
Algebraic tools and symbolic package for the study

of order conditions for sampling the invariant

measure of ergodic Stochastic Differential Equations

Eugen Bronasco
Supervisor: Gilles Vilmart, Adrien Laurent

Master Thesis
University of Geneva

Feb. 2020 – Jan. 2021

In this master thesis, we describe the algebraic structures related to the Butcher series,
study order conditions for sampling the invariant measure of ergodic Stochastic Differential
Equations, and introduce a new symbolic package PyTreeHopf developed on the basis of
SymPy to perform automatic operations on exotic trees. The first part of the master thesis
is devoted to the algebraic framework for the study of Butcher series. We introduce a new
unique homomorphism between Butcher and Substitution groups and study its relation to the
Hopf and pre-Lie algebra homomorphisms. The second part of the master thesis is focused on
the theory of exotic Butcher series that describes the order conditions for invariant measure
of ergodic Stochastic Differential Equations. We study the order conditions for Runge-Kutta
methods and prove that certain order conditions can be expressed in terms of conditions for
lower orders. We also generate order conditions for Runge-Kutta methods of order 4 using
the new symbolic package. The third part describes several algorithms for exotic trees and
the structure of the symbolic package PyTreeHopf. The package can be used to implement
algorithms that involve operations on trees. The implemented operations include the grafting
of trees, composition coproduct, substitution coproduct, and several operations discussed in
the thesis.

1

Contents

1 Introduction 3

2 Definition of B-Series 4

3 Algebraic framework for the study of B-series 5
3.1 Composition Group . 5
3.2 Connes-Kreimer Hopf algebra . 6
3.3 Substitution Group . 7
3.4 Calaque, Ebrahimi-Fard & Manchon Hopf algebra 8
3.5 Pre-Lie algebras . 9

4 The new group homomorphism between GC and G∗S 10
4.1 The dual of the homomorphism . 16

5 Exotic B-series 18
5.1 Assumptions and definitions . 18
5.2 Exotic trees . 19

6 Order conditions for invariant measure of ergodic SDE 21
6.1 Simplification of exotic trees . 21

6.1.1 Integration by parts (IBP) . 21
6.1.2 Inversion of edge-liana (IEL) . 22

6.2 Order conditions . 23
6.3 Order conditions for Runge-Kutta methods . 24
6.4 Analysis of the order conditions . 26

7 PyTreeHopf – operations on trees 31
7.1 Algorithms related to exotic trees . 32

8 Conclusion 34

Appendices 37

A Order conditions for order 3 for exotic B-series 37

B Order conditions for order 4 for Runge-Kutta methods in Gaussian case 38

C Order conditions for orders 3 and 4 for Runge-Kutta methods 39

D Example of a script using the symbolic package 43

2

1 Introduction

In this Master thesis, we study the structures related to the concept of a Butcher series (B-
series) that is defined in Section 2. Butcher series were first introduced by John Butcher in
the 1960s as a way to study Runge-Kutta methods which is a widely used class of numerical
methods. Butcher series presented a general way of finding order conditions for Runge-Kutta
methods. The work of Butcher on this topic was spread across multiple papers. The paper
titled An algebraic theory of integration methods (1972) [5] introduces what is now called the
Butcher group.

Later, the work of Butcher was noticed by Ernst Hairer and Gerhard Wanner who polished
the theory and introduced both Butcher series and the term Butcher group in 1974 [17]. A
modern exposition of the theory can be found in [15] Ch.III and a detailed history in [6], [16],
[26].

The goal of this Master thesis is to present the algebraic framework used for the study of
Butcher series (B-series) in Section 3, describe a generalization called exotic B-series used to
find the order conditions for invariant measure of ergodic stochastic differential equations in
Section 5 and 6, and develop a symbolic package to perform the combinatorial computations
that occur in this context which is discussed in Section 7.

Runge-Kutta methods is a widely used class of numerical methods Xn+1 = Ψ(Xn, h, ξ) of
the form

Yi = Xn + h
s∑
j=1

aijf(Yj) +
l∑

k=1

d
(k)
i

√
hξ(k)
n , i = 1, . . . , s,

Xn+1 = Xn + h
s∑
i=1

bif(Yi) +
√
hξ(1)
n , (1)

where aij , bi, d
(k)
i are the coefficients defining the Runge-Kutta method, and ξ

(k)
n ∼ N (0, Id)

are independent normally distributed random vectors. For simplicity, let us assume that l = 1
and there is only one random vector. It turns out that Runge-Kutta methods of this form are
exotic B-series. This allows us to compute order conditions for invariant measure of ergodic
SDE for Runge-Kutta methods.

During the work on this thesis, several new results were obtained. In Section 4, we
introduce a new unique group homomorphism between the Butcher group and the Substitution
group [10], show its relation to a corresponding Hopf algebra homomorphism, and describe
its dual which is a unique homomorphism from the free pre-Lie algebra. In Section 6, we
reformulate the results from [20], formulate an algorithm to generate order conditions for
invariant measure of ergodic SDE, and prove new results related to the order conditions.

In Section 7, we describe the new Python symbolic package based on SymPy, which
performs the combinatorial operations on rooted exotic trees automatically. This package
allowed us to implement the products in pre-Lie algebras on trees, coproducts in combinatorial
Hopf algebras on trees, and the algorithms used to generate the order conditions for invariant
measure on ergodic SDE. This package was used to generate order conditions for invariant
measure of ergodic SDE for order 4 which was not done before due to the huge number of
computations.

3

2 Definition of B-Series

In this thesis, we study a class of numerical integrators called Butcher series methods, which
are characterized by the fact that they can be expressed in the following form

B(a, hf, y0) :=
∑
τ∈T

h|τ |

σ(τ)
a(τ)Ff (τ)(y0),

where

T is the set of isomorphism classes of all rooted trees including the empty tree,

a : T → R is a functional describing the coefficients of the B-series,

h is a stepsize of the numerical integrator,

f is a vector field, i.e. ẏ = f(y),

y0 is an initial value, i.e. y(0) = y0,

|τ | is the number of vertices in the tree τ ,

σ(τ) is the size of automorphism group of the tree τ ,

Ff (τ) is the elementary differential operator correspoing to the tree τ .

We need to go into more detail into how the funtion Ff works. The idea of associating
rooted trees to elementary differential operators is not new. It was studied by Cayley in 1857
[8] and then rediscovered many times. A few examples should make the association clear.

Ff () = f ,

Ff () = f ′f ,

Ff () = f ′′(f, f),

Ff () = f ′f ′f ,

Ff () = f ′′′(f, f, f),

. . .

To make it formal, we need to introduce new notations. Let τ ∈ T be a rooted tree and
let F be a set of all forests {τ1 · · · τn |n ∈ N, τi ∈ T , i = 1, . . . , n}. Then τ ∈ T can be
put together by taking a forest τ1 · · · τn ∈ F and connecting all the roots in the forest to a
new vertex. This forms the tree τ with the new vertex as a root. This can be written as

τ = [τ1 · · · τn]. For example, = []. Then Ff is recursively defined as

Ff ([τ1, . . . , τn]) := f (n)(Ff (τ1), . . . , Ff (τn)),

Ff () := f,

with Ff (∅) = y0.
The power of B-series comes from the following two facts

• A B-series B(a, hf, y0) is fully determined by the functional a : T → R with a(∅) = 1
which means that we can use combinatorics of trees to study them,

• The exact solution is also a B-series with a(τ) = 1
τ ! where τ ! is the factorial of a tree

which is defined as

τ ! := |τ | ·
n∏
i=1

τi!,

where τ = [τ1, . . . , τn]. This means that a B-series has order p if for all trees τ with
|τ | ≤ p we have a(τ) = 1

τ ! . One can find more details in the book [15] in Chapter III.1.1.

4

3 Algebraic framework for the study of B-series

In this section, we look at the algebraic structure that arises once we introduce binary oper-
ations on B-series. The content of this section is based on [11] and [7].

3.1 Composition Group

A natural next step is to look at composition of B-series. It turns out that a composition of
two B-series is also a B-series. Due to the fact that the B-series B(a, hf, y0) and B(b, hf, y0)
are determined by the functionals a and b, the composition of B-series determines an operation
on these functionals. The operation is called the composition law. Thus,

B(b, hf,B(a, hf, y0)) = B(a · b, hf, y0).

To describe the · operation we have to look at the composition of two elementary differ-
ential operators Ff (τ1) and Ff (τ2) for two trees τ1, τ2 ∈ T . First, we define the map Ff and
the functional a on F . For τ ∈ F we have

Ff (τ) = Ff (τ1) · · ·Ff (τk) and a(τ) = a(τ1) · · · a(τk)

where τ = τ1 · · · τk. Composition of elementary differential operators Ff (τ1) and Ff (τ2) is
equal to Ff (τ1 y τ2) where y is an operation on rooted trees where the root of τ1 is connected
to the vertices of τ2 in all possible ways. For example,

y = + + = + 2 . (2)

This operation can be naturally extended to forests such that every root of the first forest
is connected to vertices of the second forest in all possible ways. This operation is called the
grafting of forests.

Let us also introduce an inner product such that the elements of F are orthonormal. For
example, based on the equation (2), we have

〈 y , 〉 = 2.

Then, using the composition of forests and the inner product, we can write a formula for
the composition law on the functionals on forests:

(a · b)(τ) :=
∑

τ1∈F ,τ2∈T
〈τ, τ1 y τ2〉

σ(τ)

σ(τ1)σ(τ2)
a(τ1)b(τ2). (3)

To make things easier, we can rewrite the formula in purely combinatorial terms. Instead
of taking the sum over all possible forests and trees, let us take only the forests and trees
for which 〈τ, τ1 y τ2〉 6= 0. We need to find such pairs of (τ1, τ2) that τ can be obtained by
connecting the roots of τ1 to some vertices of τ2. Let S(τ) denote a multiset of all ordered
rooted subtrees of τ ∈ T . The subtrees are ordered because we consider all vertices of τ
as different even if the corresponding rooted subtrees are the same. The subtrees are rooted
because the nonempty subtrees must contain the root. For example,

S() = {∅, , , , , , }. (4)

5

Let τ \ s for s ∈ S(τ) be the complement of s in τ , i.e. a forest obtained by removing the

ordered rooted subtree from τ . For example, \ = . Notice that the two ordered rooted

subtrees in (4) have different complements and . The formula for the composition law
can be rewriten in the following way: ([15] Ch.III.1.4)

(a · b)(τ) :=
∑
s∈S(τ)

a(τ \ s)b(s).

It can be checked that composition law is an associative product on GC := {a : T →
R | a(∅) = 1 }. Identity in GC is defined as e(τ) = 0 for all τ 6= ∅. Moreover, it can be
shown that every function a ∈ GC has an inverse. To show it, we first see that for τ = ∅,
(a · b)(τ) = a(∅)b(∅) = 1. For τ 6= ∅, we have

(a · b)(τ) = a(τ) + b(τ) +
∑
s∈S
s 6=∅,τ

a(τ \ s)b(s).

We see that |s| < |τ | and |τ \ s| < |τ |, and, therefore, we can define the inverse recursively as

a−1(τ) = −a(τ)−
∑
s∈S(τ)
s 6=∅,τ

a(τ \ s)a−1(s).

It follows that GC is a group. Let a, b ∈ GC , let us compute the values of a · b for trees up to
order 3.

(a · b)(∅) = a(∅)b(∅),
(a · b)() = a(∅)b() + a()b(∅),

(a · b)() = a(∅)b() + a()b() + a()b(∅),

(a · b)() = a(∅)b() + 2a()b() + a()2b() + a()b(∅),

(a · b)() = a(∅)b() + a()b() + a()b() + a()b(∅).

3.2 Connes-Kreimer Hopf algebra

The formula for the composition law gives us a hint that there is more structure than can be
seen at first glance as noted by [2]. It hints at a coalgebra structure on rooted trees with the
coproduct being defined as

∆CK(τ) :=
∑
s∈S(τ)

(τ \ s)⊗ s,

and a counit ε : T → R with ε(∅) = 1 and ε(τ) = 0 for τ 6= ∅. Together with the concatenation
of rooted trees and the unit ∅, it forms a graded connected bialgebra HCK . We notice that

(a · b)(τ) = × ◦ (a⊗ b) ◦∆CK(τ),

where × is the product in R.

6

Let t denote the concatenation product. A bialgebra is an algebra and coalgebra in
which the product and coproduct respect each other, in our case it can be written as

∆CK(a t b) = ∆CK(a) t∆CK(b),

where (a1 ⊗ a2) t (b1 ⊗ b2) = (a1 t b1)⊗ (a2 t b2).
HCK =

⊕∞
k=0H

k
CK is graded by the number of vertices in a tree. The product and

coproduct respect the grading, i.e.

∆CK(Hn
CK) ⊂

n∑
k=0

Hk
CK ⊗Hn−k

CK and Hn
CK tHm

CK ⊂ Hn+m
CK .

An antipode is a map S : HCK → HCK which is the inverse of identity in the group of
Hopf algebra endomorphisms with the convolution product. That is

t ◦ (id⊗ S) ◦∆CK = uCK ◦ εCK .

