´ Opp∆xq
2
q

(3.2)
I denote the approximated solution upℓ∆x, n∆tq by un

ℓ as in [3], so (3.2) becomes:

un`1
ℓ « un

ℓ `
∆t

p∆xq2 pun
ℓ´1 ´ 2un

ℓ ` un
ℓ`1q, ℓ “ 1, 2, ..., N, n “ 0, 1, ..., (3.3)

Which is the Euler discretization in time. This can all be written in matrix form.
I denote the vector form of the solution Un “ pun

ℓ qℓ P Rd, and rewrite (3.3) as the
folllowing:

Un`1
“ Un

`
∆t

p∆xq2 AUn, n “ 0, 1, ..., (3.4)
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Where A is a matrix with entries of -2 in the main diagonal, and 1 in the diagonals
above and below. By the boundary conditions I have 0 everywhere else (left blank):

A “

¨

˚

˚

˚

˚

˝

´2 1
1 . . . . . .

. . . . . . 1
1 ´2

˛

‹

‹

‹

‹

‚

A numerical example to illustrate the heat distribution:
$

’

&

’

%

ut “ uxx

up0, tq “ 0, upl, tq “ 0
upx, 0q “ cosp2πxq,

(3.5)

Figure 1: The finite difference approximation for the heat equation with Dirichlet bound-
ary conditions, initial condition u0 “ cos 2πx, and no source term
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3.2 Finite difference method for the inhomogeneous heat
equation with source term

The heat equation with a source term (again with Dircihlet boundary conditions):
$

’

&

’

%

ut ´ uxx “ fpuq

up0, tq “ 0, upl, tq “ 0
upx, 0q “ u0pxq

The method of finite differences in this case gives me:

un`1
ℓ “ un

ℓ `
∆t

p∆xq2 pun
ℓ´1 ´ 2un

ℓ ` un
ℓ`1q ` ∆tfpun

ℓ q, ℓ “ 1, 2, ..., N, n “ 0, 1, ...

As previously in matrix form:

U pn`1q
“ Un

`
∆t

p∆xq2 AUn
` ∆tF pUn

q, n “ 0, 1, ..., (3.6)

Where A is the same as previously and

F pUn
q “

¨

˚

˝

fpun
1 q

...
fpun

N q

˛

‹

‚

3.3 Bonus: Fourier method
One very last thing that is worth mentioning, is the Fourier method for solving
partial differential equations. I unfortunately did not have the capacity to cover
this in this thesis, but since I have already worked on a program for this method
with my supervisor, I will include the result of the numerical example from 3.5
solved using the Fast Fourier Transform algorithm, as a bonus:
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Figure 2: The finite difference approximation for the heat equation with Dirichlet bound-
ary conditions, initial condition u0 “ cos 2πx, with source term and using FFT
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Appendices
A Proof of pointwise convergence convergence

of Fourier series
I will prove the theorem for pointwise convergence of Fourier series 2.10, as in sec-
tion 5.5 of "Partial Differential Equations - an introduction" by Walter A. Strauss
[5]. In the proof I will be making use of Bessels inequality, which states that for
an orthogonal set of real valued functions tfnunPZ, and a function g(x), for which

the L2-norm: ||gpxq|| “

”

şb

a
|gpxq|2dx

ı
1
2 is finite, we have the following inequality:

8
ÿ

n“1
c2

n

ż b

a

|fnpxq|
2dx ď

ż b

a

|gpxq|
2dx (A.1)

where cn is the Fourier coefficient. To avoid creating introducing more new con-
cepts and notation, I will not provide the derivation of this inequality.

Proof. For the proof, I will first consider C1 function of period 2π and then see
what happens when there are jump discontinuities. In the case of a C1-function
of period of 2π, such that l “ π, the full Fourier series is:

fpxq “
a0

2 `

8
ÿ

n“1
pancospnxq ` bnsinpnxqq,

where
an “

ż π

´π

fpyqcospnyq
1
π

dy pn “ 0, 1, 2, ...q

, and
nn “

ż π

´π

fpyqsinpnyq
1
π

dy pn “ 1, 2, ...q.

I define the Nth partial sum of the Fourier series as

SN pxq “
a0

2 `

N
ÿ

n“1
pancospnxq ` bnsinpnxqq.

