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Abstract

We propose a new methodology for the creation of high weak order stochastic Lie-Runge-
Kutta methods for time homogeneous SDE. More precisely, we establish sufficient conditions
for a class of second order elliptic operators to generate a Feller semi-group on a general
manifold of bounded geometry.

We give an estimate of a Feller semi-group in terms of its infinitesimal generator, and
we use that estimate to derive the order conditions for a weak second order Stochastic Lie
Runge-Kutta method on a matrix Lie group.

Keywords: Lie group methods, Magnus expansion, Runge-Kutta methods, matrix-
valued SDEs, Feller semi-groups, diffusion processes

I Introduction

We are interested in the study of numerical methods for on matrix Lie groups. In particular, we
are looking for numerical schemes of weak order 2 i.e. if Xt is the solution of an SDE on a Lie
group G,XN is the numerical method, x ∈ G and δ > 0 we want XN to stay on G and that for
any h ∈ (0, δ)

E[ϕ(Xh)− ϕ(XN )|X0 = x] = O(h2)

for any ϕ : G −→ R belonging to a suitable test functions space.
Sampling SDEs on a manifold has various application in statistics (see e.g. [22]), and molecular

dynamics. In particular, sampling from the constrained overdamped Langevin equation

dXt = −∇V (X(t))dt+ σdWt (I.1)

allows to compute the so-called free energy, which is a key quantity in thermodynamic (see e.g
[53],[17],[47]). Moreover SDEs on manifolds appear in finance in the context of interest rate mod-
elling (see [5] and reference therein).

We will consider the extension to SDEs of two classes of methods used for ODE on a Lie group:
The Magnus expansion and the Runge-Kutta methods.

The Magnus expansion provides an exponential expansion for the solution of a linear ODE on
a Lie group. Given a matrix Lie group G we can express the solution Y (t) of an ODE on G

Y ′(t) = A(t)Y (t)

as Y (t) = expm(Ω(t)) for some Ω(t) in the Lie algebra of G. By using the formula for the derivative
of the exponential map it is possible to obtain an ODE for Ω(t) [48]. Solving such ODE by iteration
we can obtain a series expansion for Ω(t) in terms of iterated commutators of A(t). This integrals
can be approximated with some quadrature, in particular, a Gauss Legendre quadrature with µ
quadrature points gives us convergence up to order 2µ (see [35]).

The Magnus expansion has been generalized for Stratonovich SDE [74],[13] and more recently
to Itô SDE [38],[54]. As pointed out in [38] if the system of SDE is autonomous and there is a
single (matrix valued) Brownian motion the solution of the Itô SDE can be expressed in terms
of Lebesgue integrals only. Moreover, Itô-stochastic Magnus expansion can be used to efficiently
solve stochastic partial differential equations (SPDE) with two space variables numerically [39].

Following [38] we will express the Itô-stochastic Magnus expansion in GL(n,R) up to order 2
and express the first momentum of the solution of the ODE. We will verify how, in the case in which
the coefficients of the SDE are constant matrices such expansion coincides with the Talay-Tubaro
expansion (see [72])

E[ϕ(Xh)|X0 = In] =

N∑
i=1

hi

i!
Li +O(hN+1) (I.2)

where L is the infinitesimal generator of the process.
The Runge-Kutta methods are a class of numerical methods used to approximate the solution

of non-linear ODE. Given a real ODE

y′(t) = f(t, y(t))

an implicit Runge-Kutta method has the form

yN+1 = yN + h

s∑
i=1

biki

i



where, if we call ci =
∑
j aij

ki = f

tn + cih, h

s∑
j

aijkj


The value of the constants are obtained by confronting the numerical scheme with the Taylor

expansion of the exact solution. The value of the coefficients are usually stored in a Butcher
tableau

c1 a11 a12 · · · a1s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

The calculation of the order condition becomes cumbersome for high order, that’s why John
Butcher introduced the algebraic tool of the Butcher-series [15]. The Taylor series of the solution
of an ODE can be written as

y(h) = y0 + hf +
1

2
h2f

′
(f) +

h3

6
f

′′
(f, f) + · · ·

where the derivatives f (k)(x) of the vector field is regarded as a multilinear map V k −→ V .The
B-series are formal series of the form

B(c, f) = c0 + c1hf + c2h
2f ′(f) + c3h

3f
′′
(f, f) + · · ·

B-series also arise naturally in other fields of mathematics, Brouder [11] pointed out an impor-
tant link to the work by Connes and Kreimer [18], which was originally written in the context of
renormalization.