It is known that a graded connected bialgebra has an antipode which makes it a Hopf algebra.
We can find the formula for the antipode the same way we found the formula for the inverse
of an element in GC . The antipode has the following formula

SCK(τ) = −τ −
∑
s∈S(τ)
s 6=∅,τ

(τ \ s)SCK(s).

Such Hopf algebra is called Connes-Kreimer Hopf algebra introduced in 1998 [12].
Notice the similarity between the convolution product of two endomorphisms of HCK and the
composition law of two B-series. Using a(τ1 t τ2) = a(τ1)a(τ2), we have a−1 = a ◦ S.

3.3 Substitution Group

There is another way to combine two B-series. A composition of B-series corresponds to the
substitution of the initial value y0 with another B-series. A similar operation can be done
with the vector field hf . It turns out that the result of such an operation is again a B-series.
The substitution law is defined the following way

B(b, B(a, hf, ·), y0) = B(a ? b, hf, y0).

Again, we need to look at how the elementary differentials interact, however, now we
need to express F 1

h
B(a,hf,·)(γ) in terms of Ff or look at the operation on forests that would

correspond to it. Notice that this requires a(∅) = 0 and let us take a() = 1 for simplicity, i.e.
B(a, hf, y0) = hf + · · · . Let T ′ = T \ {∅}, then such operation on forests looks the following
way

τ1 . τ2 =
∑
τ∈T ′

τ1⊂τ, τ/τ1=τ2

M(τ1, τ2, τ) τ,

where M(τ1, τ2, τ) is the number of ways to insert the forest τ1 into the tree τ2 to get τ . Such
operation is called insertion of forests. Intuitively, it can be understood as a sum over all the
possible ways in which the nodes in τ2 can be substituted by the trees from τ1. For example,

. = 2 + 8 .

7

Then, using the insertion of forests and the inner product, we can write a formula for the
substitution law on the functionals on forests.

(a ? b)(τ) :=
∑

τ1,τ2∈F
〈τ, τ1 . τ2〉

σ(τ)

σ(τ1)σ(τ2)
a(τ1)b(τ2). (5)

This formula can be rewritten using combinatorics. Let P(τ) denote all the possible
covering subforests. A covering subforest can be obtained by removing a certain subset of
edges. Let p ∈ P(τ), then τ/p is a graph obtained by shrinking every tree of p into a node.
Then the substitution law can be written as [10]

(a ? b)(τ) :=
∑

p∈P(τ)

a(p)b(τ/p).

Let G∗S := {a : T → R | a(∅) = 0, a() = 1}, then together with the substitution law,
G∗S is a group with identity δ where the existence of inverses can be shown using the same
argument as in the previous subsection and δ () = 1 and δ (τ) = 0 for all τ 6= . Let a, b ∈ G∗S ,
let us compute the values of a ? b for trees up to order 3.

(a ? b)(∅) = a(∅)b(∅),
(a ? b)() = a()b(),

(a ? b)() = a()b() + a()2b(),

(a ? b)() = a()b() + 2a()a()b() + a()3b(),

(a ? b)() = a()b() + 2a()a()b() + a()3b().

3.4 Calaque, Ebrahimi-Fard & Manchon Hopf algebra

We notice that similar to the group GC , the group G∗S has a Hopf algebra associated to it. This
Hopf algebra is called the Calaque, Ebrahimi-Fard & Manchon Hopf algebra HCEM

and was introduced in 2011 [7]. The product of this algebra is the concatenation product t
and, therefore, the group G∗S is a group of algebra morphisms, a : HCEM → R. Recall that
a() = 1. So in order for G∗S to be a group of algebra morphisms, the tree needs to be the

unit of the algebra. Thus, in HCEM , we have = . A coalgebra structure on HCEM is again
hinted at by the substitution law discussed above. The coproduct is defined in the following
way:

∆CEM (τ) :=
∑

p∈P(τ)

p⊗ (τ/p),

with the counit being the δ . It can be shown that (HCEM ,t, ,∆CEM , δ) is a bialgebra.
Moreover, it is a connected bialgebra graded by the number of edges in the tree. This implies
that there is an antipode of the form

SCEM (τ) := −τ −
∑

p∈P(τ)

pS(τ/p).

and the inverse of an element a ∈ G∗S has the form a−1 = a ◦ SCEM .

8

There is an alternative formula for the coproduct that will be useful in Section 4. Notice
that to every covering subforest p ∈ P(τ) there corresponds a subset of edges p̄ that was
removed to obtain the covering subforest. Thus, the coproduct can be written as

∆CEM (τ) :=
∑
p∈P

(τ \ p̄)⊗ p̄.

where p̄ is both the set of edges that is removed to obtain p, and the tree obtained by
connecting the edges in p̄ such that two edges are connected by a vertex if the corresponding
ends of the edges are in the same tree of p.

3.5 Pre-Lie algebras

Definition 1. A pre-Lie algebra is a vector space A together with a map · : A ⊗ A → A
satisfying the relation

(x · y) · z − x · (y · z) = (y · x) · z − y · (x · z) for all x, y, z ∈ A.

Notice that associative algebras are pre-Lie, but not all pre-Lie algebras are associative.
The vector space of rooted trees in T together with the grafting of trees forms a pre-Lie
algebra AT . It was shown in [9] that this pre-Lie algebra is a free pre-Lie algebra with one
generator. This means that it has the universal property. Thus, given another pre-Lie algebra
B, there is a homomorphism ψ from AT to B that is fully determined by ψ().

The homomorphism is fully determined by its value at because every tree can be written
as a grafting product of with itself. For example, = y (y)− (y) y . This can
be proven by induction on the number of vertices and the number of edges going to the root.

Let AC := H◦CK and AS := H◦CEM be the dual algebras with products the duals of the
respective coproducts. They are defined over the vector space of forests in F with AS not
containing the empty forest. Denote the products as ∆◦CK and ∆◦CEM , respectively. Then

∆◦CK(τ1 ⊗ τ2) :=
∑

τ∈T, V (τ)=V1tV2
τ1=τ|V1

,τ2=τ|V2
root∈V2

τ

is a sum that lists all the trees that can be split into a rooted subtree τ2 with remainder being
equal to τ1. Notice that ∆◦CK 6=y, for example,

y = + , while ∆◦CK(⊗) = 2 + .

However, these products are equal under a different normalization. To change the nor-
malization, we use the automorphism Aσ(τ) = σ(τ)τ . So we have

y= A−1
σ ◦∆◦CK ◦ (Aσ ⊗Aσ).

A similar situation is true for the AS algebra. We have

. = A−1
σ ◦∆◦CEM ◦ (Aσ ⊗Aσ).

Recall the first formulas (3) and (5) of composition and substitution laws discussed in this

thesis. They are defined using the duality discussed above. The coefficients σ(τ)
σ(τ1)σ(τ2) have

their origin in the identities from above. Notice that AT is a subalgebra of AC .

9

4 The new group homomorphism between GC and G∗S

In this section, we search for a group homomorphism Φ∗ : GC → G∗S . Thus, it needs to satisfy
the following identity:

Φ∗(a · b) = Φ∗(a) ? Φ∗(b),

where Φ∗(a) = a ◦ Φ with Φ : HCEM → HCK .

Proposition 1. Φ∗ : GC → G∗S is a group homomorphism if and only if Φ is a coalgebra
homomorphism, Φ : HCEM → HCK .

Proof. Let Φ∗ : GC → G∗S be a group homomorphism. Then for all a, b ∈ GC we have

Φ∗(a · b) = Φ∗(a) ? Φ∗(b)

(a · b) ◦ Φ = (a ◦ Φ) ? (b ◦ Φ)

m ◦ (a⊗ b) ◦∆CK ◦ Φ = m ◦ (a⊗ b) ◦ (Φ⊗ Φ) ◦∆CEM

∆CK ◦ Φ = (Φ⊗ Φ) ◦∆CEM

Moreover, Φ∗(idC) = idS implies that Φ() = ∅ and, therefore, εCEM = εCK ◦ Φ.
This implies that Φ is a coalgebra homomorphism. The converse is also true.

Thus, let us focus our attention on finding a coalgebra homomorphism Φ : HCEM → HCK .
To simplify the matters, let Φ(τ1 t τ2) = Φ(τ1) tΦ(τ2). This implies that Φ : HCEM → HCK

is a Hopf algebra homomorphism.
To find such a Hopf algebra homomorphism we need to find a value Φ(τ) for every rooted

tree τ ∈ HCEM . We already know from the proof that Φ() = ∅.
For all the other τ ∈ HCEM , we will use the following relation

∆CK ◦ Φ(τ) = (Φ⊗ Φ) ◦∆CEM (τ).

Substitute the coproducts with the respective formulas

∅ ⊗ Φ(τ) + Φ(τ)⊗ ∅+
∑

s∈S(Φ(τ))
s 6=∅,Φ(τ)

(Φ(τ) \ s)⊗ s =

= Φ()⊗ Φ(τ) + Φ(τ)⊗ Φ() +
∑

p∈P(τ)
p6=∅,τ

Φ(τ \ p̄)⊗ Φ(p̄),

use the fact that Φ() = ∅ to get

∅ ⊗ Φ(τ) + Φ(τ)⊗ ∅+
∑

s∈S(Φ(τ))
s 6=∅,Φ(τ)

(Φ(τ) \ s)⊗ s =

= ∅ ⊗ Φ(τ) + Φ(τ)⊗ ∅+
∑

p∈P(τ)
p 6=∅,τ

Φ(τ \ p̄)⊗ Φ(p̄),

and after the cancelations we get∑
s∈S(Φ(τ))
s 6=∅,Φ(τ)

(Φ(τ) \ s)⊗ s =
∑

p∈P(τ)
p 6=∅,τ

Φ(τ \ p̄)⊗ Φ(p̄). (6)

10

We can write it as ∆̄CK ◦ Φ(τ) = (Φ ⊗ Φ) ◦ ∆̄CEM where ∆̄CK and ∆̄CEM denote the
middle terms of the respective coproducts. An important property of ∆̄CK(τ) and ∆̄CEM (τ)
is that their terms are the tensor products of trees that have less vertices than the tree τ .
This implies that the RHS of (6) can be computed recursively and, therefore, RHS is known.
What remains is to find such Φ(τ) that the middle terms of its CK coproduct are equal to
the RHS. A few simple computations for this new homomorphism Φ show that

Φ() = ,

Φ() = Φ() = 2 ,

Φ() = Φ() = 6 ,

Φ() = Φ() = 4 + .

Notice that the map Φ is not injective. It was also noticed that for all trees τ with |τ | ≥ 3
the RHS of (6) should contain a term of the form

(
∑

e∈E(τ)

Φ(τ \ e))⊗ Φ() = (
∑

e∈E(τ)

Φ(τ \ e))⊗ ,

and the LHS of (6) should also contain a term γ⊗ where γ is a linear combination of forests
such that Φ(τ) = [γ]. This implies that

Φ(τ) = [
∑

e∈E(τ)

Φ(τ \ e))] =
∑

e∈E(τ)

[Φ(τ \ e)].

Therefore, if such homomorphism exists, it must be unique. We now prove that this formula
actually works.

Lemma 1. Let ∆
∗
CK(τ) correspond to the coproduct without the τ ⊗ ∅ term. Then

∆
∗
CK([τ1 · · · τn]) = (idCK ⊗ [·]) ◦∆CK(τ1 · · · τn).

Proof. We use the formula for ∆̄∗CK .

∆
∗
CK([τ1 · · · τn]) =

∑
s∈S([τ1···τn])

s 6=∅

([τ1 · · · τn] \ s)⊗ s =

=
∑

s∈S([τ1···τn])
root∈s

([τ1 · · · τn] \ s)⊗ s =

=
∑

s∈S(τ1···τn)

(τ1 · · · τn \ s)⊗ [s] =

= (idCK ⊗ [·]) ◦
∑

s∈S(τ1···τn)

(τ1 · · · τn \ s)⊗ s =

= (idCK ⊗ [·]) ◦∆CK(τ1 · · · τn).

This finishes our proof.

The next proposition presents a recursive formula for a coalgebra homomorphism Φ :
HCEM → HCK .

11

Proposition 2. Let Φ : HCEM → HCK be defined as

Φ(τ) :=
∑

e∈E(τ)

[Φ(τ \ e)],

where E(τ) are the edges of τ . The operation τ \ e for an edge e corresponds to cutting the
edge e from the tree τ which creates a forest with two trees.

Then Φ is the unique coalgebra homomorphism.

Proof. We first check that

Φ() = ,

Φ() = Φ() = 2 ,

Φ() = Φ() = 6 ,

Φ() = Φ() = 4 + .

and it turns out to be true. Now we have to prove that the relation

∆
∗
CK ◦ Φ(τ) = (Φ⊗ Φ) ◦∆

∗
CEM (τ)

is true for all τ ∈ HCEM . Take τ ∈ HCEM and assume that the relation is true for all trees ν
with |ν| < |τ |.