In order to show pointwise convergence, I need to show that |fpxq ´ SN | ÝÑ
NÑ8

0. I
rewrite the expression for the partial sum by replacing an and bn by their respective
expressions. Here, I note that a0 “

şπ

´π
fpyqcosp0q

dy
π

“
şπ

´π
fpyq

dy
π

so I have:
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SN pxq “
1
2

ż π

´π

fpyq
1
π

dy`

N
ÿ

n“1

ż π

´π

fpyqcospnyqcospnxq
1
π

dy`

N
ÿ

n“1

ż π

´π

fpyqsinpnyqsinpnxq
1
π

dy

“
1

2π

ż π

´π

«

1 ` 2
N
ÿ

n“1
cospnyqcospnxq ` sinpnyqsinpnxq

ff

fpyqdy.

From the trigonometric identity that cospa ´ bq “ cospaqcospbq ` sinpaqsinpbq, I
can rewrite the expression as:

SN pxq “

ż π

´π

r1 ` 2
N
ÿ

n“1
pcospny ´ nxqs

fpyq

π
dy

. The part 1 ` 2
řN

n“1pcospny ´ nxq is called the Dirichlet kernel:

KN pθq “ 1 ` 2
N
ÿ

n“1
cospnθq (A.2)

In my case, I have θ “ y ´ x. The Dirichlet kernel, KN pθq, can be rewritten in the
form KN pθq “

sin rpN` 1
2 qθs

sin p 1
2 θq

by using De Moirves formulas (2.1) to replace cospnθq

by einθ`e´inθ

2 :

KN pθq “ 1 ` 2
N
ÿ

n“1

einθ ` e´inθ

2

“ 1 `

N
ÿ

n“1
einθ

` e´inθ

“

N
ÿ

n“´N

einθ

I note that
řN

n“´N einθ is actually a finite geometric series, with ratio eiθ.

KN pθq “

N
ÿ

n“´N

einθ
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“

2N
ÿ

k“0
eipk´Nqθ

“ e´iNθ
2N
ÿ

k“0
peiθ

q
k

“ e´iNθ

„

1 ´ peiθq2N`1

1 ´ eiθ

ȷ

“ e´iNθ

„

1 ´ peiθq2N`1

1 ´ eiθ

ȷ

e
´iθ

2

e
´iθ

2

“ e´iNθ

«

e´ iθ
2 ´ e2iθN` iθ

2

e
´iθ

2 ´ e
iθ
2

ff

“ e´iNθ

«

e2iθN` iθ
2 ´ e´ iθ

2

e
iθ
2 ´ e

´iθ
2

ff

“
eiθN` iθ

2 ´ e´ iθ
2 ´iθN

e
iθ
2 ´ e

´iθ
2

At this point, I note that by manipulation of the De Moivre formulas: (2.1):

sin 1
2θ “

e
iθ
2 ´ e´ iθ

2

2i

2i sin 1
2θ “ e

iθ
2 ´ e´ iθ

2

“ e
iθ
2 p1 ´ e´iθ

q

which is exactly the denominator.

KN pθq “
eiθN` iθ

2 ´ e´ iθ
2 ´iθN

e
iθ
2 ´ e

´iθ
2

“
eiθN` iθ

2 ´ e
´iθ

2 ´iθN

2i sin
`1

2θ
˘

The nominator can be rewritten as eiθpN` 1
2 q ´ e´iθpN` 1

2 q, and I have:
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KN pθq “
eiθpN` 1

2 q ´ e´iθpN` 1
2 q

2i

1
sin

`1
2θ

˘

“ sin pN `
1
2q

1
sin

`1
2θ

˘

“
sin

`

N ` 1
2

˘

sin
`1

2θ
˘

As just shown, the Dirichlet kernel (A.2), can be written as:

KN pθq “
sin

`

N ` 1
2

˘

sin
`1

2θ
˘ (A.3)

Going back to the SN pxq, where θ “ y ´ x, I have:

SN pxq “

ż x`π

x´π

Knp´θqfpθ ` xq
dθ

2π

“

ż π

´π

Knp´θqfpθ ` xq
dθ

2π

The interval of integration is rewritten as r´π, πs because of the periodicity of
Kn and f (2π-periodic). Because the Dirichlet kernel is the product of two odd
functions, it is even (see preliminaries) and this is really the same as:

SN pxq “

ż π

´π

Knpθqfpθ ` xq
dθ

2π

“

ż π

´π

sin
`

N ` 1
2

˘

sin
`1

2θ
˘ fpθ ` xq

dθ

2π

Subtracting f(x) from both sides of the equation (f(x) is independent of θ so it is
a constant in this case):

SN pxq ´ fpxq “

ż π

´π

sin
`

N ` 1
2

˘

sin
`1

2θ
˘ rfpθ ` xq ´ fpxqs

dθ

2π

I let gpθq “
fpx`θq´fpxq

sinp 1
2 θq

and replace accordingly:

