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1 Introduction

In this project I will be giving an introduction to Fourier series, some theory about
their convergence and some applications for solving PDE’s; in my case the heat
equation. The goal is to give an overview of the topic of Fourier series, as well
as some applications. I have come across the topic Fourier series in many of the
courses here at university, which is not surprising as I have learned that Fourier
series have a lot of applications. The application that I will be focusing on in this
thesis is for solving partial differential equations, namely the heat equation.

In the first section of the thesis, I introduce Fourier series, including the
derivation of the coefficients. Following this introduction, I will discuss some
convergence-theorems, and I will prove some completeness of Fourier series. Fol-
lowing this I will look at what happens to Fourier series that have jump disconti-
nuities (Gibbs phenomenon). Lastly I will show how to use the theory on Fourier
series for solving the inhomogeneous heat equation, which is a useful application
as mentioned above. At the end of the thesis, there will be a short introduction to
a numerical approach, called the method of finite differences for solving the heat
equation.

My supervisors for this project are Adrien Ange André Laurent and Frédéric
Fernand Jacques Valet.

2 Theoretical part

For the first part of this thesis, I will be introducing theory regarding Fourier
series, and a theoretical approach to its applications.

2.1 Preliminaries

In this section, I introduce some definitions and formulas that I use in the thesis.
All the definitions and theorems below are from the book "Partial differential equa-
tions - an introduction" by Walter A. Strauss, unless another refrence is specified.

Definition 2.1. [2] Periodic function: A function f(x) is periodic with period p if
fle+p) = [f(z)

Definition 2.2. [2] Even and odd functions: A function f(x) is even if f(—x) =
f(z), and odd if f(—x) = —f(x). An important example for us is that cosn@ is
an even function, and sinnf is an odd function.

Facts about even and odd functions:

1. The integral of odd functions over symmetric intervals is zero.



2. The sum of two even functions is even and the sum of two odd functions is

odd
3. The product of one even function and one odd function is odd
4. The product of two even functions or two odd functions is even

DeMoivre formulas
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Eulers formula: A

" = cos (i0) + isin (i6) (2.2)

Definition 2.3. Inner product: The inner product of two complex valued functions
f(x) and g(z) on the interval (a,b) is defined as

mm:ff@mmm

where g(x) is the complex conjugate of g. In case of real valued functions f(z) and

9(z): .
mm:ff@mwm

Definition 2.4. [J|/ Orthogonal set of functions: Let f,,.; be a sequence of complex
valued functions on [a,b] such that their inner product is zero:

b
f fol@) fr(x)de =0, (n #m).

Then the sequence of functions is an orthogonal set of functions on the interval. If
additionally SZ |fo(2)|?dz = 1 for all n, the sequence of functions is orthonormal.

2.2 What are Fourier series?

Fourier series are used to represent periodic functions as sums of cosine and sine
functions. This works well because cosine and sine are periodic. For some function
f(x) on an interval —I < z < [, the full real Fourier series is given by:

f(x) = ;ao + i(an cos <$) + by, sin (@)) (2.3)

n=1



The series consists of the Fourier cosine series, and the Fourier sine series, which
are respectively even and odd. It is possible to rewrite ([2.3)) as the complex Fourier
series by using the DeMoivre formulas ((2.1]) [2]:

f(z) = (ay cos (?) + b, sin <$>)
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Now this is written in a complex form, and I will rename the coefficients by
the following relations:

1
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4 n =
(an—I—zb )

ap = 2¢g

which can be rewritten as:

Ap = Cp + C—py
by, =i(c, —c_p)

I can rewrite the complex form of the Fourier series by using these relations:

1 & inmTx —inmTx
flx) = 5200 +nzl (cne I+ c_pe 1 )




So the complex Fourier series is:

0

f(l') = 2 Cnem# (24)

—00

In the following sections, I will show how to derive the coefficients a,, b, and
¢, of the Fourier series. In order to derive the Fourier coefficients it is necessary
to familiarize the notion of orthogonlity.