∆
∗
CK ◦ Φ(τ) = ∆

∗
CK

(∑
e∈E(τ)

[Φ(τ \ e)]
)

=
∑

e∈E(τ)

∆
∗
CK([Φ(τ \ e)]) =

(apply Lemma 1)

=
∑

e∈E(τ)

(idCK ⊗ [·]) ◦∆CK ◦ Φ(τ \ e) =

(apply inductive assumption)

=
∑

e∈E(τ)

(idCK ⊗ [·]) ◦ (Φ⊗ Φ) ◦∆CEM (τ \ e) =

=
∑

e∈E(τ)

(Φ⊗ [·] ◦ Φ) ◦
(∑
p∈P (τ\e)

((τ \ e) \ p̄)⊗ p̄
)

=

=
∑

e∈E(τ)
p∈P (τ\e)

(
Φ((τ \ e) \ p̄)⊗ [Φ(p̄)]

)
=

(note that {(τ \ e) \ p̄ : p ∈ P (τ \ e)} = {τ \ p̄ : p ∈ P (τ), e ∈ p̄})

=
∑

e∈E(τ)
p∈P (τ), e∈p̄

(
Φ(τ \ p̄)⊗ [Φ(p̄ \ e)]

)
=

(we revert the order in which we choose e and p)

=
∑

p∈P (τ)
p6=∅

∑
e∈E(p)

(
Φ(τ \ p̄)⊗ [Φ(p̄ \ e)]

)
=

12

=
∑

p∈P (τ)
p 6=∅

Φ(τ \ p̄)⊗
(∑
e∈E(τ)

[Φ(p̄ \ e)]
)

=

=
∑

p∈P (τ)
p 6=∅

Φ(τ \ p̄)⊗ Φ(p̄) =

= (Φ⊗ Φ) ◦
(∑
p∈P (τ)
p 6=∅

(τ \ p̄)⊗ p̄
)

= (Φ⊗ Φ) ◦∆
∗
CEM (τ).

Thus, the relation is true for all τ ∈ HCEM by induction which proves that Φ is a coalgebra
homomorphism.

We notice an interesting property in the values we have computed. It seems that if a tree
can be transformed into another tree by changing the root then these two trees have the same
value under Φ. For example,

Φ() = Φ(), Φ() = Φ(), Φ() = Φ().

This property can be proven using the formula for Φ that we have found in the previous
proposition.

Proposition 3. If τ can be transformed into τ̂ by changing the root along an edge (i.e. such
that there exists an edge e ∈ E(τ) such that o(e) is root in τ and t(e) is root in τ̂) then
Φ(τ) = Φ(τ̂).

Proof. Let τ ê denote the tree τ with the root changed along the edge ê. Take a tree τ and
assume that Φ(ν) = Φ(ν ê) for all ν and ê ∈ E(ν) with o(ê) = root such that |ν| < |τ |. Notice
that for e ∈ E(τ) we have τ \ e = τ1 t τ2, i.e. τ \ e is a forest with two trees. Let the root
be always in the left one. We can assume that as the concatenation of trees is commutative.
Choose ê ∈ E(τ) such that o(ê) = root. Then

Φ(τ) =
∑

e∈E(τ)

[Φ(τ \ e)] = [Φ(τ \ ê)] +
∑

e∈E(τ)
e6=ê

[Φ(τ \ e)] =

= [Φ(τ \ ê)] +
∑

e∈E(τ)
e 6=ê

[Φ(τ1) t Φ(τ2)] =

= [Φ(τ \ ê)] +
∑

e∈E(τ)
e6=ê

[Φ(τ ê1) t Φ(τ2)] =

= [Φ(τ ê \ ê)] +
∑

e∈E(τ ê)
e6=ê

[Φ(τ ê1) t Φ(τ2)] =

13

= [Φ(τ ê \ ê)] +
∑

e∈E(τ ê)
e 6=ê

[Φ(τ ê \ e)] =

=
∑

e∈E(τ ê)

[Φ(τ ê \ e)] = Φ(τ ê).

Thus, the proposition is proved by induction.

Let τ1 and τ2 be two trees that give the same tree after we forget their roots. Then we can
write τ1 ∼r τ2 and due to the last proposition we see that if τ1 ∼r τ2 then Φ(τ1) = Φ(τ2). Let
ĤCEM := HCEM/ ∼r be the CEM Hopf algebra on non-rooted trees. The operations in this
algebra have the same definition as the original definitions because the original definitions
do not depend on the existence of the root. Thus, Φ̂ : ĤCEM → HCK is a Hopf algebra
homomorphism defined the following way. Let τ be a non-rooted tree and v ∈ V (τ) be a
vertex of τ . Then rv(τ) is a rooted tree obtained by choosing the vertex v as the root of τ .
Then Φ̂(τ) = Φ(rv(τ)) where v is any vertex in τ . The map Φ̂ is well-defined. Now let us
prove two technical lemmas that will be used to show that Φ̂ is injective.

Lemma 2. Let τ be a labeled non-rooted tree and v a vertex of τ . We denote by τ \v the graph
obtained by removing v and all edges connected to it from τ . Let L(τ) be the set containing
all leaves of τ (i.e all vertices of degree one) and let γ →v τ denote the grafting of tree γ to
vertex v of τ . Then

{τ} =
⋂

v∈L(τ)

{v →u (τ \ v) | u ∈ V (τ \ v)}.

Proof. It is trivial to show that {τ} ⊂
⋂
v∈L(τ){v →u (τ \ v) | u ∈ V (τ \ v)} as each

term of the intersection contains τ because v ∈ L(τ) implies ∃!(v, ve) ∈ E(τ) and, therefore,
τ = v →ve (τ \ v).

It remains to show that the intersection cannot contain any other trees. Take v0 ∈ L(τ)
with (v0, v

e
0) ∈ E(τ). Then for all γ ∈ {v0 →u (τ \ v0) | u ∈ V (τ \ v0)} such that γ 6= τ we

have (v0, x) ∈ E(γ) with x 6= ve0 and deg(v0) = 1.
Then for all v 6= v0 and all ν ∈ {v →u (τ \ v) | u ∈ V (τ \ v)} either deg(v0) 6= 2 when v is

connected to v0, or (v0, x) /∈ E(ν) as deg(v0) = 1 and (v0, v
e
0) ∈ E(ν). In either case γ 6= ν.

This implies that γ 6= τ is not in the intersection.

Lemma 3. Let τ1 and τ2 be non-rooted trees. Then

τ1 = τ2 ⇐⇒
∑

e∈E(τ1)

τ1 \ e =
∑

e∈E(τ2)

τ2 \ e.

Proof. It can be checked to be true for γ with |γ| < 5. We will use induction on the
number of vertices. Assume that the statement is true for all γ with |γ| < n and take τ1 and
τ2 with |τ1| = |τ2| = n. Then the direction (=⇒) is trivial.

14

Let τ1 and τ2 be such that
∑

e∈E(τ1) τ1 \ e =
∑

e∈E(τ2) τ2 \ e. We have∑
e∈E(τ1)

τ1 \ e =
∑

e∈E(τ2)

τ2 \ e

m∑
e∈E(τ1)
e6=(v,ve)
v∈L(τ1)

τ1 \ e+
∑

v∈L(τ1)

{v} t (τ1 \ v) =
∑

e∈E(τ2)
e6=(v,ve)
v∈L(τ2)

τ2 \ e+
∑

v∈L(τ2)

{v} t (τ2 \ v)

⇓∑
v∈L(τ1)

{v} t (τ1 \ v) =
∑

v∈L(τ2)

{v} t (τ2 \ v).

Recall that τ1 = τ2 if and only if there is an isomorphism between τ1 and τ2 given a
labelling of both trees. So label both τ1 and τ2.∑

v∈L(τ1){v}t (τ1 \v) =
∑

v∈L(τ2){v}t (τ2 \v) implies that for every v ∈ L(τ1) there exists
a u ∈ L(τ2) such that (τ1 \ v) ∼= (τ2 \ u) and vice versa. But then

{τ1} =
⋂

v∈L(τ1)

{v →u (τ1 \ v) | u ∈ V (τ1 \ v)} ∼=e

∼=e

⋂
v∈L(τ2)

{v →u (τ2 \ v) | u ∈ V (τ2 \ v)} = {τ2},

where ∼=e denotes the fact that the two sets are isomorphisc and every element in the first set
is isomorphic to an element in the second set. Thus, τ1 = τ2 and the lemma is proved.

Proposition 4. The homomorphism Φ̂ : ĤCEM → HCK is injective.

Proof. We have seen that Φ̂ is injective on trees γ with |γ| < 5. We will use induction on
the number of vertices. Assume that the statement is true for all γ with |γ| < n and take τ1

and τ2 with |τ1| = |τ2| = n such that Φ̂(τ1) = Φ̂(τ2). Then we have

Φ̂(τ1) =
∑

e∈E(τ1)

[Φ̂(τ1 \ e)] =
∑

e∈E(τ2)

[Φ̂(τ2 \ e)] = Φ̂(τ2).

Use the fact that [·] is injective. We get∑
e∈E(τ1)

Φ̂(τ1 \ e) =
∑

e∈E(τ2)

Φ̂(τ2 \ e).

By assumption, Φ̂ is injective on γ with |γ| < |τ1| = |τ2| so∑
e∈E(τ1)

τ1 \ e =
∑

e∈E(τ2)

τ2 \ e.

Now apply the previous lemma and we get τ1 = τ2 which proves the injectivity of Φ̂ for trees
with any number of vertices.

15

4.1 The dual of the homomorphism

Recall the discussion of pre-Lie algebras from Section 3.5. The Hopf algebra homomorphism
Φ : HCEM → HCK is the dual of the unique algebra homomorphism Ψ : AC → AS . The
algebra homomorphism Ψ is uniquely defined on AT ⊂ AC by sending to and uniquely
defined on the rest of AC by Ψ(τ1τ2) = Ψ(τ1)Ψ(τ2). Let]·[: T → F be the function that
removes the root of a tree. Take t : (T t T) ∪ T → T ⊗ T be defined the following way

t(τ1 t τ2) = τ1 ⊗ τ2 + τ2 ⊗ τ1, if τ1 6= τ2,

t(τ t τ) = τ ⊗ τ,
t(τ) = ⊗ τ + τ ⊗ .

Let τ ∈ F be a forest with more than two trees then t(τ) = 0.

Proposition 5. Let Ψ = Φ◦ : AC → AS. Then

Ψ = Aσ◦y ◦(A−1
σ ⊗A−1

σ) ◦ t ◦Ψ ◦]·[.

Proof. The formula for the Φ : HCEM → HCK can be written as Φ = [·]◦Φ◦
(∑

e∈E(τ) τ\e
)
.

Recall that τ \ e = τ e1 t τ e2 for some τ e1 and τ e2 . Then the dual of
∑

e∈E(τ) τ \ e is ∆◦CK ◦ t.
It is clear that the dual of [·] is the map that removes the root denoted as]·[.

The dual of Φ̂ is denoted by Ψ̂. From the definiton of Φ̂ we have Ψ̂ = r◦ ◦Φ◦ = r◦ ◦Ψ. Let
τ be a non-rooted tree then r(τ) is the set of all possible rooted trees that can be obtained
by choosing a vertex or τ as a root. Then Ψ̂(τ) = 1

|r(τ)|Ψ(τ).
Let us try to understand what the formula for Ψ actually means. Let us see what it does.

Denote by Ψσ the map defined by Ψ = Aσ ◦Ψσ. Take τ = [τ1tτ2] and assume Ψ(τ1) 6= Ψ(τ2).
Then

Ψ(τ) = Aσ◦y ◦(A−1
σ ⊗A−1

σ) ◦ t ◦Ψ ◦]τ [

Ψ(τ) = Aσ◦y ◦(A−1
σ ⊗A−1

σ) ◦ t(Ψ(τ1) tΨ(τ2))

Ψ(τ) = Aσ◦y ◦(A−1
σ ⊗A−1

σ)(Ψ(τ1)⊗Ψ(τ2) + Ψ(τ2)⊗Ψ(τ1))

Ψ(τ) = Aσ◦y (Ψσ(τ1)⊗Ψσ(τ2) + Ψσ(τ2)⊗Ψσ(τ1))

Ψ(τ) = Aσ(Ψσ(τ1) y Ψσ(τ2) + Ψσ(τ2) y Ψσ(τ1)).

So Ψσ([τ1 t τ2]) = Ψσ(τ1) y Ψσ(τ2) + Ψσ(τ2) y Ψσ(τ1). A similar computation could be
done for two other cases:

• Ψ(τ1) = Ψ(τ2) =⇒ Ψσ([τ1 t τ2]) = Ψσ(τ1) y Ψσ(τ2),

• τ = [τ1] =⇒ Ψσ([τ1]) = y Ψσ(τ1) + Ψσ(τ1) y .

Now let us take a concrete example with τ = . Then

Ψσ() = Ψσ() y Ψσ() + Ψσ() y Ψσ()

= y (y Ψσ() + Ψσ() y) + (y Ψσ() + Ψσ() y) y

= y
(

y + y
)

+
(

y + y
)
y

= y
(

y
)

+ y
(

y
)

+
(

y
)
y +

(
y

)
y .

16

We can notice a certain pattern. Let T be a linear map from the vector space generated
by the trees with each vertex having at most two outgoing edges. Let the vertices with two
outgoing edges correspond to the grafting of the successors in all possible orders. For example,

T () =

T () =

T () = y

T () = y + y

T () = y (y) + (y) y
· · ·

T ([τ1, τ2]) =y ◦ t(T (τ1) t T (τ2)).