SN pxq ´ fpxq “

ż π

´π

gpθqsinrpN `
1
2qθs

dθ

2π
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Defining the set of functions tfN pθquNPZ “ sinrpN ` 1
2qθs, which forms an orthog-

onal set. Thus we can use the fact that Bessels inequality (A.1) holds, so:
8
ÿ

N“1

|g, fN |2

||fN ||2
ď ||g||

2

Calculating ||fN ||2 :

||fN ||
2

“ || sin
„ˆ

N `
1
2

˙

θ

ȷ

||
2

“

ż π

´π

| sin
„ˆ

N `
1
2

˙

θ

ȷ

|
2dθ

“

ż 2π

0

1
2 ´

1
2 cos rp2N ` 1q θsdθ

“

„

θ

2

ȷ2π

0
´

„

1
2N ` 1 sin p2Nθ ` θqs

2π
0

ȷ2π

0

“ π

So I now have:
8
ÿ

N“1

|g, fN |2

π
ď ||g||

2

If ||g|| is finite, then by 2.9, the series in the left hand side of the Bessels inequality
converges to zero, which is only possible if pg, fN q tends to 0.

||g||
2

“

ż π

´π

rfpx ` θq ´ fpxqs2

sin2p1
2θq

dθ

is continuous everywhere except perhaps when sin2p1
2θq “ 0, which is the case

when θ “ 0. However, by rewriting the integrand like so:

fpx ` θq ´ fpxq

θ
¨

θ

sinp1
2θ

,

I see that this is just the definition of the derivative f’(x), multiplied by θ

sin p 1
2 θq

.

Taking the limit as θ goes to 0, and making use of L’Hôpitals rule:

limθÑ0gpθq “ limθÑ0
fpx ` θq ´ fpxq

θ
¨

θ

sinp1
2θ
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“ f 1
pxq

„

0
0

ȷ

“ f 1
pxq lim

θÑ0

1
1
2 cos

`1
2θ

˘

“ 2f 1
pxq

Now since f is C1, g is continuous so the L2-norm of g is finite. So, I have
shown that SN pxq ´ fpxq tends to 0 as N tends to 8, which concludes the proof
for C1-functions.

In the case where f(x) and f’(x) are both only pointwisely continuous, meaning
they are continuous except for a finite number of points at which the function has
jump discontinuities.[5] Now, I want to show that the Fourier series converges even
so. The steps in this proof are the same as in the previous case, however when
subtracting f(x) from the sum, I now subtract by the sum by 1

2rfpx`q ´ fpx´qs:

SN ´
1
2rfpx`q`fpx´qs “

ż π

0
KN pθqrfpx`θq´fpx`qs

dθ

2π
`

ż 0

´π

KN pθqrfpx`θq´fpx´qs
dθ

2π

Remembering that KN pθq “
sin pN` 1

2 q
sin p 1

2 θq
(A.3), and defining g`pxq “

fpx`θq´fpx`

sin p 1
2 θq

and

g´pxq “
fpx`θq´fpx´

sin p 1
2 θq

I get:

SN ´ g˘pxq “

ż π

0
g`pθqsinrpN `

1
2qθsdθ `

ż 0

´π

g´pθqsinrpN `
1
2qθsdθ

Now, I observe that sinrpN ` 1
2qθs forms an orthogonal set of functions on the

intervals p´π, 0q and p0, πq. As previously, Bessels inequality tells me that if
şπ

0 |g`pθq|2 and
şπ

0 |g´pθq|2 are finite,then:
ż π

0
g`pθqsinrpN `

1
2qθsdθ

NÑ8
ÝÝÝÑ 0

and
ż 0

´π

g´pθqsinrpN `
1
2qθsdθ

NÑ8
ÝÝÝÑ 0

The only possible cause of divergence of
şπ

0 |g`pθq|2 and
ş0

´π
|g´pθq|2 is when the

numerator of the g˘pθq is zero, i.e. when sinp1
2θq “ 0, which happens when θ “ 0.
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However, when taking limit from the left gives me:

limθÑ0`g`pθq “ limθÑ0`g`pθq “ limθÑ0`

fpx ` θq

θ
¨

θ

sinp1
2θq

“ 2f 1
px`q

for some x where f 1px`q exists. When this does not exist, f is still differentiable
at points near x, by the mean value theorem. The derivative is bounded, and for
the same reason the derivative f 1px`q is bounded for certain value of θ near 0. As
a result g`pθq is bounded and

||g`pθq||

is finite. The same argument can be shown for g´pθq. These two results imply
pointwise convergence of the function f(x) with discontinuities.
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