2.2.1 Orthogonality

In order to derive the coefficients, I make use of the property of orthogonality,
defined in This property is particularly useful in the case of cosine and sine
function to derive the coefficients of the real Fourier series. Here I can use the fact

that l

f sin <?) sin (m;m)dx =0 for m#n (2.5)
-1

Proof. The proof that I provide here is based on the book "Partial differential

equations - an introduction" by Walter A Strauss. Using the trigonometric identity

sin (a)sin (b)) = 1cos(a—b) — 3 cos(a+b), the left hand side of (2.5) can be

rewritten as:

l

fl o (Y s (" e = [ ; (<—;n>) o (<+;n>)d
L J_l cos (W) dr — ;J—l’ cos <("+;”)”) dz
e ()]

e (7)),

Here there are three cases to consider; one where m # n, one where m = n # 0
and lastly the case where m = n = 0. For the first case, when m # n, all terms
will disappear as I get sine of some integer multiplied by 7 in every case. For
the second case, when m = n # 0, there will be an issue because of zero in the
denominator. To avoid this, I go back to the stage of the integral where
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and I put in m=n:

: 1 (! 2
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For the third case, when m = n = 0, Sl_l sin (272) sin (20)dx = Sl_l 0=0

To conclude, I have the following the property:
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Similarly, I have:
! nwx mmx 0 i m=n
J COS<T>COS( l )dmz [ if m=n#0 (2.7)
=l 20 if m=n=0
In this case, when m=n=0, we have Siz cos (22) cos (20)dx = Sil ldr =
[x]l_l = 2] The rest of the proof is omitted since it is a lot like the previous proof.

The last orthogonality property that we will be using is:

! nmwr\ . (mnx
J_z cos <T> sin ( ;i ) =0 (2.8)

This is true because cosine is an even function, and sine is an odd function, and
since an even function multiplied by an odd function is odd, I have the integral
over -1 to 1 (symmetric about 0) of an odd function. This is always 0.

2.2.2 The coefficients
Now I will be using property (2.6)), (2.7) and (2.8)) to find the coefficients of (2.3)).

Finding ay:
To find the coefficient ag, I take the integral on both sides of (2.3):
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Thus, aq is given by:

— aol

J_ll f(z)dz = agl
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= J f(z)dz
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Finding a,,:

For finding a,, I multiply both sides of (2.3) by cos (mf“’”) and integrate on both
sides of the equal sign so that I can use the orthogonality properties (2.7 and

23):
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ever m # n. For the cases where m=n I have to consider m = 0 and m # 0.
For m = 0, I get:

f a,, COS <@) cos (m;m)dx = Jl a,, CoS (@)dm
_ -1

which is 0.
For the case where m =n # 0, I get:

! nwx mnx ! o (MTT
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L1 2
= anf — | cos nre +1|dx
12 )
! !
_n lf cos <2mm)dx —i—f 1dx}
2 -1 l —1
G ) i onrz\ ]! T ]l
2 2nm 111 l o T

Qa
= 210 + 21
2 10+21

= a,l

So I have that all terms on the left side disappear, except a,l, which gives me
the expression for a,,:

mmnx

!
Jf(m)cos l dx = a,l
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(2.10)
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1
a, = lJ f(z) cos dx
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Finding b,: To derive b, I multiply (2.3) by sin ( mfx) and integrate on both




sides of =:
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(By the orthogonality properties). So I am left with

f_ll f() sin (@)dx = b,

- (2.11)
b, = f f(x)sin (mwx)dx

lJ l
2.3 Complex form of the Fourier series
The complex form of the Fourier series is given by:

w .
f(x) = Z Cpe T
n=—0o0

I recall that ¢, = % from the relations in section 2.2. Now that I know what

a, and b, are, I can put them into the equation:

a, — b,
2
1§, f (@) cos () dar — i §, f () sin (") da
2
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So the coefficient for the complex Fourier expansion is:
1 ! —inTx
Cn = J f(x)e 1 (2.12)
2l ),

2.4 Completeness

In order to discuss the completeness of the Fourier series, I must introduce some
theorems. All of the theorems and definitions below are from the book "Partial
differential equations - an introduction" by Walter A. Strauss, with some changes
on the notation.