Then we can see that ψσ() = T (). This fact is not random. It can be seen that due to

the fact that Ψ() = and Ψ(∅) = , the map Ψσ can be written as Ψσ = T ◦Grow where the
map Grow attaches a leaf to each vertex with one or none outgoing edges. Therefore,

Ψ̂(τ) =
1

|r(τ)|
Aσ ◦ T ◦Grow(τ).

The goal now is to find ker(Ψ̂). Then Ψ̂ : AC/ker(Ψ̂) → ÂS is injective. Notice that both
Aσ and Grow are injective. We also know that

ker(y) = spanR{τ ⊗ (γ y ν)− (τ y γ)⊗ ν − γ ⊗ (τ y ν) + (γ y τ)⊗ ν | τ, γ, ν ∈ T },

as AC is the free pre-Lie algebra. So

ker(T) = (t ◦ T◦]·[)−1 (ker(y) ∩ im(t ◦ T ◦]·[)) .

A task for the future would be to find a nice and full description of ker(T).

Proposition 6. The Hopf algebra homomorphism Φ̂ : ĤCEM → HCK/ker(Ψ̂) is an isomor-
phism between CEM Hopf algebra of non-rooted trees and the quotient of CK Hopf subalgebra
of trees with each vertex having at most two outgoing edges.

Proof. We have already proved that Φ̂ is injective. It remains to show that it is also
surjective. Surjectivity can be expressed the following way, for all τ ∈ F there exists γ ∈ F
such that for all ν ∈ F , τ 6= ν we have

(Φ̂(γ), τ) = 1 and (Φ̂(γ), ν) = 0.

Using the dual of Φ̂ we get the following condition on the dual. For all τ ∈ F there exists
γ ∈ F such that for all ν ∈ F , τ 6= ν we have

(γ, Ψ̂(τ)) = 1 and (γ, Ψ̂(ν)) = 0.

This condition is exactly the injectivity of Ψ̂. Thus, Φ̂ is surjective.

17

5 Exotic B-series

Different generatlizations of trees were introduced in the stochastic context for the study of
strong and weak errors. Burrage and Burrage [3] and Komori, Mitsui and Sugiura [19] intro-
duced stochastic trees and B-series for studying the order conditions for strong convergence
of SDE, and [4, 13, 14, 22, 23, 24, 25] for study of high order weak and strong methods on a
finite time interval.

First studied in [20], exotic B-series are a generalization of B-series that presents the tools
to work with stochastic differential equations and study the order for the invariant measure of
numerical methods applied to such equations. The generalization is applicable only if several
assumptions are made.

5.1 Assumptions and definitions

We consider a class of SDE of the form

dX(t) = f(X(t))dt+
√

2dW (t)

where X(t) ∈ Rd is an adapted stochactic process with X(0) = X0, the vector field f :
Rd → Rd smooth and globally Lipschitz,

√
2 is a constant that can be changed by rescaling

of the problem, and W (t) is a standard d−dimensional Wiener process fulfilling the usual
assumptions.

Definition 2. A problem is ergodic if there exists a unique invariant measure µ satisfying for
all deterministic initial conditions X0 and all smooth test functions φ,

lim
T→∞

1

T

∫ T

0
φ(X(s))ds =

∫
Rd
φ(x)dµ(x), almost surely.

Assumption 1. The vector field f : Rd → Rd is globally Lipschitz and C∞, and there exist
C1, C2 such that for all x ∈ Rd,

xT f(x) ≤ −C1x
Tx+ C2.

Assumption 2. There exists a C∞ map V : Rd → R such that f(x) = −∇V (x) is globally
Lipschitz and there exist C1 > 0 and C2 such that for all x ∈ Rd, V (x) ≥ C1x

Tx− C2.

It is known that such a problem is ergodic and the density of the unique invariant measure
is ρ∞ = Z exp(−V) where Z is such that

∫
Rd ρ∞(x)dx = 1. A useful property is that

∇ρ∞ = ρ∞f or ∇(log ρ∞) = f.

Assumption 3. The integrator Xn+1 = Ψ(Xn, h, ξn) has bounded moments of any order
along time, i.e., for all integer k ≥ 0,

sup
n≥0

E[|Xn|2k] <∞ ∀k ≥ 0

Assumption 4. The integrator Xn+1 = Ψ(Xn, h, ξn) has a weak Taylor expansion of the
form

E[φ(X1)|X0 = x] = φ(x) + hA1φ(x) + h2A2φ(x) + · · ·

for all φ ∈ C∞P (Rd,R), where Ai, i = 1, 2, . . . , are linear differential operators. For more
details see [27].

18

Definition 3. A numerical method Xn+1 = Ψ(Xn, h, ξn) is ergodic if there exists a unique
invariant probability law µh with finite moments of any order satisfying for all deterministic
initial conditions X0 = x and all smooth test functions φ,

lim
N→∞

1

N + 1

N∑
n=0

φ(Xn) =

∫
Rd
φ(x)dµh(x), almost surely.

See [21] for more details.

Definition 4. A numerical method Xn+1 = Ψ(Xn, h, ξn) has order p with respect to the
invariant measure of the SDE if∣∣∣∣∫

Rd
φ(x)dµh(x)−

∫
Rd
φ(x)dµ(x)

∣∣∣∣ ≤ Chp,
where C is independent of h assumed small enough.

Theorem 1. [1] Take an integrator Xn+1 = Ψ(Xn, h, ξn). Assume the Assumptions 1, 2, 3,
4 to be true. If

A∗jρ∞ = 0, j = 2, . . . , p− 1

then the integrator has order p for the invariant measure.

5.2 Exotic trees

We consider ξ ∼ N (0, Id) a normally distributed random variable in Rd.

Definition 5. Grafted exotic trees are trees that can have grafted nodes × as leaves and
let the function Ff,φ,ξ which sends an exotic grafted tree to its corresponding elementary
differential operator be defined as

Ff,φ,ξ(τ) :=
d∑

iv1 ,...,ivm=1

 ∏
v∈V 0(τ)

∂Iπ(τ,v) (Ff,φ,ξ(v))iv

 ∂Iπ(τ,r)φ

with

Ff,φ,ξ(v) =

{
f, for v non-root vertex ,
ξ, for v grafted leaf ×,

where V 0(τ) is the set of non-root vertices, Iπ(τ,v) = (iq1 , . . . , iqs) with the qk being the
predecessors of v, r is the root of τ , and

∂Iπ(τ,v)f =
∂sf

∂xiq1 · · · ∂xiqs
.

Notice that this definition is a natural extension of the original definition seen in the be-
ginning of the thesis. However, due to the Theorem 1, we will be interested in the expectation
of Ff,φ,ξ(τ). From the definition of Ff,φ,ξ it follows that the expectation depends only on the
grafted notes, i.e. on term of the form E(ξi1 · · · ξim).

We know that if n is odd then the expectation is zero. Thus, we consider E(ξi1 · · · ξi2n).
We know that E(ξiξj) = E(ξi)E(ξj) if i 6= j. Thus, the indeces must have even multiplicities.

19

The Isserlis theorem [18] will be helpful here. It states that if χ is a 2n-dimensional normally
distributed random vector with mean zero then

E

[
2n∏
i=1

χi

]
=

∑
p∈P2(2n)

∏
i<j

p(i)=p(j)

E [χiχj] .

For example, E[χ1χ2χ3χ4] = E[χ1χ2]E[χ3χ4] + E[χ1χ3]E[χ2χ4] + E[χ1χ4]E[χ2χ3].

In our case, E
[∏2n

i=1 χi

]
= |P2(2n)| because E[ξiξi] = 1. In the end, the Isserlis theorem

is enough to show that expectations of random variable with even multiplicities greater than
two can be reduced to the case where all multiplicities are equal to two.

Thus, if we come back to considering E [Ff,φ,ξ(τ)] we get

E [Ff,φ,ξ(τ)] =
∑

p∈P2(2n)

∏
i<j

p(i)=p(j)

Ff,φ(τp)

where τp is the grafted exotic tree τ with grafted vertices are paired according to the pairing
p. Such a tree is called exotic tree. The function Ff,φ is deterministic and is defined the same
as Ff,φ,ξ with only exception that

Ff,φ(v) =

{
f, for v non-root vertex ,
1, for v numbered leaf ,

and π(τp, v) is a set of all predecessors of v with every numbered predecessor u being replaced
by p(u). That is, the paired numbered leaves have the same index corresponding to both of
them.

The pairing of grafted vertices can be shown by connecting the grafts by lianas (hence
the name exotic). In the next nection we are going to look at some algorithms on exotic trees
and a package that implements those algorithms. For computational reasons the pairing will
be shown by numbering the grafted vertices in an appropriate way. For example,

E

[
Ff,φ,ξ(

× ×
× ×

)

]
= Ff,φ(

1 1
2 2

) + 2Ff,φ(
1 2

1 2

).

Exotic trees can be very useful if the method has Ai = Ff,φ(γ) where γ is a linear combi-
nation of exotic trees.

Definition 6. Exotic B-series is a formal series over grafted exotic trees ET g with a : ET g →
R a map, f : Rd → Rd and φ : Rd → R two smooth functions, and ξ ∼ N (0, Id). It has the
form

B(a)(φ) :=
∑
τ∈ET g

h|τ |a(τ)Ff,φ,ξ(τ)

where |τ | = |{ vertices of τ}|+ 1
2 |{grafted leaves of τ}|− 1. Notice that a grafted leaf counts

only as 1
2 . This is due to the fact that the random variable ξ has coefficient

√
h while f has

coefficient h.

20

Remark 1. An important fact to notice is that E [B(a)(φ)] is a formal series over exotic trees
ET . This means that if a numerical method is an exotic B-series then the corresponding Ai
is Ff,φ(γ) for some linear combination of exotic trees γ. Notice that

A∗i ρ∞ = 0 ⇐⇒
∫
Rd

(Aiφ)(x)ρ∞(x)dx = 0, ∀φ ∈ C∞P

Thus, to show the order of a numerical method in invariant measure, it is enough to show
that

∫
Ff,φ(γ)(φ)ρ∞dx = 0 for certain γ which can difficult to compute because of higher

order differentials. To simplify the calculations, two simplifying techniques can be used: the
integration by parts and the inversion of edge-liana.

6 Order conditions for invariant measure of ergodic SDE

In this section, we generate order conditions using the Theorem 1 from Section 5.1 based on
the paper [20]. We describe the order conditions for exotic B-series following the remark 1
from Section 5.2.

Definition 7. Let γ1, γ2 ∈ spanR(ET). Let γ1 ∼ γ2 if and only if∫
Rd
Ff,φ(γ1)ρ∞dx =

∫
Rd
Ff,φ(γ2)ρ∞dx.

It follows that to prove that a numerical method has order p in invariant measure we first
have to find γj = Aj for j < p and then show that γj ∼ 0.

6.1 Simplification of exotic trees

6.1.1 Integration by parts (IBP)

Due to that fact that the equivalence relation is defined using integrals, we can use integration
by parts (IBP) to decrease the order of the differentials that we work with. We know that∫

Rd
∂i(Ff,φ(γ \ ei)ρ∞)dx = 0

where γ \ ei is the tree where we remove the edge coming from the vertex vi. This is true due
to the fact that f and φ have polynomial growth. Now open the parenthesis and we get∑

v∈V (γ)

∫
Rd
Ff,φ(vi →v (γ \ ei))ρ∞dx+

∫
Rd
Ff,φ(γ \ ei)∂iρ∞dx = 0.

Recall that ∇ρ∞ = fρ∞. Take g = log(ρ∞) then ∇ρ∞ = (∇g)ρ∞. Let us introduce a new
kind of vertex called aromatic root that will correspond to g, i.e. Ff,φ() = g. Then∑

v∈V (γ)

vi →v (γ \ ei) + (γ \ vi) t ∼ 0.

For example, + + ∼ 0. Now apply this simplification to a numbered leaf. We

notice that ∂ig = fi and, therefore,
1 1
∼ . This means that if we apply the integration by

21

parts simplification only to numbered leaves then we can always get rid of the aromatic root

which is not a part of our definition of exotic trees. For example,
1 1

+ 2
1

1

+
1 1

∼
1 1

+ 2
1

1

+ ∼ 0. Notice that the edge does not get attached to the numbered leaf
because Ff,φ(1) = 1 and its differential is 0. By choosing a numbered leaf vi connected to the
root (let it be numbered by 1) and moving the term of the sum where vi is connected to the
root to the other side we get∑

v∈V (γ)
v 6=root

vi →v (γ \ ei) + (γ \ vi) t
1 ∼ −(vi →root (γ \ ei)) = −γ

and, therefore, we have

IBP (γ) = −
∑

v∈V (γ)
v 6=root

vi →v (γ \ ei)− (γ \ vi) t
1
.

In this thesis, the IBP is used to decrease the number of numbered leaves connected to
the root. For example,

1
1 IBP−−−→ −

1 1

−
1 1

− .

6.1.2 Inversion of edge-liana (IEL)

Another useful simplification that will be used is the inversion of edge-liana. Due to the fact
that f is a gradient we know that f ′ is a symmetric matrix, i.e. ∂ifj = ∂jfi. This means that
we have the following property

A
B

1

C
1

∼ A
1

C
B

1

.

This can be used to move the liana through the edges of the tree. For example,

A
B

1

C
1

∼ A
1 C
B
1

and C
A

1

B
1

∼ C
A

B
1

1

.