The formulas for the composition of RK methods can be described in terms of the operation of
the Butcher group, the group of the Butcher series [29]. Moreover, the terms f (k)(f, · · · , f) can be
described in terms of rooted trees. This arises an algebraic structure in the Butcher group, indeed
the set of linear combination of rooted trees endowed with the operation of grafting is a pre-Lie
algebra [51]. The algebra of rooted forests i.e. multisets of rooted trees is called the Connes-
Kreimer algebra [18] and has a structure of Hopf algebra (see e.g. [7] or [63] for the definition and
basic properties of Hopf algebras).

It is possible to extend the B-series formalism to include also the divergence operation. The
resulting set of trees are called aromatic B-series. While B-series are integrators equivariant under
all affine maps [50], the aromatic B-series are the maps equivariant under all the invertible invariant
map [56], [7](for the definition of equivariant maps see definition4.29).

The Runge-Kutta methods can be generalized to solve ODEs on Lie groups. This class of
methods are called Munthe-Kaas (MK) methods, this methods similarly to the Magnus expansion
allow to express an approximation of the solution in terms of iterated commutators (see [55],[34]
and references therein).

The number of nested commutators needed increase drastically for methods of high order. Using
the theory of free Lie algebras and a symmetry argument it is possible to reduce this number (see
theorem 2.29 and section 2.8)

As the classical RK methods can be described by linear combinations of rooted trees the RKMK
method can be described in terms of linear combinations of ordered trees: the Lie-Butcher series.
The space of such series admits the algebraic structure of post-Lie algebra [57].

In the last decades various generalizations of the Runge-Kutta methods for approximating the
solutions of SDEs have been presented. In particular we mention Burrage and Burrage [12, 14] and
Komori, Mitsui and Sugiura [42] who first introduced stochastic trees and B-series for studying
the order conditions of strong convergence of SDEs.

Other contributions were given by Rößler [65, 66, 67, 68] and Debrabant and Kværnø [19, 20, 21]
who design high order weak and strong integrators for SDEs on Euclidean spaces and [2] who has
extended to SDEs a result from Sanz-Serna and Abia on canonical Runge-Kutta methods, i.e.
methods that preserves the symplettic structure of the phase space of Hamiltonian systems [70].
Moreover, [43] applied tree series to a class of stochastic differential algebraic equations (SDAEs)
for the computation of strong order conditions.

In [45] a modification of the aromatic trees formalism, called exotic aromatic trees, is introduced
for the study of the accuracy of numerical integrators for the invariant measure of a class of ergodic
SDEs with additive noise (see also section 4.4). This algebraic formulation is used to simplify the
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calculations of the order conditions for RK schemes for weak integrators. Algebraic and geometric
properties of exotic aromatic trees is actually a subject of research [9, 44, 10].

In [45] the analysis of the order conditions of the weak RK schemes is done by using the Talay-
Tubaro expansion (I.2). We will show that, under some condition on the space of the test functions,
an abstract version of such expansion holds for any Feller process (see theorem 5.29).

On a compact Riemannian manifold, under some technical conditions diffusion processes are
Feller (see e.g. [33]). On a non-compact Riemannian manifold the Feller property of the Brownian
motion or, more general diffusion processes is related to some lower bounds for the Ricci tensor
(see [62] and references therein). [49] gives a set of sufficient conditions for an elliptic operator to
be the infinitesimal generator of a Feller semi-group when the Riemannian manifold is of bounded
geometry. These manifolds include all the compact Riemannian manifolds and all the homogeneous
spaces equipped with an invariant metric. In particular, any Lie group endowed with a left (or
right) invariant metric is of bounded geometry.