2.4.1 Convergence theorems

Definition 2.5 (Pointwise convergence). An infinite series of functions >, fn(x)
converges pointwise in (a,b) if for each a < z < b,

N

Definition 2.6 (Uniform convergence). An infinite series of functions >, fu(z)
converges uniformly to f(z) in [a,b] if

N
max | f( Z
a<z<b — N—»OO

Definition 2.7 (L*-convergence). An infinite series of functions >, fu(x) con-
verges in the L* sense to f(z) in (a,b) if

b
| @ an e — 0

Theorem 2.8. Uniform convergence of Fourier series: The Fourier series of f(z)
on [a,b] converges uniformly to f(z) if

1. The function, as well as its first and second derivatives exist and are contin-
uous on [a,b]

2. The function satisfies the boundary conditions.
Theorem 2.9. L? convergence of Fourier series: The Fourier series converges to

f(x) in the sense of L* on (a,b) if SZ |f(2)|?dz is finite.
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Theorem 2.10. Pointwise convergence of Fourier series: The Fourier series con-
verges pointwise to f(x) on the interval (a,b) if f(x) is continuous and f’(x) is
piecewise continuous for x € [a,b]. If f(x) is only piecewise continuous and f’(z)
is piecewise continuous as before, and f(x) is 2l-periodic, then the Fourier series
converges to 3|f(z+) + f(z—)] at every point x € (—o0, ).

Theorem 2.11. If 3", f.(x) converges uniformly to f(x), then >, fu(z) also
converges in the L*-sense to f(x).

Proof. 1 let the series Y, f,(x) be uniformly convergent in [a,b], so

N
mazx | f( 2 0,
a<zr<b — N—>OO
or in other words:

N—ooa<z<b

lim max |f(x) — Z fulz)| =

I have that:
N N
0<|f(z)— ;fn(:v)l < maz|f(z) Z:]
N N
0 < 1f(@) = 35 oo < maglf@) = 3 fule

N b N
J Odx < f |f(z 2 (1) Pde < ;7<”L§L<xb|f 2 r)|2dx

fb 3 b )
]\l[zl?go() < ]\ZIT;LOM |f(z) _; n(@)Pde < lm;‘o " ;’Qﬂfbv Z o)fda
[’ 3 b >
, B 2
o< fim, [ 1) oo < | tom paglfe) =33 ot

N
0< lim | |f(x)— Z ful(2)|Pde < J Odx

N—ow J,
With the assumption that Y, | f,(z) is uniformly convergent in [a,b], I have by

the dominated convergence theorem theorem that the limit and the integral can
be interchanged, as in the fifth line. Since I assumed uniform convergence, I have

11



that the right hand side of the inequality goes to zero, which means that

b N
0 [1@) = 3} fulo) P <0

Which means that SZ |f(z) — Zi\[:l fo(@)2dz Y= 0 which is the definition of
L?-convergence.

]

2.5 Alternative proof of pointwise convergence

In this section, I will be giving an alternative proof for pointwise convergence of
Fourier series. The proof is based on the proof of pointwise convergence published
in American Mathematical Monthly by Paul R. Chernoff. T will be following the
structure of exercise 13 of section 5.5 in the book "Partial differential equations
- an introduction" by Walter A. Strauss, with the help of the proof by Chernoff
[1]. Since I will be assuming that the function in question is C"', this is a weaker
proof than the usual proof, which can be found in the appendix, [Al The proof of
Chernoft is extended to deal with jump discontinuities as well, but I will omit this.