We allow only such inversions that give an exotic tree as a result. For example, the
following inversion, even though it is correct, is not permitted.

1 1

∼
1 1

.

Definition 8. A position of a liana l in an exotic tree τ is the tuple (v1, v2) where v1, v2 ∈ V (τ)
are the vertices connected by liana l. The position of l is denoted as p(l).

Definition 9. An orbit of a liana l is the set of all the positions that the liana l can take
when moved by the edge-liana inversion.

Proposition 7. An orbit of a liana l in an exotic tree τ is the set Ol of all edges in τ that
are part of a path from either end of liana to the root.

22

Proof. Let us analyse what the inversion of edge-liana does in detail.

A
B

1

C
1

∼ A
1

C
B

1

.

Let us assume that the left term is the original tree. In order to apply the inversion of edge-
liana we need to have an outgoing edge connected to an end of the liana (B, in our case).
Then we replace this outgoing edge by a liana and transform the liana (B,C) into an outgoing
edge from B to C. This way liana ”moved” through the vertex B and left an outgoing edge
behind.

We see that the inversion of edge-liana is invertible and that the liana can be inverted
only with an outgoing edge connected to its end. We know that if we take a tree and choose
one of its vertices then we will always reach the root if we follow the outgoing edges from the
chosen vertex.

This way if we repeatedly apply the inversion without ever inverting it we will trace a
path from an end of the liana to the root. Thus, the orbit of a liana can be describe as a set
of edges that are part of such a path.

This proposition is used in Section 7 to define an algorithm that checks if two trees are
similar. In this thesis, the IEL is used to move the liana to the root when possible. For
example,

1 1

IEL−−−→

1

1
.

6.2 Order conditions

Let us use an algorithm involving the simplifications described above to find order conditions
for the invariant measure of exotic B-series using the fact that an exotic B-series has weak
Taylor expansion with Ai = Ff,·(γi) where γi is the corresponding linear combination of exotic
trees.

An exotic B-series is fully characterized by the map a : ET → R that gives the coefficients
of the formal series over ET . We have to find conditions on the values of a that would
guarantee that the corresponding exotic B-series is of order p for the invariant measure. Such
conditions should imply that γi ∼ 0 for all i = 1, . . . , p− 1.

Let Ai have the following form

Ai =
∑
τ∈ET
|τ |=i

a(τ)Ff,·(τ) = Ff,·(
∑
τ∈ET
|τ |=i

a(τ)τ) = Ff,·(γi).

Proposition 8. The Algorithm 1 ends.

Proof. The algorithm acts on every tree which means that the algorithm is linear. Thus, it
is enough to consider the operations of the algorithm applied to a single tree. This algorithm is
guaranteed to end because every application of the integration by parts decreases the number
of edges connected to the root. For example,

1 1

IEL−−−→

1

1 IBP−−−→ −

1
1

−

1 1

−

1 1

− .

23

Algorithm 1: Apply the simplifications to get order conditions

Data: γi – a linear combination of exotic trees of a certain size.
Result: A linear combination of exotic trees ν such that ν ∼ γi

1. Apply the inversion of edge-liana to every exotic tree to move all lianas such that one
end of liana is connected to the root if possible.

2. Apply the integration by parts to disconnect all lianas from the root. This will create
new trees where the application of inversion of edge-liana is possible. Go to step 1.

This means that the IBP can be applied only a finite number of times.

We can write the order conditions for invariant measure of exotic B-series. Table 6.2 lists
A2 and the result of execution of the Algorithm 1 applied to A2. This table was generated
using the symbolic package discussed in Section 7. One can also find order conditions for
order 3 in Appendix A.

Let us apply the Algorithm 1 to A1 = a() + a(
1 1

)
1 1

.

A1 = a() + a(
× ×

)
1 1 IEL−−−→ a() + a(

× ×
)

1 1

a() + a(
× ×

)
1 1 IBP−−−→ a() − a(

× ×
) =

(
a()− a(

× ×
)
)
.

Thus, an exotic B-series has order 1 for invariant measure if a() = a(
× ×

).

A2 3a(
× × × ×

)
0 0 1 1

+ a(
× ×

)
0 0

+ a(

×
×
)

0
0

+ a(

× ×

)

0 0

+ a() + a()

Algo. 1
applied to

A2

(
3a(

× × × ×
)−a(

× ×
)+a()

)
+

(
−3a(

× × × ×
)+a(

× ×
)−a(

×
×
)+a()

)
+

0 0(
− 3a(

× × × ×
) + a(

× ×
)− a(

×
×
) + a(

× ×

)

)

Table 1: Order conditions from A2

6.3 Order conditions for Runge-Kutta methods

It turns out that similarly with the classical theory of B-series, the Runge-Kutta methods
of the form (1) are exotic B-series. The map a : ET → R corresponding to a Runge-Kutta
method can be obtained the following way, where we denote ci :=

∑s
j=1 aij to simplify nota-

tions.

Proposition 9. Let aij , bi, di be the coefficients defining a Runge-Kutta method. Then the
method is an exotic B-series and the map a : ET g → R is defined the following way. Take
τ ∈ ET g and let τ = [τ1, . . . , τn]. Then

a(τ) :=
1

σg(τ)

∑
iv , v∈V (τ)
not root
not ×

∏
e∈E(τ)

var(e)

24

where

var(e) =

bio(e) , if t(e) is the root, o(e) is ,

1, else if t(e) is the root, o(e) is ×,
cit(e) , else if o(e) is a leaf ,

dit(e) , else if o(e) is ×,
ait(e)io(e) , otherwise.

and for τ ∈ ET g with 2l grafted leaves we have

σg(τ) =
σ(τ)

2l
.

Proof is a straightforward extension of the theory presented in [15] in Chapter III.1.1. For
τp ∈ ET where p is a pairing of grafted leaves and τ ∈ ET g we have

a(τp) = p(τ, p) a(τ)

where p(τ, p) is the number of pairings of grafted leaves that give the same tree τp.
Using this characterization of the map a for Runge-Kutta methods we can write the order

conditions for invariant measure of Runge-Kutta methods. Table 6.3 lists γ2, A2, and the
result of execution of the Algorithm 1 applied to A2. This table was generated using a
script that was programmed to perform the required operations on trees automatically. The
symbolic package used to write the script will be discussed in more detail in Section 7. One
can also find order conditions for order 3 and 4 in Appendix C.

The order conditions for order 3 generated by the script agree with those obtained in
[20]. The order conditions for order 4 generated by the script were not computed before
due to a large number of computations. This new result is not mathematically rigorous.
The symbolic package implements several algorithms described in Section 7 that do not have
a mathematically rigorous proof. Moreover, the implementation of the algorithms is not
mathematically rigorous.

A way to see if the output of the script contains errors would be to apply the script to
a simpler computation. We see that the script gives a correct output for the computation
of order conditions for order 3. Another way to check the script for errors is to apply it to
A4 of the Gaussian case in which V =

∑d
i=1Cix

2
i and f i is a polynomial of degree 1 for any

i = 1, . . . , d. In this case, any differential of degree 2 of f i is 0 which means that all the trees
where a non-root vertex has more than one incoming edge should be set to 0. This simplifies
the calculations and makes it possible to check the output of the script. The case is called
Gaussian because the invariant measure ρ∞ is a Gaussian. The output of the script applied
to this case can be found in the Appendix B.

γ2
b0b1

2 + b0c0 + b0d
2
0

× ×

+ 2b0d0

×
×

+ b0
× ×

+
× × × ×

6

A2
b0b1

2 + b0c0 + b0d
2
0

0 0

+ 2b0d0

0
0

+ b0
0 0

+
0 0 1 1

2

Algo. 1
applied to

A2

(
b0b1

2 − b0 + 1
2

)
+

(
b0c0 − 2b0d0 + b0 − 1

2

)
+

0 0(
b0d

2
0 − 2b0d0 + b0 − 1

2

)

Table 2: Order conditions from A2 for Runge-Kutta methods

25

6.4 Analysis of the order conditions

During the computation of the order conditions for the Runge-Kutta methods some interesting
patterns were noticed. We discuss these patterns in this section. Take Coef(τ) to be the
coefficient of τ in the result of the Algorithm 1 applied to A|τ | of a Runge-Kutta method. Let
us denote the coefficient in a(τp) by σ̂ for simpicity, i.e.

σ̂(τp) =
p(τ, p)

σg(τ)
.

Notice an interesting property. Take τ1, τ2 ∈ ET . Then

a([τ1, τ2]) =
σ̂([τ1, τ2])

σ̂([τ1])σ̂([τ2])
a([τ1])a([τ2])

due to the fact that a([τ1, τ2]) does not take into account the number of roots. For example,

a() = a()a() =
∑

bi1bi2 , a(

1
1

) = a()a(

1

)a(

1

) =
∑

bi1bi2ai2,i3di3bi4di4 .

We notice that if τ1 does not contain any trees isomorphic to any trees in τ2 then a([τ1, τ2]) =

a([τ1])a([τ2]). We consider a class of exotic trees that is denoted by n 1 1k which means that
there are n leaves and k liana loops connected to the root of the exotic tree. For example,

1 1 2 2 3 3
= 2 1 13.

Let us characterize Coef(τ) and find a formula for Coef(n). Define [τ1]◦[τ2] = [τ1, τ2], then
we can write any exotic tree τ with |τ | > 1 as τ = [τ1, . . . , τn] = [τ1] ◦ · · · ◦ [τn] for some exotic
trees [τ1], . . . , [τ2] that cannot be further decomposed this way. Let |τ |p = |[τ1, . . . , τn]|p =
|[τ1] ◦ · · · ◦ [τn]|p = (|[τ1]|, . . . , |[τn]|). Notice that the order of elements in |τ |p does not matter
as the order of branches in the tree does not matter. Recall that a partition of a number N
is a tuple (N1, . . . , Nk) of integers such that N = N1 + · · ·+Nk.

Lemma 4. Let τ be an exotic tree with |τ | > 1 and τ = [τ1] ◦ · · · ◦ [τn]. Then Coef(τ) does
not contain exotic tree γ = [γ1] ◦ · · · ◦ [γm] (i.e. (Coef(τ), γ) = 0) if the terms of |γ|p cannot
be split into partitions of terms of |τ |p.

Proof. We look at the relation between |γ|p and |ν|p where ν is the result of the Algorithm

1 applied to γ. We know that |γ|p ∈ Nn. Then let |γ|i→jp ∈ Nn−1 such that the i-th element
is removed and added to the j-th element. For example, (5, 7, 9)2→3 = (5, 16).

Recall that the integration by parts (IBP) is defined the following way

IBP (γ) = −
∑

v∈V (γ)
v 6=root

vi →v (γ \ ei)− (γ \ vi) t
1
.

We know that if a liana connects a vertex v to an aromatic root, then the liana and the

aromatic root can be replaced by a leaf connected to v by a simple edge, i.e.
1 1
∼ . Thus,

|(γ\vi)t
1|p = |γ|p. Moreover, |vi →v (γ\ei)|p = |γ|p if v, vi ∈ [γk] and |vi →v (γ\ei)|p = |γ|k→jp

if v ∈ [γj], vi ∈ [γk]. Therefore,

|IBP (γ)|p = −(|γk|+ 1) · |γ|p −
m∑
j=1

|γj | · |γ|k→jp

26

where vi ∈ [γk]. The term |γk| + 1 counts all the vertices of [γk] to which the liana can be
connected (and, therefore, | · |p does not change) toghether with the case where the liana
is connected to the aromatic root. We also notice that the inversion of edge-liana does not
change | · |p because it only moves the liana through the tree, so |IEL(γ)|p = |γ|p. Therefore
the effect of the Algorithm 1 on the | · |p is the same as the effect of IBP applied multiple
times.

If γ̂ is in the output of Algorithm 1 applied to γ, then the terms of |γ̂|p are sums of terms
in |γ|p where a term from |γ|p can appear only in one sum. Thus, if the terms of |τ |p are not
sums of terms from |γ|p then τ is not in the output of Algorithm 1 applied to γ and, therefore,
γ is not in Coef(τ).

Proposition 10. Given a bouquet with n ∈ N vertices we have

Coef(n) =
1

n
Coef()Coef(n−1).

Proof. It follows from the lemma that Coef(n) contains only the trees of the form n−k 1 1k

for k = 0, . . . , n because |n |p = (1, . . . , 1). The only way in which we can get the tree n from
n−k 1 1k is by disconnecting each liana from the root and connecting it to the aromatic root.
This replaces the liana by a leaf. Therefore, we have

Coef(n) =
n∑
k=0

(−1)ka(n−k
1 1k).

Using Proposition 9 we have

a(n−k
1 1k) = σ̂(n−k

1 1k)
∑

bi1 · · · bin−k =

=
(2k)!

2kk!
· 2k

(n− k)!(2k)!

∑
bi1 · · · bin−k =

1

k!(n− k)!

∑
bi1 · · · bin−k .

This means that the Coef(n) has the following formula

Coef(n) =
n∑
k=0

(−1)k
1

k!(n− k)!

∑
bi1 · · · bin−k =

=
1

n!

n∑
k=0

(−1)k
(
n

k

)∑
bi1 · · · bin−k =

1

n!

n∏
k=0

(
∑

bik − 1).