Using this result we give a set of sufficient conditions for the Talay-Tubaro expansion to holds
for diffusion on general Lie groups. If the generator associated to the diffusion is a uniformly elliptic
and C∞-bounded operator (definition 6.15 and definition 6.20) is the generator of the Feller semi-
group. If moreover we impose some conditions on the set of test functions we will recover the
expansion of equation (I.2). In particular, if we choose the set of test functions to be the set of
smooth, compacty supported functions over the Lie group all the hypothesis of theorem 5.29 are
fulfilled.

In chapter 1 we will define Lie groups and Lie algebras, the Lie group exponential map (denoted
as exp) and we will give a formula for the differential of the exponential map. We will focus in
particular on matrix Lie groups.

In chapter 2 we will describe the deterministic Magnus expansion and the RKMK methods.
We will define the Free Lie algebra of a set and the universal enveloping algebra of a Lie algebra.
We will also show how to use such algebraic tools to reduce the number of iterated commutators
necessary to describe a s-stage q-th order RKMK method.

in chapter 3 we will describe the Levi-Civita connection associated to a Riemannian manifold
(M, g) and the corresponding curvature tensor and geodesics. We will define the Riemannian (or
geodesic) exponential at the point p ∈ M (denoted with Expp). in section 3.4 we will define the
frame bundle of a manifold and the horizontal lift of a vector field. The results of that section
will be extended in section 6.3 to give a characterization of an SDE on a manifold in term of
its stochastic development. In section 3.5 we will define the manifolds with bounded geometry
and show that any Lie group can be equipped with a metric such that the resulting Riemannian
manifold will be of bounded geometry (see Example 3.47).

In chapter 4 we will define the Stratonovich and Itô integral of a semi-martingale and describe
their properties. We will also define the multiple stochastic integrals and the Itô-taylor expansion
of an Itô process. The multiple integral will appear in the Magnus expansion of SDE driven by
more than a single Brownian motion (see [74] for the Stratonovich version and [38] for the Itô
version). In section 4.4 we will show the exotic aromatic tree formalism defined in [45].

In chapter 5 we will define Markov and Feller processes and their properties. In particular the
Kolmogorov backward equation (5.2). We will show that the set of function for which the abstract
version of the series (I.2) converges is dense in the space of continuous functions that vanish at
infinity, denoted as C0 and we will give sufficient conditions for the series to be an approximation
of order n.

In chapter 6 we will state the main result of [38] and use it to obtain a weak integrator for
an SDE with constant coefficients. We will define (semi)martingales and solution of SDE on
a manifold by using the Whitney embedding theorem 1.11 and another approach based on the
stochastic development of a process. We will define the diffusion processes on a manifold and
state the result of [49] for diffusion on manifold with bounded geometry. In section 6.6 we will use
the results of the previous chapters to find a second order Lie Runge-Kutta method for diffusion
processes over a matrix Lie group.
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II Introduzione

Siamo interessati allo studio dei metodi numerici per gruppi di Lie matriciali. In particolare, stiamo
cercando schemi numerici di ordine debole 2, ossia se Xt è la soluzione di un’equazione differenziale
stocastica su un gruppo di Lie G, XN è il metodo numerico, x ∈ G e δ > 0, vogliamo che XN

rimanga su G e che per ogni h ∈ (0, δ) valga

E[ϕ(Xh)− ϕ(XN )|X0 = x] = O(h2)

per ogni ϕ : G −→ R appartenente a uno spazio di funzioni di test adeguato.
Campionare equazioni differenziali stocastiche su una varietà ha varie applicazioni in statistica

(vedi ad esempio [22]) e nella dinamica molecolare. In particolare, campionare dalla overdamped
Langevin equation (I.1) permette di calcolare la cosiddetta energia libera, che è una quantità chiave
in termodinamica (vedi ad esempio [53],[17],[47]). Inoltre, le equazioni differenziali stocastiche su
varietà compaiono nella finanza nel contesto della modellazione dei tassi di interesse (vedi [5] e le
relative referenze)

Esamineremo l’estensione alle SDEs di due classi di metodi utilizzati per le ODE su un gruppo
di Lie: l’espansione di Magnus e i metodi di Runge-Kutta.