Proof. As mentioned, I start by letting f(z) be a C! function with period 2. 1
first want to show that I may assume f(0)=0. For this, I construct a function
h(z) = f(z) — f(0). Since f(x) is 2m-periodic, I have that:

Wz +2m) = fz +2m) = f(0) = f(z) = f(0) = h(z),

so h(x) is 2m-periodic and h(0) = 0. The function f(x) shares the same properties
as h(x), so I may assume that f(0) = 0.
Next up is to show that g(z) = e{ii)l is a continuous function. The numerator
is just f(x) which I already assume is C', so discontinuities may appear when the

denominator is zero:

e?—1=0
e =1

cos(x) + isin(x) =1

which is the case whenever x = 2nmw. Since sine is 2m-periodic, it is enough to
show continuity when x=0 as it will attain the value 0 for each n=1,2,3.... To

12



show continuity, I need to show that lim,_0g(x) = g(0)

, 0
limp_og(x) = 9
(L’hopital)

/
ZelI
_['=@)

1

Knowing that f(x) is C', so f'(x) is continuous , and i is the imaginary unit which
is non-zero, I can conclude that g(x) is a continuous function.

Letting C,, be the complex Fourier coefficient of f(x) and D, the complex
coefficient of g(x). In part b, I concluded that g is everywhere continuous, and I
showed that it is bounded when the denominator goes to 0. Because g(x) is finite,
§"_lg(z)[*dz is also finite. I can use Bessels inequality to state that:

e} T T

D02 [ e | gt

n=1 - -
which is finite so is less than co. Now if n — oo, D,, — 0 for this inequality to hold
(because the right hand side of the inequality is finite).

Next, I will show that C,, = D,,_1 — Dy so that the series >, C,, is a telescoping
series. I recall that a telescoping series is a series such that the terms a, can be
written as b, — b,,.1. The partial sum of a telescoping series consists only of the
first and the last term, as every other term cancels out.(ref) In this case, we have
f(z) = g(x)(e”™ — 2). Fourier expanding:

1 (™ . 1 (™ . .

- UL P ir _ 1)e~inz g

[ s@etmie = L[ gt - pe i

1 (" : 1 (" : 1 (" 4

- f(x)e—mﬂ'dx _ J g(x)(ew:(l—n) . J g(m)e—zn:cdx
i T ) . ) .

N N
Cn:Dn—l_Dn Z On: Z Dn—l_Dn

n=—M n=—M

Because D,, — 0, and since we have proved that the Fourier coefficient of f(x), C,,,
can be written as a telescoping series of D,,_; — D,, we know that C,, is 0 at x =
0, and thus the Fourier series of f(x) at x=0 converges to 0. Hence I have proved
the pointwise convergence of the Fourier series for a C! function. O]
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2.6 Gibbs phenomenon

Given a function f(x) that has jump discontinuities, the partial sum Sy is defined
to approximate the jumps. It turns out by Gibbs phenomenon, that Sy differs
from the function by around 9% ("overshoot"). The width of the jump goes to zero
whenever N goes to infinity, but the height remains at 9%. In other words,

limy_omazx|Sy(z) — f(z)| # 0,

even though limy_.|Sy(z) — f(z)] =% 0 whenever there is not a jumplf].

One example of a function with a jump, from [5] is the following: f(z) = 4 for
0<x<m and f(x) = _71 for —m < x < 0 The Fourier sine series for this function,

which is odd, is:
[es}
Z 2 in
~nm

Using the Dirichlet Kernel from previously, the partial sums are:

R R e

Defining M = N + % and using change of variables § = M(xz — y) in the first
integral and # = M (y — x) in the second.

B (JM f M7r+Mx S’Ln(@) do
_ MMz 2Msm(iM) o
Since the integral is even, I have:
B (JvM J«MW-&-Mz SZTL((Q) do
N Mor— Mz 2Msm( ) o
The max of the first integral here, is given by setting its derivative equal to zero.
This is the case whenever sin((Mx) = 0, thus z = 7. Then I have:

LN J JMW sin ) df
R I P 2Msm )27r

For M>2: T < [1—1L]2 < .2 <[1+ 1L]2 < 2 So sin(5h;) > f’ which
means the second integral is less than S%Zt: 1- [%]Q% = ﬁ which goes to

14



0 when M goes to infinity. The first integral, |#| < 7 and 2Msm(ﬁ) M=o, g

uniformly in |#| < 7. Taking the limit of S, as M goes to infinity gives me:

Sn (37 M=o, (7 i smg(e)% ~ (0,59 which is the Gibbs 9 percent overshoot. This

presentation of the Gibbs phenomenon, as well as the example is entirely based
section 5.5 of the book of Strauss mentioned earlier.