Therefore, we have

1

n
Coef()Coef(n−1) =

1

n
(
∑

bi − 1) · 1

(n− 1)!

n−1∏
k=0

(
∑

bik − 1) =

=
1

n!

n∏
k=0

(
∑

bik − 1) = Coef(n).

This finishes the proof of the proposition.

27

Proposition 11. Let τ be a tree with n − 1 vertices attached to the root where one vertex

has a leaf or a liana loop attached to it. It has the form n−2 or n−2

1 1

with n − 2 leaves
attached to the root. Then

Coef(n−2) = Coef()Coef(n−2) and Coef(n−2

1 1

) = Coef(

1 1

)Coef(n−2)

Proof. The proof for τ = n−2

1 1

is completely analogous to the proof for τ = n−2 with
the only difference being that the leaf is a liana connected to a vertex and an aromatic root
while a looped liana has both ends connected to the same vertex. We know that

Coef() = a()− a(

1
1
) + a(

1 1
)− a(

1 1 2 2
)

and

Coef(n−2) =
n−2∑
k=0

(−1)ka(n−k−2 1 1k)

To write the formula of Coef(τ) it is enough to find all trees that can be transformed into τ
by Algorithm 1 and count the number of instances of τ obtained by transforming a particular
tree. Using Lemma 4 we find the three classes of trees that can be transformed into τ . Notice
that for these classes of trees the IEL is never applied and Algorithm 1 is reduced to IBP.
There are three classes of such trees:

• n−k−2 1 1k – apply IBP to every liana. The only one way in which we can get τ is by
connecting each liana to an aromatic root. This is similar to the way we get a bouquet
tree. Thus, every tree of this class gives one instance of τ .

• n−k−2 2
2

1 1k – apply IBP to every liana. We get τ be connecting each liana to an
aromatic root. Thus, every tree of this class gives one instance of τ .

• n−k 1 1k – apply IBP to every liana. This class is trickier as each tree in this class gives
several instances of τ . Let us apply the IBP to a liana and see what happens:

n−k 1 1k IBP−−−→ (n− k)n−k−1 2
2

1 1k−1 + n−k+1 1 1k−1.

We see that the first term is a tree from the previous class which gives one instance of
τ . The second term is a tree from the same class with one more leaf and one less liana.
This gives a recursive expression of the number of instances of τ that can be obtained

from n−k 1 1k. It can be written as

k−1∑
i=0

n− k + i.

Notice that the sum is only up to k − 1. This is due to the fact that if all k lianas
are attached to aromatic roots then we get a bouquet with n vertices which cannot be
transformed into τ . Rewrite this sum in a more useful form:

k−1∑
i=0

n− k + i = k(n− k) +
k−1∑
i=0

i = k(n− k) +
k(k − 1)

2
.

28

As a result of the these computations we can write a formula for Coef(n−2):

Coef(n−2) =
n−2∑
k=0

(−1)ka(n−k−2 1 1k)− (7)

−
n−2∑
k=0

(−1)ka(n−k−2 2
2

1 1k)+ (8)

+
n−2∑
k=0

(−1)k(n− k − 1)(k + 1)a(n−k−1 1 1k+1)− (9)

−
n−2∑
k=0

(−1)k
(k + 1)(k + 2)

2
a(n−k−2 1 1k+2). (10)

The signs correspond to the number of ways we apply the IBP to obtain τ as each application
of IBP changes the sign. The IBP has to applied k times to term (7), k+ 1 times to (8), k+ 2
times to (9), and k+3 times to (10). We have four terms each of which corresponds to a term

in Coef(). We recall that

a(n−k−2 1 1k) = a()a(n−k−2 1 1k)

a(n−k−2 2
2

1 1k) = a(
1

1

)a(n−k−2 1 1k)

a(n−k−1 1 1k+1) =
σ̂(n−k−1 1 1k+1)

σ̂(
1 1

)σ̂(n−k−2
1 1

k)
a(

1 1
)a(n−k−2 1 1k)

a(n−k−2 1 1k+2) =
σ̂(n−k−2 1 1k+2)

σ̂(
1 1 2 2

)σ̂(n−k−2
1 1

k)
a(

1 1 2 2
)a(n−k−2 1 1k).

where

σ̂(n−k−1 1 1k+1)

σ̂(
1 1

)σ̂(n−k−2
1 1

k)
=

1 · k!(n− k − 2)!

(k + 1)!(n− k − 1)!
=

1

(k + 1)(n− k − 1)

σ̂(n−k−2 1 1k+2)

σ̂(
1 1 2 2

)σ̂(n−k−2
1 1

k)
=

2! · (n− k − 2)!k!

(n− k − 2)!(k + 2)!
=

2

(k + 2)!(k + 1)!
.

29

Therefore, we can replace all a(γ) in Coef(τ) by respective a(γ1)a(γ2) and get

Coef(n−2) =

n−2∑
k=0

(−1)ka()a(n−k−2 1 1k)−

−
n−2∑
k=0

(−1)ka(
1

1

)a(n−k−2 1 1k)+

+
n−2∑
k=0

(−1)ka(
1 1

)a(n−k−2 1 1k)−

−
n−2∑
k=0

(−1)ka(
1 1 2 2

)a(n−k−2 1 1k) =

=

(
a()− a(

1
1
) + a(

1 1
)− a(

1 1 2 2
)

)(
n−2∑
k=0

(−1)ka(n−k−2 1 1k)

)
=

= Coef()Coef(n−2).

This finishes the proof of Proposition 11.

Remark 2. Further analysis of the order conditions would require a general formula for
Coef(τ). By studying the Algorithm 1 and using its recursive nature a formula could be
conjectured.

Coef(τ) =
∑

τl∈OrL(τ)

a(τl)−
∑

v∈V rV,N (τ)

σs(v)(τv)

σv(τ)
Coef(τv→r)

where OrL(τ) is the set of trees where the lianas connected to the root are moved through the
tree in all possible ways, V r

V,N (τ) is the set of all numbered leaves not connected to the root
and black leaves, τv→r is the tree τ with v attached to the root, s(v) is the successor of v in
τ , and σv(τ) is the number of vertices that v is mapped to by automorphisms of τ . The first
term is the dual of the first step of Algorithm 1 while the second term is the dual of IBP from
second step of Algorithm 1.

Another possible way to generalize the result from Proposition 11 would be to prove

Coef([τ1, τ2]) =
σ̂([τ1, τ2])

σ̂([τ1]) ˆσ([τ2])
Coef([τ1])Coef([τ2]) (11)

for a larger class of (τ1, τ2) ∈ ET 2 by taking

Coef(τ) =
∑
γ∈X

C(τ, γ)a(γ)

where X is the set of trees that can be transformed into τ by Algorithm 1 and C(τ, γ) is the
number of instances of τ that could be obtained from γ. There is no systematic way to get
X and no general formula for C(τ, γ).

It is curious that the equation (11) is true for a few interesting examples:

• Coef(n) = 1
nCoef(n−1)Coef()

30

• Coef(n) = Coef()Coef(n−1)

• Coef(n
1 1

) = Coef(

1 1

)Coef(n−1)

• Coef() = 1
2Coef()Coef()

• Coef(

1 1

) = Coef()Coef(

1 1

)

7 PyTreeHopf – operations on trees

The success of the introduction of trees in the study of deterministic numerical methods
inspires new research directions that generalize the concept of a tree and use it to gain new
results. Even though the idea of a tree is intuitive, the computations using trees can become
messy very quickly, especially if the definition of the tree was expanded. This is the case with
exotic trees. Table 7 shows the number of exotic trees by order.

1 2 3 4

2 6 21 85

Table 3: Number of exotic trees

Compare it to the number of rooted trees listed in Table 7.

2 3 4 5

1 2 4 9

Table 4: Number of rooted trees

Even a small number of trees could cause computational difficulties if the algorithm is
difficult enough. The combinatorial nature of trees and of operations on them means that
these operations could be easily programmed into a computer. In this section, we discuss
the pyTreeHopf package the purpose of which is to simplify the automation of computations
involving trees.

The general workflow of the package is shown in the figure 1. In order to apply the
implemented tree operations to a linear combination of exotic trees, we first have to assign
SymPy variables to trees and build the linear combination using the corresponding SymPy
variables. Then the tree operations can be applied to the SymPy expression and return a
SymPy expression as a result. The result can then be compiled into a PDF, PNG, and TEX
output. An example of the usage of the symbolic package can be found in Appendix D.

31

Figure 1: General workflow of the package

7.1 Algorithms related to exotic trees

One of the main uses of the package during the work on this master thesis was to generate
the order conditions for invariant measure of ergodic SDE, confirm, and possibly extend the
work done in [20]. However, the computations done in [20] were done manually and the task
of implementing these computations proved to be non-trivial.

One step of the computations required us to have an algorithm to check if one exotic tree
could be transformed using inversion of edge-liana into another exotic tree (or vice versa).
Algorithm 3 does exactly that. Algorithm 3 uses Algorithm 2 described below.

The idea of Algorithm 2: We try to move the lianas of τ in a certain order to target
positions from P in all possible ways. If, at some point for each way, we find a liana that
cannot be moved then the algorithm returns False.

The idea of Algorithm 3: It was noticed that lianas change the direction of edges
when they pass over them. To ignore this fact, we make all edges bidirectional. Then, the
isomorphisms between the bidirectional trees are found. If there are none then the algorithm
returns False. The isomorphisms should preserve the roots as lianas do not affect the roots.
Then we try to check if lianas of the first tree can be moved to target positions given by
isomorphisms from second tree in all possible orders. If we find an isomorphism and an
order of lianas that make such movement possible then we return True. Otherwise, if all
possible options were checked and none were suitable then we return False. Notice that the
algorithm works only with lianas which are not loops. Looped lianas cannot be moved and
the correspondence between looped lianas of two trees is not shown in the algorithm.

32

Algorithm 2: Check if it is possible to move the lianas of exotic tree τ to other
positions in a certain order using edge-liana inversion.

Data: Exotic tree τ , an ordered list of lianas Lo, and an unorded list of new
positions P .

Result: True if possible and False if not.

1. Let T0 := {τ}.

2. (A) For each liana li in the order Lo where i is its position in the order:

2.1. Let Ti := ∅.
2.2. (B) For each exotic tree γ in Ti−1:

2.2.1. Get the orbit of liana li in γ and denote it by Oli .

2.2.2. If P ∩Oli \ {p(lj) : j < i} = ∅ then move to the next iteration of (B) (i.e.
take another exotic tree from Ti−1).

2.2.3. (C) For each position p in P ∩Oli \ {p(lj) : j < i}:
2.2.3.1. Move li to p in γ and add the result to Ti.

2.3. If Ti = ∅ then return False.

3. return True.

Algorithm 3: Check if two exotic trees are similar through edge-liana inversion

Data: Exotic trees τ1 and τ2

Result: True if τ1 ∼ τ2 or False otherwise

1. Let L1 and L2 be the sets of all lianas of τ1 and τ2, respectively.

2. Replace all lianas by bidirectional edges, make all edges of τ1 and τ2 bidirectional, and
denote the results as τ∗1 and τ∗2 .

3. List all isomorphisms between τ∗1 and τ∗2 that preserve the roots. If there are no such
isomorphisms, return False.

4. (A) For each such isomorphism φ : τ∗2 → τ∗1 :
(B) For each possible order of L1 denoted by Lo1:

4.1. Apply Algorithm 1 with τ = τ1, Lo = Lo1, and P = p(φ(L2)).

4.2. If Algorithm 1 returns True then return True.

5. return False.

33

8 Conclusion

Let us review the content of the master thesis and present some suggestions for further work.
The content of the master thesis was split into three main parts that covered: algebraic
framework for the study of B-series, exotic B-series and order conditions for the invariant
measure of ergodic SDE, and a symbolic package PyTreeHopf.

We have described the Butcher and Substitution groups formed by B-series and looked
at the Hopf and pre-Lie algebraic structures related to them. We introduced a unique group
homomorphism between the Butcher and Substitution groups and analyzed the corresponding
Hopf and pre-Lie algebraic homomorphisms Φ and Ψ. We have proved that Φ is injective on
the Calaque, Ebrahimi-Fard, Manchon Hopf algebra of non-rooted trees and found a nice
formula for Ψ. An interesting task for the future would be to find a nice description of the
image of Φ and look at the role of Φ and Ψ in the context of numerical analysis.

We have presented the exotic B-series, exotic trees, and the tools they provide for the
computation of order conditions for invariant measure of ergodic SDE. We reformulated the
operations and algorithms used in [20] to compute the order conditions for invariant measure
for orders 2 and 3, and proved that this algorithm ends. We have also analysed the order
conditions for invariant measure of Runge-Kutta methods and proved several instances of a
curious multiplicative property that allows us to express conditions for high orders in terms
of conditions for lower orders. It remains to prove that this multiplicative property is true in
general. Another prospect would be to extend the theory to include a larger class of problems.

We have developed a symbolic package and implemented new algorithms on exotic trees
in order to generate order conditions for invariant measure automatically. This allowed us
to confirm the results obtained in [20] and generate a new result – order conditions for the
invariant measure of Runge-Kutta methods for order 4. The package could serve as a powerful
aid in the study of structures on trees as it is easy to use and to extend. Future versions of the
package will strive for a greater number of available tools and a greater level of mathematical
rigorousness.