L’espansione di Magnus fornisce una rappresentazione esponenziale per la soluzione di un’ODE
lineare su un gruppo di Lie. Dato un gruppo di Lie matriciale G, possiamo esprimere la soluzione
Y (t) di un’ODE su G

Y ′(t) = A(t)Y (t)

come Y (t) = expm(Ω(t)) per un certo Ω(t) nell’algebra di Lie di G. Utilizzando la formula per
la derivata della mappa esponenziale, è possibile ottenere un’ODE per Ω(t) [48]. Risolvendo tale
ODE per iterazione, possiamo ottenere una espansione in serie per Ω(t) in termini di commutatori
iterati di A(t). Questi integrali possono essere approssimati con una quadratura, in particolare una
quadratura di Gauss-Legendre con µ punti di quadratura ci fornisce una convergenza fino all’ordine
2µ (vedi [35]).

L’espansione di Magnus è stata generalizzata per SDE di Stratonovich [74],[13] e più recente-
mente per SDE di Itô [38],[54]. Come evidenziato in [38], se il sistema di SDE è autonomo e c’è
un singolo moto Browniano (a valori matriciali), la soluzione dell’SDE di Itô può essere espressa
in termini di integrali di Lebesgue. Inoltre, l’espansione di Magnus stocastica di Itô può essere
utilizzata per trovare soluzioni numeriche di equazioni differenziali stocastiche alle derivate parziali
parziali (SPDE) con due variabili spaziali [39].

Seguendo [38], esprimeremo l’espansione di Magnus stocastica di Itô in GL(n,R) fino all’ordine
2 e calcoleremo il primo momento della soluzione dell’ODE. Verificheremo come, nel caso in cui
i coefficienti dell’SDE siano matrici costanti, tale espansione coincida con l’espansione di Talay-
Tubaro (I.2) (vedi [72])

I metodi di Runge-Kutta sono una classe di metodi numerici utilizzati per approssimare la
soluzione di ODE non lineari. Data un’ODE reale

y′(t) = f(t, y(t))

un metodo di Runge-Kutta implicito ha la forma

yN+1 = yN + h

s∑
i=1

biki

dove, se chiamiamo ci =
∑
j aij

ki = f

tn + cih, h

s∑
j

aijkj


Il valore delle costanti viene ottenuto confrontando lo schema numerico con l’espansione in serie

di Taylor della soluzione esatta. I valori dei coefficienti sono solitamente mostrati in una tabella
di Butcher:

c1 a11 a12 · · · a1s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs
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Il calcolo delle order conditions diventa complicato per ordini elevati, ecco perché John Butcher
ha introdotto lo strumento algebrico delle serie di Butcher [15]. La serie di Taylor della soluzione
di un’ODE può essere scritta come

y(h) = y0 + hf +
1

2
h2f

′
(f) +

h3

6
f

′′
(f, f) + · · ·

dove le derivate f (k)(x) del campo vettoriale sono considerate come mappe multilineari V k −→ V .Le
B-series sono serie formali della forma

B(c, f) = c0 + c1hf + c2h
2f ′(f) + c3h

3f
′′
(f, f) + · · ·

Le B-series emergono anche in modo naturale in altri campi della matematica, Brouder [11]
ha evidenziato un importante collegamento con il lavoro di Connes e Kreimer [18], che è stato
originariamente scritto nel contesto della rinormalizzazione.

Le formule per la composizione dei metodi di Runge-Kutta possono essere descritte in termini
dell’operazione del gruppo di Butcher, i.e il gruppo delle serie di Butcher [29]. Inoltre, i termini
f (k)(f, · · · , f) possono essere descritti in termini di rooted trees. Questo genera una struttura al-
gebrica nel gruppo di Butcher, infatti l’insieme delle combinazioni lineari di rooted trees dotato
dell’operazione di grafting è una pre-Lie algebra [51]. L’algebra dele rooted forests, cioè dei multi-
nsiemi di rooted trees, è chiamata algebra di Connes-Kreimer [18] ed ha una struttura di algebra
di Hopf (vedi ad esempio [7] o [63] per la definizione e le proprietà di base delle algebre di Hopf).