2.7 Application of Fourier series for solving a partial dif-
ferential equation

In this section, I will be showing how Fourier series can be applied to solve par-
tial differential equations. Later on, in section [3| I will solve the heat equation
numerically. In this section will specifically be solving the heat equation with inho-
mogeneous boundary conditions and a source term. Physically, the heat equation
in one dimension paired with its boundary conditions and initial condition de-
scribes the rate that the temperature changes along a rod. The inhomogeneous
heat equation with a source term and Dirichlet boundary conditions is given by
the following:

Up — Uz = f(2,1)

uw(0,t) =0, wu(l,t)=0 (2.13)

u(z,0) = ug(x)

Where f(x,t) is the source term. Fourier expanding u(x,t) by the Fourier sine series

u(r,t) = 2 un(t)sm(nlﬂ)

3
—_

where l
2
Uy = lJ u(:c,t)sz'n(i)da:
0
Letting
[es}
nwx
up = ;Un(t)sm(l)
where z
2 (" ou nmx
== | —sin(—)d
T L o *m (=)
also letting
0
nwx
T — n(t -
u nz_:lw (t)sin( l )
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where -
2 (f0
Wn = 7 ) a—gsz’n(@)dx

I want to use Greens second identity:

b
J (X! Xy + X1 X))dr = (=X Xy + X, X))|°

a

I make

i nmx nim nmr nm i nmx
X1 = sm(T), X = (5)cos(——), X{= —(7)23@”(T)

and
Xo=u, X)=u,, Xj=u.x

Putting this into Greens second identity:

fol <nl7r)2$in (nlﬂ>udx — Ll sin(@)umdx = [— (nTW> coS <nlﬂ> u + sm(@)ux];

Note that the last term on the left hand side — S(l] sm(%)umdx = —éwn(t). In
other words, we now have:

U onaNe | /nmx nm nw AT
o) == | ) (s (5 [ (5o (155 i (5
=2 () [ (P e = 2 [ (5 cos (M7 ) o sin (Y,
Pnmy2
-3 fo (7) et

The last term disappears because of the boundary conditions. I am now left with
only

The PDE is u; — u,x = f(x,t), which in terms of the coefficients means that we

16



require:

2 (! nmwx nm 2
v (t) — wy(t) = lf utsin(T) + (T) up(t)dx = fn(t)
0
This way the partial differential equation can be rewritten into an ordinary differ-
ential equation, and may be solved given the source term and initial condition.

3 The method of finite differences for heat equa-
tion

In the previous section, [2.7] I solved the heat equation with a source term by
using Fourier expansion. In this section, I will show a numerical method for
approximately solving the heat equation, with and without a source term. Partial
differential equations, such as the heat equation involve derivatives, which I will
approximate numerically using the difference formulas. From the definition of

the derivative, f'(z) = limhqow, and for a sufficiently small (non-zero)

h, the derivative, f'(z) can be approximated by f'(z) ~ w This is the
forward difference. The backward difference is f'(x) ~ W The central

difference is really just the mean of these the forward difference and the backward

difference: f'(z) ~ L&th=f (m);hf @)-fle=h) _ f ("”h);hf (@=h) The central difference
for the second derivative is f”(x) ~ W The finite difference formula,
as well as what follows below in this section is based on the book "A First Course

in the Numerical Analysis of Differential Equations" by Arieh Iserles [3].