References

[1] A. Abdulle, G. Vilmart, and K. C. Zygalakis. High order numerical approximation of the
invariant measure of ergodic SDEs. SIAM Journal on Numerical Analysis, 52(4):1600–
1622, 2014. ID: unige:41847.

[2] C. Brouder. Runge–Kutta methods and renormalization. The European Physical Journal
C, 12(3):521–534, Feb 2000.

[3] K. Burrage and P. Burrage. High strong order explicit Runge-Kutta methods for stochas-
tic ordinary differential equations. Applied Numerical Mathematics, 22(1):81 – 101, 1996.
Special Issue Celebrating the Centenary of Runge-Kutta Methods.

[4] K. Burrage and P. M. Burrage. Order conditions of stochastic Runge-Kutta methods by
B-series. SIAM Journal on Numerical Analysis, 38(5):1626–1646, 2001.

[5] J. Butcher. An algebraic theory of integration methods. Math. Comp., 26:79–79, 01 1972.

[6] J. Butcher and G. Wanner. Runge-Kutta methods: some historical notes. Applied Nu-
merical Mathematics, 22(1):113 – 151, 1996. Special Issue Celebrating the Centenary of
Runge-Kutta Methods.

34

[7] D. Calaque, K. Ebrahimi-Fard, and D. Manchon. Two interacting Hopf algebras of trees:
A Hopf-algebraic approach to composition and substitution of B-series. Advances in
Applied Mathematics, 47(2):282 – 308, 2011.

[8] A. Cayley. Xxviii. on the theory of the analytical forms called trees. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 13(85):172–176,
1857.

[9] F. Chapoton and M. Livernet. Pre-Lie algebras and the rooted trees operad. International
Mathematics Research Notices, 2001(8):395–408, 01 2001.

[10] P. Chartier, E. Hairer, and G. Vilmart. A substitution law for B-series vector fields.
Research Report RR-5498, INRIA, 2005.

[11] P. Chartier, E. Hairer, and G. Vilmart. Algebraic structures of B-series. Foundations of
Computational Mathematics, 10:407–427, 08 2010.

[12] A. Connes and D. Kreimer. Hopf algebras, renormalization and noncommutative geom-
etry. Commun. Math. Phys., 199:203–242, 1998.

[13] K. Debrabant and A. Kværnø. B–series analysis of stochastic Runge–Kutta methods
that use an iterative scheme to compute their internal stage values. SIAM Journal on
Numerical Analysis, 47:181–203, 01 2008.

[14] K. Debrabant and A. Kværnø. Composition of stochastic B-series with applications to
implicit Taylor methods. Applied Numerical Mathematics, 61(4):501 – 511, 2011.

[15] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations; 2nd ed. Springer, Dordrecht,
2006.

[16] E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I.
Nonstiff Problems. Springer, Berlin, 2nd rev. ed. 1993. corr. 3rd printing edition, 1993.
ID: unige:12346.

[17] E. Hairer and G. Wanner. On the Butcher group and general multi-value methods.
Computing, 13(1):1–15, 1974. ID: unige:12533.

[18] L. Isserlis. On a formula for the product-moment coefficient of any order of a normal
frequency distribution in any number of variables, Nov. 1918.

[19] Y. Komori, T. Mitsui, and H. Sugiura. Rooted tree analysis of the order conditions of
ROW-type scheme for stochastic differential equations. BIT, 37:43–66, 03 1997.

[20] A. Laurent and G. Vilmart. Exotic aromatic B-series for the study of long time integrators
for a class of ergodic SDEs. Mathematics of Computation, 89(321):169–202, Jun 2019.

[21] J. Mattingly, A. Stuart, and D. Higham. Ergodicity for SDEs and approximations: locally
Lipschitz vector fields and degenerate noise. Stochastic Processes and their Applications,
101(2):185 – 232, 2002.

[22] A. Rößler. Stochastic Taylor expansions for the expectation of functionals of diffusion
processes. Stochastic Analysis and Applications, 22(6):1553–1576, Jan 2004.

35

[23] A. Rößler. Rooted tree analysis for order conditions of stochastic Runge-Kutta methods
for the weak approximation of stochastic differential equations. Stochastic Analysis and
Applications, 24(1):97–134, Mar 2006.

[24] A. Rößler. Runge–Kutta methods for Itô stochastic differential equations with scalar
noise. BIT Numerical Mathematics, 46:97–110, 03 2006.

[25] A. Rößler. Strong and weak approximation methods for stochastic differential equations
— Some recent developments. Recent Developments in Applied Probability and Statistics
- Dedicated to the Memory of Jurgen Lehn, 01 2010.

[26] J. M. Sanz-Serna and A. Murua. Formal series and numerical integrators: some history
and some new techniques, 2015.

[27] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving
stochastic differential equations. Stochastic Anal. Appl., 8, 01 1990.

36

Appendices

A Order conditions for order 3 for exotic B-series

A3 a(
× ×

)
0 0

+ a(

×
×
)

0
0
+ a(

× ×

)

0 0

+ a(

× ×

)

0 0

+ 3a(
× × × ×

)
0 0 1 1

+

a(

× ×
× ×

)

0 0
1 1

+ 2a(

× ×
× ×

)

0 1
0 1

+ 3a(

× × ×
×
)

0 0 1
1

+ 3a(

× × × ×

)

0 0 1 1

+

3a(

×
× × ×

)

1
0 0 1

+ a(

×
×
)

0
0

+ a() + a() + a() + a(
× ×

)
0 0

+

15a(
× × × × × ×

)
0 0 1 1 2 2

+ a(

× ×

)

0 0

+ a() + a(

×

×
)

0

0
+ a(

×
×

)

0
0

+

a(

× ×

)

0 0

Algo. 1
applied to

A3

(
2a(

× ×
) − a(

×
×
) − 9a(

× × × ×
) + 3a(

×
× × ×

) + a() − a(
× ×

) +

45a(
× × × × × ×

)

)
+

(
3a(

× × × ×
)+2a(

× ×
× ×

)−3a(

×
× × ×

)−a(

×
×
)+a()+

a(
× ×

)−15a(
× × × × × ×

)

)
+

(
−2a(

× ×
)+a(

×
×
)−a(

× ×

)+9a(
× × × ×

)−

3a(

×
× × ×

) + a() + a(
× ×

)− 45a(
× × × × × ×

)− a(

×

×
)

)
+

(
− a(

× ×
) +

3a(
× × × ×

)− 15a(
× × × × × ×

) + a()

)
+

0 0 1 1(
3a(

× × × ×
) + 3a(

× ×
× ×

)−

3a(

× × ×
×
) + 3a(

× × × ×

) − 3a(

×
× × ×

) − 15a(
× × × × × ×

)

)
+

0 0 (
2a(

× ×
) −

a(

×
×
) + a(

× ×

)− 9a(
× × × ×

)− a(

× ×
× ×

) + 3a(

×
× × ×

) + 45a(
× × × × × ×

)

)
+

0 0(
− 2a(

× ×
) + a(

×
×
) − a(

× ×

) + 9a(
× × × ×

) − 3a(

×
× × ×

) + a(
× ×

) −

45a(
× × × × × ×

) − a(

×

×
) + a(

× ×

)

)
+

0
0(
− 2a(

× ×
) + a(

×
×
) − a(

× ×

) +

12a(
× × × ×

)+2a(

× ×
× ×

)−6a(

×
× × ×

)−a(

×
×
)+2a(

× ×
)−60a(

× × × × × ×
)−

a(

×

×
) + a(

×
×

)

)
+

0 0(
6a(

× × × ×
) + 5a(

× ×
× ×

) − 3a(

× × ×
×
) − 6a(

×
× × ×

) −

a(

×
×
) + a(

× ×
)− 30a(

× × × × × ×
) + a(

× ×

)

)

37

B Order conditions for order 4 for Runge-Kutta methods in
Gaussian case

A4 a0x1a1x2b0c2 + 2a0x1a1x2b0d2

0

0
+ a0x1b0c1

0 0
+ 2a0x1b0d1

1

0 0 1
+

a0x2b0b1c2 +2a0x2b0b1d1d2

0
0

+2a0x2b0b1d2

0

0
+ b0b1b2b3

24 + b0b1b2c0
2 +

b0b1b2d0d1

0 0

+ b0b1b2d0

0
0

+ b0b1b2
0 0

6 + b0b1c0c1
2 + 2b0b1c0d1

0
0

+

b0b1c0
0 0

+ 2b0b1d0d1

0 1
0 1

+ b0b1d0d1

0 0
1 1

+ 2b0b1d0

0
0 1 1

+

b0b1
0 0 1 1

4 + b0c0
0 0 1 1

2 + b0d0

2
0 0 1 1 2

+ b0
0 0 1 1 2 2

6 +
0 0 1 1 2 2 3 3

24

Algo. 1
applied to

A4

(
b0b1b2b3

24 − b0b1b2
6 + b0b1

4 −
b0
6 + 1

24

)
+

(
b0b1b2c0

2 − b0b1b2d0 + b0b1b2
2 −

b0b1c0+2b0b1d0− 5b0b1
4 + b0c0

2 −b0d0+b0− 1
4

)
+

(
b0b1c0c1

2 −2b0b1c0d1+b0b1c0+

2b0b1d0d1−2b0b1d0 + b0b1
2 −

b0c0
2 +b0d0− b0

2 + 1
8

)
+

(
−a0x1b0c1 +2a0x1b0d1 +

a0x2b0b1c2−2a0x2b0b1d2−b0b1b2d0d1 +2b0b1b2d0−b0b1b2 +b0b1c0 +b0b1d0d1−

4b0b1d0 + 5b0b1
2 − b0c0 + 2b0d0 − 2b0 + 1

2

)
+

(
a0x1a1x2b0c2 − 2a0x1a1x2b0d2 +

a0x1b0c1− 2a0x1b0d1− 2a0x2b0b1d1d2 + 2a0x2b0b1d2 + b0b1b2d0d1− 2b0b1b2d0 +

b0b1b2+2b0b1c0d1−2b0b1c0−3b0b1d0d1+6b0b1d0−3b0b1+ 3b0c0
2 −3b0d0+ 5b0

2 −
5
8

)

38

C Order conditions for orders 3 and 4 for Runge-Kutta meth-
ods

γ3 a0x1b0c1 +2a0x1b0d0d1

×
×

+a0x1b0d
2
1

× ×

+2a0x1b0d1

×

×
+ b0b1b2

6 +b0b1c0 +

b0b1d
2
0

× ×

+ b0b1d0d1

× ×

+ 2b0b1d0

×
×

+ b0b1
× ×

2 +
b0c20

2 + b0c0d
2
0

× ×

+

2b0c0d0

×
×

+ b0c0
× ×

+
b0d40

× × × ×

6 +
2b0d30

× × ×
×

3 + b0d
2
0

× ×
× ×

+ 2b0d0

×
× × ×

3 +

b0
× × × ×

6 +
× × × × × ×

90

A3 a0x1b0c1 +2a0x1b0d0d1

0
0

+a0x1b0d
2
1

0 0

+2a0x1b0d1

0

0
+ b0b1b2

6 +b0b1c0 +

b0b1d
2
0

0 0

+ b0b1d0d1

0 0

+ 2b0b1d0

0
0

+ b0b1
0 0

2 +
b0c20

2 + b0c0d
2
0

0 0

+

2b0c0d0

0
0

+ b0c0
0 0

+
b0d40

0 0 1 1

2 + 2b0d
3
0

0 1 1
0

+ 2b0d
2
0

0 1
0 1

+ b0d
2
0

0 0
1 1

+

2b0d0

0
0 1 1

+ b0
0 0 1 1

2 +
0 0 1 1 2 2

6

Algo. 1
applied to

A3

(
b0b1b2

6 − b0b1
2 + b0

2 −
1
6

)
+

0 0 1 1(
b0d40

2 −2b0d
3
0 + 3b0d

2
0−2b0d0 + b0

2 −
1
6

)
+(

b0c20
2 −2b0c0d0+b0c0+2b0d

2
0−2b0d0+ b0

2 −
1
6

)
+

(
b0b1c0−2b0b1d0+b0b1−

b0c0 +2b0d0− 3b0
2 + 1

2

)
+

0 0 (
b0b1d

2
0−2b0b1d0 +b0b1−b0d2

0 +2b0d0− 3b0
2 + 1

2

)
+

0 0(
b0c0d

2
0− 2b0c0d0 + b0c0− 2b0d

3
0 + 5b0d

2
0− 4b0d0 + b0− 1

3

)
+

(
a0x1b0c1−

2a0x1b0d1−b0b1d0d1 +2b0b1d0−b0b1 +b0c0−2b0d0 + 3b0
2 −

1
2

)
+

0 0(
a0x1b0d

2
1−

2a0x1b0d1−b0b1d0d1+2b0b1d0−b0b1+b0c0−2b0d0+ 3b0
2 −

1
2

)
+

0
0(

2a0x1b0d0d1−

2a0x1b0d1−b0b1d0d1+2b0b1d0−b0b1−2b0c0d0+2b0c0+2b0d
2
0−4b0d0+2b0− 2

3

)