È possibile estendere il formalismo delle B-series per includere l’operazione di divergenza.
L’insieme risultante di alberi viene chiamato aromatic B-series. Mentre le B-series sono integratori
equivarianti rispetto a tutte le mappe affini [50], le aromatic B-series sono le mappe equivarianti
rispetto a tutte le mappe invertibili invarianti [56], [7](per la definizione di mappa equivariante
vedi definizione 4.29).

I metodi di Runge-Kutta possono essere generalizzati per risolvere ODE su gruppi di Lie.
Questa classe di metodi è chiamata metodi di Munthe-Kaas (MK), e similmente all’espansione di
Magnus, permettono di esprimere un’approssimazione della soluzione in termini di commutatori
iterati (vedi [55], [34] e relative referenze).

Il numero di commutatori nidificati necessari aumenta drasticamente per metodi di alto ordine.
Utilizzando la teoria delle Free Lie algebras e un argomento di simmetria, è possibile ridurre questo
numero (vedi teorema 2.29 e sezione 2.8).

Come i metodi classici di Runge-Kutta possono essere descritti da combinazioni lineari di rooted
trees, il metodo RKMK può essere descritto in termini di combinazioni lineari di ordered trees: le
Lie-Butcher series. Lo spazio di tali serie ammette una struttura algebrica di post-Lie algebra [57].

Negli ultimi decenni sono state presentate varie generalizzazioni dei metodi di Runge-Kutta per
approssimare le soluzioni delle SDE. In particolare, menzioniamo Burrage and Burrage [12, 14] e
Komori, Mitsui and Sugiura [42] che per primi hanno introdotto gli stochastic trees e le B-series
per lo studio delle order conditions della convergenza forte delle SDE. Altri contributi sono stati
dati da Rößler [65, 66, 67, 68] e Debrabant and Kværnø[19, 20, 21] che hanno progettato integratori
deboli e forti di alto ordine per SDEs e [2] che ha esteso alle SDEs un risultato di Sanz-Serna e Abia
sui canonical Runge-Kutta methods, ovvero metodi che preservano la struttura simplattica dello
spazio delle fasi dei sistemi Hamiltoniani [70]. Inoltre, [43] ha applicato tree series a una classe di
stochastic differential algebraic equations (SDAEs) per il calcolo delle strong order conditions.

In [45] viene introdotta una modifica del formalismo degli aromatic trees, chiamata exotic
aromatic trees, per lo studio dell’accuratezza degli integratori numerici per la misura invariante di
una classe di ergodic SDEs con rumore additivo (vedi sezione 4.4). Questa formulazione algebrica
viene utilizzata per semplificare i calcoli delle order conditions di integratori deboli Runge-Kutta.
Le proprietà algebriche e geometriche degli exotic aromatic trees sono attualmente oggetto di
ricerca [9, 44, 10].

In [45] l’analisi delle order conditions degli schemi RK deboli viene effettuata utilizzando
l’espansione di Talay-Tubaro (I.2). Dimostreremo che, sotto alcune condizioni sullo spazio delle
funzioni di test, una versione astratta di tale espansione vale per qualsiasi processo Feller (vedi
teorema 5.29).

In una varietà riemanniana compatta, sotto alcune condizioni tecniche, i processi di diffusione
sono Feller (vedi ad esempio [33]). In una varietà riemanniana non compatta, la proprietà di Feller
del moto Browniano o, più in generale, dei processi di diffusione è correlata a determinati limiti
inferiori per il tensore di Ricci (vedi [62] e riferimenti al suo interno). [49] fornisce un insieme di
condizioni sufficienti affinché un operatore ellittico sia il generatore infinitesimale di un semigruppo
di Feller quando la varietà riemanniana ha geometria limitata. Queste varietà includono tutte
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le varietà riemanniane compatte e tutti gli spazi omogenei dotati di una metrica invariante. In
particolare, ogni gruppo di Lie dotato di una metrica invariante a sinistra (o a destra) ha geometria
limitata.