3.1 The finite difference scheme for the heat equation with-
out source term

The heat equation, here with Dirichlet boundary conditions and without source
term, given by the following

u(O_,t)i 0, wu(l,t)=0 (3.1)
u(z,0) = up(x),

is a PDE that depends on time, t, and space, x. A PDE that depends on both
space and time is called an evolutionary equation [3]. However, in order to use the
finite difference formulas from above it must be dependent of only one variable. I

discretize x by defining the step size along the x-axis to be Az = ﬁ, where L is

17



the length of the rod and d € Z*. Each x, = {Ax denotes a grid point along x.
The step size of the time is At = % where M € Z*. Each node in the grid provides
a solution at some time t. The central difference method for approximating second
derivatives, as presented above, now yields:

Pu(x,t)  ulr — Ax,t) — 2u(x,t) + u(zr + Ax,t)

o2 ~ (Al’)2 +O((A£L’)2)

where O(Ax)? denotes the error. I use the forward difference formula for the first
derivative of u with respect to t:

du(z,t) u(z,t+At) —u(z,t)
ot At

Putting these back into the PDE (3.1)):

+ O(At).

u(z,t + At) — u(z,t)
At

w(x — Az, t) — 2u(z,t) + u(z + Ax,t)

(Ar)? O((Ax)?).

+ O(At) =

Multiplying on both sides with At and then moving —u(z,t) and the error to the
right hand side I get:

(x — Az, t) — 2u(x,t) + u(z + Az, t)

u
u(z,t + At) = u(x,t) + At (Ar)?

+ O(AL) — O((Ax)?)

(3.2)
I denote the approximated solution u(¢Ax,nAt) by u} as in [3], so (3.2)) becomes:

n+1 n At

W(u?—1_2u?+u?+l)7 l = 172a"'7N7 71:0717,,,7 (33)

Which is the Euler discretization in time. This can all be written in matrix form.
I denote the vector form of the solution U™ = (u}), € R¢, and rewrite (3.3)) as the

folllowing;:
At

n+1 __ n
urt =U +(Ax)2

AU™, n=0,1,.., (3.4)

18



Where A is a matrix with entries of -2 in the main diagonal, and 1 in the diagonals
above and below. By the boundary conditions I have 0 everywhere else (left blank):

. 1
1 -2

A numerical example to illustrate the heat distribution:

u(()_,t)x: 0, wu(l,t)=0 (3.5)
u(z,0) = cos(2mz),

Temperature U

0.1

0.5 _
.05

Time t 0 0 Space x

Figure 1: The finite difference approximation for the heat equation with Dirichlet bound-
ary conditions, initial condition uy = cos 27z, and no source term
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3.2 Finite difference method for the inhomogeneous heat

equation with source term

The heat equation with a source term (again with Dircihlet boundary conditions):

Ut — Ugy = f(U)
u(0,t) =0, wu(l,t)=0
u(z,0) = ug(x)

The method of finite differences in this case gives me:

up ™ =y + (Ax)2(“671 = 2uf +uyyy) + Atf(uf), €=1,2,..,N,

As previously in matrix form:

At
() — pym AU™ + AtF (U™ =0,1,...
U U*(Ax)2U+t(U)’n0”’
Where A is the same as previously and
fuy)
FU") =1
fuy)

3.3 Bonus: Fourier method

(3.6)

One very last thing that is worth mentioning, is the Fourier method for solving
partial differential equations. I unfortunately did not have the capacity to cover
this in this thesis, but since I have already worked on a program for this method
with my supervisor, I will include the result of the numerical example from

solved using the Fast Fourier Transform algorithm, as a bonus:
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(L5 4

0

Temperature U

-(1L.5 4

ol - |

0.05

Time t 0 0 Space x

(Lo

Figure 2: The finite difference approximation for the heat equation with Dirichlet bound-
ary conditions, initial condition uy = cos 27z, with source term and using FFT
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Appendices

A Proof of pointwise convergence convergence
of Fourier series

I will prove the theorem for pointwise convergence of Fourier series [2.10] as in sec-

tion 5.5 of "Partial Differential Equations - an introduction" by Walter A. Strauss

[5]. In the proof I will be making use of Bessels inequality, which states that for

an orthogonal set of real valued functions { f,, },cz, and a function g(x), for which
1

the L%norm: ||g(z)|| = [SZ |g(:17)|2d:15]§ is finite, we have the following inequality:

3 f ()2 < f 9(x) P (A1)

where ¢, is the Fourier coefficient. To avoid creating introducing more new con-
cepts and notation, I will not provide the derivation of this inequality.