39

Algo. 1
applied to

A4

(
a0x1a1x2b0c2 − 2a0x1a1x2b0d2

)
+

(
a0x1a1x2b0d

2
2 − 2a0x1a1x2b0d2

)0 0

+

(
a0x1b0c1d

2
0 − 2a0x1b0c1d0 + a0x1b0c1 − 2a0x1b0d

2
0d1

) 0 0

+

(
a0x1b0d

2
0d

2
1 −

2a0x1b0d
2
0d1 − 2a0x1b0d0d

2
1 + a0x1b0d

2
1

)0 0
1 1

+

(
b0b1b2b3

24 − b0b1b2
6 + b0b1

4 −
b0
6 +

1
24

)
+

(
b0d60

6 − b0d
5
0 +

5b0d40
2 − 10b0d30

3 +
5b0d20

2 − b0d0 + b0
6 −

1
24

)0 0 1 1 2 2

+(
b0b1b2c0

2 −b0b1b2d0+ b0b1b2
2 −b0b1c0+2b0b1d0− 5b0b1

4 + b0c0
2 −b0d0+b0− 1

4

)
+(

b0b1b2d20
2 −b0b1b2d0+ b0b1b2

2 −b0b1d2
0+2b0b1d0− 5b0b1

4 +
b0d20

2 −b0d0+b0− 1
4

)0 0

+(
b0b1c0c1

2 − 2b0b1c0d1 + b0b1c0 + 2b0b1d0d1− 2b0b1d0 + b0b1
2 −

b0c0
2 + b0d0− b0

2 +

1
8

)
+

(
b0b1d20d

2
1

2 −2b0b1d
2
0d1+b0b1d

2
0+2b0b1d0d1−2b0b1d0+ b0b1

2 −
b0d20

2 +b0d0−

b0
2 + 1

8

)0 0 1 1

+

(
b0c30

6 −b0c
2
0d0 +

b0c20
2 +2b0c0d

2
0−2b0c0d0 + b0c0

2 −
4b0d30

3 +2b0d
2
0−

b0d0+ b0
6 −

1
24

)
+

(
b0b1d40

2 −2b0b1d
3
0+3b0b1d

2
0−2b0b1d0+ b0b1

2 −
b0d40

2 +2b0d
3
0−

3b0d
2
0 + 2b0d0− 2b0

3 + 1
6

)0 0 1 1

+

(
b0c0d40

2 −2b0c0d
3
0 + 3b0c0d

2
0−2b0c0d0 + b0c0

2 −

b0d
5
0+

9b0d40
2 −8b0d

3
0+7b0d

2
0−3b0d0+ b0

2 −
1
8

) 0 0 1 1

+

(
a0x1b0c0c1−2a0x1b0c0d1−

2a0x1b0c1d0+a0x1b0c1+4a0x1b0d0d1+b0c
2
0−4b0c0d0+b0c0+4b0d

2
0−2b0d0+ b0

3 −

1
12

)
+

(
a0x1b0c0d

2
1 − 2a0x1b0c0d1 − 2a0x1b0d0d

2
1 + 4a0x1b0d0d1 + a0x1b0d

2
1 +

b0c
2
0−4b0c0d0+b0c0+4b0d

2
0−2b0d0+ b0

3 −
1
12

)0 0

+

(
b0b1c20

2 −2b0b1c0d0+b0b1c0+

2b0b1d
2
0−2b0b1d0+ b0b1

2 −
b0c20

2 +2b0c0d0−b0c0−2b0d
2
0+2b0d0− 2b0

3 + 1
6

)
+· · ·

40

Algo. 1
applied to
A4 (cont.)

· · ·+

(
b0c20d

2
0

2 −b0c2
0d0+

b0c20
2 −2b0c0d

3
0+5b0c0d

2
0−4b0c0d0+b0c0+2b0d

4
0−6b0d

3
0+

13b0d20
2 − 3b0d0 + b0

2 −
1
8

) 0 0

+

(
2a0x1b0d

3
0d1 − 6a0x1b0d

2
0d1 + 2a0x1b0d0d1 −

2b0c0d
3
0+5b0c0d

2
0−4b0c0d0+b0c0+2b0d

4
0−6b0d

3
0+

13b0d20
2 −3b0d0+ b0

2 −
1
8

)1
0 0 1

+(
− 2b0b1c0d1 + b0b1c0 + b0b1c1d

2
0− 2b0b1d

2
0d1 + b0b1d

2
0 + 4b0b1d0d1− 4b0b1d0 +

b0b1− b0c0
2 −

b0d20
2 + 2b0d0− b0 + 1

4

)0 0

+

(
a0x1a0x2b0d1d2 + 2a0x1a1x2b0d0d2−

2a0x1a1x2b0d2 − 2a0x1b0c0d1 − 2a0x1b0c1d0 + a0x1b0c1 + 4a0x1b0d0d1 + b0c
2
0 −

4b0c0d0 + b0c0 + 4b0d
2
0− 2b0d0 + b0

3 −
1
12

)0 0

+

(
2a0x1b0c0d0d1− 2a0x1b0c0d1−

4a0x1b0d
2
0d1 + 6a0x1b0d0d1 − 2b0c

2
0d0 + 2b0c

2
0 + 6b0c0d

2
0 − 10b0c0d0 + 5b0c0

2 −

4b0d
3
0 +10b0d

2
0−5b0d0 + 5b0

6 −
5
24

)0
0

+

(
−a0x1b0c1 +2a0x1b0d1 +a0x2b0b1c2−

2a0x2b0b1d2 − b0b1b2d0d1 + 2b0b1b2d0 − b0b1b2 + b0b1c0 + b0b1d0d1 − 4b0b1d0 +

5b0b1
2 − b0c0 + 2b0d0 − 2b0 + 1

2

)
+

(
− a0x1b0d

2
1 + 2a0x1b0d1 + a0x2b0b1d

2
2 −

2a0x2b0b1d2 − b0b1b2d0d1 + 2b0b1b2d0 − b0b1b2 + b0b1c0 + b0b1d0d1 − 4b0b1d0 +

5b0b1
2 −b0c0+2b0d0−2b0+ 1

2

)0 0

+

0 0(
b0b1c0d

2
0−2b0b1c0d0+b0b1c0−2b0b1d

3
0+

5b0b1d
2
0−4b0b1d0 +b0b1−b0c0d

2
0 +2b0c0d0−b0c0 +2b0d

3
0−5b0d

2
0 +4b0d0− 4b0

3 +

1
3

)
+

(
− a0x1b0c1 + 2a0x1b0d1 + 2a0x2b0b1d1d2 − 2a0x2b0b1d2 − b0b1b2d0d1 +

2b0b1b2d0− b0b1b2−2b0b1c0d1 + 2b0b1c0 + 3b0b1d0d1−6b0b1d0 + 3b0b1− 3b0c0
2 +

3b0d0− 5b0
2 + 5

8

)0
0

+

(
a0x1b0c21

2 −2a0x1b0c1d1+a0x1b0c1+2a0x1b0d
2
1−4a0x1b0d1−

2b0b1c0d0d1+2b0b1c0d0+2b0b1c0d1−2b0b1c0+4b0b1d
2
0d1−4b0b1d

2
0−6b0b1d0d1+

8b0b1d0 − 2b0b1 + 2b0c0 − 4b0d0 + 2b0 − 1
2

)
+ · · ·

41

Algo. 1
applied to
A4 (cont.)

· · ·+

0
0 (
−2a0x1b0d0d1+2a0x1b0d1+2a0x2b0b1d0d2−2a0x2b0b1d2−b0b1b2d0d1+

2b0b1b2d0 − b0b1b2 − 2b0b1c0d0 + 2b0b1c0 + 2b0b1d
2
0 + b0b1d0d1 − 6b0b1d0 +

3b0b1 + 2b0c0d0 − 2b0c0 − 2b0d
2
0 + 4b0d0 − 8b0

3 + 2
3

)
+

(
2a0x1a1x2b0d1d2 −

2a0x1a1x2b0d2−2a0x1b0c1d1 +a0x1b0c1 +2a0x1b0d
2
1−4a0x1b0d1−2b0b1c0d0d1 +

2b0b1c0d0 + 2b0b1c0d1 − 2b0b1c0 + 4b0b1d
2
0d1 − 4b0b1d

2
0 − 6b0b1d0d1 + 8b0b1d0 −

2b0b1 + 2b0c0 − 4b0d0 + 2b0 − 1
2

)0
0

+

(
4a0x1b0d0d1 +

a0x1b0d41
2 − 2a0x1b0d

3
1 +

3a0x1b0d
2
1−4a0x1b0d1−2b0b1d

3
0d1 +2b0b1d

3
0 +6b0b1d

2
0d1−6b0b1d

2
0−6b0b1d0d1 +

8b0b1d0 − 2b0b1 + b0c0d
2
0 − 2b0c0d0 + 3b0c0

2 − 2b0d
3
0 +

11b0d20
2 − 6b0d0 +

7b0
3 −

7
12

)0 0 1 1

+

(
2a0x1b0d

2
0d

2
1 − 4a0x1b0d

2
0d1 − 4a0x1b0d0d

2
1 + 8a0x1b0d0d1 +

2a0x1b0d
2
1−4a0x1b0d1− b0b1d2

0d
2
1 + 4b0b1d

2
0d1−2b0b1d

2
0−4b0b1d0d1 + 4b0b1d0−

b0b1 + 2b0c0d
2
0 − 4b0c0d0 + 2b0c0 −

4b0d30
3 + 4b0d

2
0 − 4b0d0 + 4b0

3 −
1
3

)0 1
0 1

+(
2a0x1b0d0d

3
1−6a0x1b0d0d

2
1+10a0x1b0d0d1−2a0x1b0d

3
1+6a0x1b0d

2
1−8a0x1b0d1−

2b0b1d
3
0d1 +2b0b1d

3
0−b0b1d2

0d
2
1 +10b0b1d

2
0d1−8b0b1d

2
0−10b0b1d0d1 +12b0b1d0−

3b0b1 + b0c0d
2
0 − 4b0c0d0 + 3b0c0 − 2b0d

3
0 +

15b0d20
2 − 9b0d0 + 7b0

2 −
7
8

)0 0 1
1

+(
2a0x1b0c1d0d1 − 2a0x1b0c1d0 − 2a0x1b0c1d1 + 2a0x1b0c1 − 4a0x1b0d0d

2
1 +

6a0x1b0d0d1 + 4a0x1b0d
2
1 − 8a0x1b0d1 − 2b0b1c0d0d1 + 2b0b1c0d0 + 2b0b1c0d1 −

2b0b1c0 − b0b1d
2
0d

2
1 + 8b0b1d

2
0d1 − 6b0b1d

2
0 − 10b0b1d0d1 + 12b0b1d0 − 3b0b1 −

2b0c0d0 + 7b0c0
2 + 2b0d

2
0− 7b0d0 + 19b0

6 −
19
24

) 0
0

+

(
a0x1b0c1d

2
1− 2a0x1b0c1d1 +

a0x1b0c1 + 4a0x1b0d0d1 − 2a0x1b0d
3
1 + 5a0x1b0d

2
1 − 8a0x1b0d1 − 2b0b1c0d0d1 +

2b0b1c0d0 +2b0b1c0d1−2b0b1c0−2b0b1d
3
0d1 +2b0b1d

3
0 +10b0b1d

2
0d1−10b0b1d

2
0−

12b0b1d0d1 + 16b0b1d0 − 4b0b1 + b0c0d
2
0 − 2b0c0d0 + 7b0c0

2 − 2b0d
3
0 +

11b0d20
2 −

10b0d0 + 13b0
3 −

13
12

) 0 0

42

D Example of a script using the symbolic package

1 from pyTreeHopf . a lgor i thms . g r a f t import g r a f t
2 from pyTreeHopf . a lgor i thms . compos i t ion import compos i t ion
3 from pyTreeHopf . v a r i a b l e s import g e t g r a p h v a r i a b l e
4 from pyTreeHopf . input import f rom bracket s
5 from pyTreeHopf . output import d i s p l a y
6
7 from sympy . phys i c s . quantum import TensorProduct
8
9 t r e e1 = from bracket s ('b [b] ')

10 t r e e2 = from bracket s ('b [b , b [b , b]] ')
11
12 t 1 = g e t g r a p h v a r i a b l e (t r e e1)
13 t 2 = g e t g r a p h v a r i a b l e (t r e e2)
14
15 g r a f t r e s u l t = g r a f t (TensorProduct (t 1 , t 2))
16
17 c o m p o s i t i o n c o p r o d u c t r e s u l t = compos it ion (t 1 + t 2)
18
19 d i s p l ay (t 1)
20 d i s p l ay (' $ \ curvear rowr ight $ ')
21 d i s p l ay (t 2)
22 d i s p l ay (' = ')
23 d i s p l ay (g r a f t r e s u l t)
24
25 d i s p l ay (' \n\n ')
26
27 d i s p l ay (' $\Delta {CK} ($ ')
28 d i s p l ay (t 1 + t 2)
29 d i s p l ay (' $) = $ ')
30 d i s p l ay (c o m p o s i t i o n c o p r o d u c t r e s u l t)

The output of this code is

y = + + + 2

∆CK(+) = ⊗ ∅+ ⊗ ∅+ ⊗ + 2 ⊗ + ⊗ + ∅ ⊗ + ∅ ⊗ + ⊗ +

2 ⊗ + ⊗ + ⊗ + ⊗

43