Utilizzando questo risultato, forniamo un insieme di condizioni sufficienti affinché l’espansione
di Talay-Tubaro valga per la diffusione su gruppi di Lie generali. Se il generatore associato alla
diffusione è un operatore uniformemente ellittico e C∞-bounded (definizione 6.15 e definizione 6.20)
è il generatore del semigruppo di Feller. Se inoltre imponiamo alcune condizioni sull’insieme delle
funzioni di test, otterremo l’espansione dell’equazione (I.2). In particolare, se scegliamo l’insieme
delle funzioni di test come l’insieme delle funzioni lisce a supporto compatto sul gruppo di Lie,
tutte le ipotesi del teorema 5.29 sono soddisfatte.

Nel capitolo 1 definiremo i gruppi di Lie e le algebre di Lie, la mappa esponenziale del gruppo
di Lie (denotata come exp) e forniremo una formula per la differenziale della mappa esponenziale.
Ci concentreremo in particolare sui gruppi di Lie matriciali.

Nel capitolo 2 descriveremo l’espansione di Magnus deterministica e i metodi RKMK. Definiremo
la Free Lie algebra di un insieme e la universal enveloping algebra di una algebra di Lie. Mostr-
eremo anche come utilizzare tali strumenti algebrici per ridurre il numero di commutatori iterati
necessari per descrivere un metodo RKMK di ordine q con s stadi.

Nel capitolo 3 descriveremo la connessione di Levi-Civita associata a una varietà riemanniana
(M, g) e il tensore di curvatura corrispondente e le geodetiche. Definiremo l’esponenziale rieman-
niano nel punto p ∈ M (indicato con Expp). Nella sezione 3.4 definiremo il frame bundle di una
varietà e la horizontal development di un campo vettoriale. I risultati di questa sezione verranno
estesi nella sezione 6.3 per fornire una caratterizzazione di una SDE su una varietà in termini del
suo stochastic development. Nella sezione 3.5 definiremo le varietà con geometria limitata e mostr-
eremo che ogni gruppo di Lie può essere dotato di una metrica tale che la varietà riemanniana
risultante sarà di geometria limitata (vedi Esempio 3.47).

Nel capitolo 4 definiremo l’integrale di Stratonovich e Itô di una semimartingala e ne descriver-
emo le proprietà. Definiremo anche gli integrali stocastici multipli e l’espansione di Itô-Taylor di
un processo Itô. L’integrale multiplo comparirà nell’espansione di Magnus delle SDE guidate da
più di un solo moto Browniano (vedi [74] per la versione di Stratonovich e [38] per la versione di
Itô). Nella sezione 4.4 mostreremo il formalismo degli exotic aromatic trees definito in [45].

Nel capitolo 5 definiremo i processi di Markov e Feller e le loro proprietà. In particolare,
l’equazione di Kolmogorov backward (5.2). Mostreremo che l’insieme delle funzioni per le quali
la versione astratta della serie (I.2) converge è denso nello spazio delle funzioni continue che
si annullano all’infinito, indicato come C0, e daremo condizioni sufficienti affinché la serie sia
un’approssimazione di ordine n.

Nel capitolo 6 enunceremo il risultato principale di [38] e lo utilizzeremo per ottenere un integra-
tore debole per una SDE con coefficienti costanti. Definiremo (semi)martingale e soluzioni di SDEs
su una varietà utilizzando il teorema di immersione di Whitney 1.11 e un altro approccio basato
sullo stochastic development di un processo. Definiremo i processi di diffusione su una varietà e
enunceremo il risultato di [49] per i processi di diffusione su varietà con geometria limitata. Nella
sezione 6.6 utilizzeremo i risultati dei capitoli precedenti per trovare un metodo di Runge-Kutta
di Lie di secondo ordine per i processi di diffusione su un gruppo di Lie matriciale.
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1 Theory of Lie groups and Lie algebras

1.1 Differentiable manifolds

We start with a rapid survey on the basic results on differentiable manifolds.