Proof. For the proof, I will first consider C! function of period 27 and then see
what happens when there are jump discontinuities. In the case of a C!'-function
of period of 27, such that [ = 7, the full Fourier series is:

f(z) = % + Z(ancos(nx) + bysin(nz)),

n=1

where - .
an = | f(y)cos(ny)—dy (n=0,1,2,..)
o 7

, and

TC

. 1
Ny = f(y)sm(ny);dy (n=1,2,..).
I define the Nth partial sum of the Fourier series as

N
Sn(x) = %04 Z(ancos(na:) + bysin(nx)).
2 n=1
In order to show pointwise convergence, I need to show that |f(x) — Sy/| e 0.1
—00

rewrite the expression for the partial sum by replacing a,, and b,, by their respective
expressions. Here, I note that ag = " _ f(y)cos(0)% = " f(y)% so I have:
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1
Sn(z) == dy+2 f )Jcos(ny)cos(nx) dy—l—z y)sm(ny)sm(nx)%dy
n=1

= 217r _W [1 +2 Z cos(ny)cos(nx) + sm(ny)sm(nm)] f(y)dy.

From the trigonometric identity that cos(a — b) = cos(a)cos(b) + sin(a)sin(b), 1
can rewrite the expression as:

Sn(z) = fﬁ [1+2 2 (cos(ny — nx)]Mdy

- n=1 d

. The part 1 + 2 Zgzl(cos(ny — nx) is called the Dirichlet kernel:

Kn(@)=1+2 i cos(nb) (A.2)

n=1

In my case, I have § = y —x. The Dirichlet kernel, K N(G) can be rewritten in the
form Ky(0) = Sm[(]\(pr))] by using De Moirves formulas ) to replace cos(nf)
sin 3

einO +e*in0 i
by “—5F—

I note that 3\ ¢ is actually a finite geometric series, with ratio .
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2N
_ Z ez(k—N)Q
k=0

2N

_ _—iN® N:

=N Y ()
k=0

_ v (1 — (eif)2N+1
| 1 —e
_ ) —if
B efz'NG 1— (6z9)2N+1"| e3
- 1 i0 —i0
| —€ €2
- » ) o
NG e—% - 6219N+%
=e —1i0 0
e 2 —ez2
- 0 0]
N e210N+ 2 —e 2
= € 0 —i0
e2 —e 2
CION+Y _ —9—iON
= 0 —i0
2 — e 2

At this point, I note that by manipulation of the De Moivre formulas: ({2.1)):
0 0
1 o b
sin-g= "¢
2 21

1
2isin—0 =e2 —e 2
’LSlIl2 e e

=e2(1—e")
which is exactly the denominator.
CION+Y o —F—iON
KN(Q) - i0 —i0
e2 —e 2
cON+Y 50N
2isin (16)

O(N+5) _ o—if(N+

. . 1
The nominator can be rewritten as 2), and I have:
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O(N+3) _ 67¢9(N+§) 1

e
Kn(0) = 21 sin (%9)
. 1 1
= sin (N + §)sin (%9)
B sin (N + %)
~ sin (%9)

As just shown, the Dirichlet kernel (A.2)), can be written as:

sin (N + %)
sin (lQ)

2

Kn(0) =

Going back to the Sy(x), where § = y — x, I have:

sxtr) = [ K010+ 1) 2
- [ K070+ 05

—T

The interval of integration is rewritten as [—m, 7| because of the periodicity of
K, and f (2m-periodic). Because the Dirichlet kernel is the product of two odd
functions, it is even (see preliminaries) and this is really the same as:

Sxr) = [ KO0+ 0) 0
(7 sin (N + %) do
B J;w sin (%0) f0+ x)g

Subtracting f(x) from both sides of the equation (f(x) is independent of € so it is
a constant in this case):

™ sin (N + 1 do
swta) — o) - [ U500 - sl
Cr :
I let g(0) = % and replace accordingly:
T 1. .df
Su(a) = fa) = | g(@)sinl(N + )15
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Defining the set of functions {fy(0)}nez = sin[(N + $)6], which forms an orthog-
onal set. Thus we can use the fact that Bessels inequality (A.1) holds, so:

© 2
‘gafN’
2 e <lolP
N=1 N

Calculating || fn||* :

I fwll? = Him [(M ;) 9]H2
Llsin KN + ;) 9] 2df

2m 1 1
— ——cos[(2N +1)6]do
. 2 2

971%™ 1
| = in (2N6 + 0)]7"
[210 [2N+1sm( + )]0]

2

0
=T

So I now have:

© 2

|g7fN’
> OINE g
N=1

If ||g|| is finite, then by the series in the left hand side of the Bessels inequality
converges to zero, which is only possible if (g, fx) tends to 0.

HgH2 _ fﬂ- [f(I—i—Q) _f(x)]Qde

sin?(10)

—T

is continuous everywhere except perhaps when sinz(%é) = 0, which is the case

when € = 0. However, by rewriting the integrand like so:

fle+0)—flz) 0

0 ' sin(30°

I see that this is just the definition of the derivative f’(x), multiplied by — (9 nE
Sin 3

Taking the limit as 6 goes to 0, and making use of L’Hopitals rule:

flx+0)—f(x) 0
0 sin(0

2

limeg_0g(0) = limg_
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-ro|g]

~ f(x) lim

6—0 l COoS (19)

= 2f'(x)

Now since f is C!, g is continuous so the L?-norm of g is finite. So, I have
shown that Sy(x) — f(z) tends to 0 as N tends to oo, which concludes the proof
for C'-functions.

In the case where f(x) and f’(x) are both only pointwisely continuous, meaning
they are continuous except for a finite number of points at which the function has
jump discontinuities.[5] Now, I want to show that the Fourier series converges even
so. The steps in this proof are the same as in the previous case, however when
subtracting f(x) from the sum, I now subtract by the sum by 1[f(z+) — f(z—)]:

Sy—g L@ @) = | ExOL a0 ~fag+ | KnOl o) -f)l;]

T J_. 2m
sin 1
Remembering that Ky (0) = ,(](eri) (A.3)), and defining g, (x) = % and
sin b1 sin

10
g_(z) = 7(9:;9%;‘)(90 I get:

Sy — gu(x) = Lﬂ g, (0)sin[(N + ;)9]d9 i J g_(0)sin[(N + ;)e]de

—Tr

Now, I observe that sin[(N + 3)60] forms an orthogonal set of functions on the
intervals (—m,0) and (O 7). As previously, Bessels inequality tells me that if
§o 19+ (0)? and §7 |g—(0)]* are finite,then:

Lﬂ g+ ()sin[(N + ;)Q]dﬁ =50

and 0
1 =
f g-(O)sin[(N + )00 =00
The only possible cause of divergence of §] |g.(0)|* and S (6)|* is when the

numerator of the g (#) is zero, i.e. when sin(2 0) 0, Wthh happens when 6 = 0.

2
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However, when taking limit from the left gives me:

flx+0) 0

0 " sin(

limg_o+ g+ (0) = limg_0+ g4 (0) = limg_o+ =2f"(x+)

20)
for some x where f’(z+) exists. When this does not exist, f is still differentiable
at points near x, by the mean value theorem. The derivative is bounded, and for
the same reason the derivative f’(x+) is bounded for certain value of 6 near 0. As

a result g, () is bounded and

g+ (O)]]
is finite. The same argument can be shown for g_(6). These two results imply
pointwise convergence of the function f(x) with discontinuities. O
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