Definition 1.1. A topological space M is said a n-manifold if it is Haussdorff, with second count-
able components and locally euclidean, i.e. given any point p ∈M ∃(U, ϕ) where U is a neighborhood
of p and ϕ : U → Rn is an homeomorphism onto its image.

(U ,ϕ) is called a chart ϕ(p) := (x1(p), ..., xn(p)) is called system of coordinates at U . If the
system of coordinates has n components the manifold is said to have dimension n

A topological space X is said paracompact if any open cover has a locally finite refinement i.e.
every point of X has a neighbourhood which intersect only finite many sets of the cover. We have
the following theorem.

Proposition 1.2 ([46] Theorem 1.15). Any manifold is paracompact

We can endow a topological manifold with a differential (or analytical ) structure.

Definition 1.3. Given a topological manifold M an assignment D : U → D(U), where U is an
open set in the topology of M is called a differential (analytic) structure if:

1. ∀ U ⊆ M open set D(U) is an algebra of real (complex) function containing the constant
function

2. ∀ U, V : V ⊆ U if f ∈ D(U), f |V ∈ D(V )

if {Vi}i∈I are open sets and f is a real (complex) function defined in
⋃
i∈I Vi such that

f |Vi
∈ D(Vi) so f ∈ D(

⋃
i∈I Vi)

3. given any x ∈ M given any point x ∈ M there is a chart (U, ϕ = {xi}) such that x ∈ U and
the components of its system of coordinates belongs to D(U).

Moreover given any open set V contained in U and any function f defined in V f ∈ D(V ) ⇔
f ◦ ϕ−1 ∈ C∞(ϕ(V )) (f ∈ D(V ) ⇔ f ◦ ϕ−1 is analytic)

(M,D) is called a smooth (analytic) manifold.
The collection of charts of 3 is called smooth atlas

Definition 1.4. a map f : M → N between manifolds is said to be smooth at p if given a chart
(U, ϕ) at p and a chart (V, ψ) at f(p) such that f(U) ⊆ V and ψ ◦ f ◦ ϕ−1 is a smooth map in the
sense of the usual calculus.

By using the paracompactness condition it is possible to prove the existence of a useful family
of functions on the manifold

Lemma 1.5 ([46] theorem 2.23). Given a smooth manifold M and an open cover (Uα)α∈I there
exists a family of smooth function (ψα :M −→ R)α∈I such that

1. 0 ≤ ψα(p) ≤ 1 for any α ∈ I, for any p ∈M

2. supp(ψα) ⊆ Uα for any α ∈ I

3. (supp(ψα))α∈I is locally finite

4.
∑
α∈I ψα = 1

such family is called smooth partition of unity subordinate to the open cover.

Any open subset of a manifold is itself a manifold

Example 1.6 (Open submanifolds). Let M be a manifold {(Ua, ϕa)a∈I} an atlas for M and U
an open set in the topology of M . So U is a manifold and {(Ua ∩ U, ϕa|U )a∈I} is an atlas for U

An important feature of smooth manifold is the existence of a tangent space at any point. This
can be viewed as a generalization of the concept of tangent plane of a parametric surface of R3

and gives us a relation between derivations and ”vectors”.
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Definition 1.7. Let p be a point of a manifold M , f : M → R a smooth map. The germ of f at
p is defined as fp = {g ∈ C∞(M) : g(x) = f(x) for any x in a neighbourhood of p }. The space of
germs at p forms an algebra Dp.

A tangent vector at p is an element v ∈ (Dp)
∗ (the algebraic dual of Dp) which is real and

satisfies the Leibnitz rule:
v(fpgp) = f(p)v(gp) + v(fp)g(p)

The space of tangent vectors at p is denoted as TpM

We have an useful characterization of the elements of the tangent space in term of smooth
curves.

Theorem 1.8 ([46] chapter 3). If M is an n-dimensional manifold and (U, ϕ = (xi)ni=1) a chart
on p.

The space TpM is an n-dimensional vector space with bases

{ ∂

∂xi
|p : f ∈ Dp →

∂f

∂ti
|ti=xi(p) ∈ R}i=1..n

Suppose ρ : [−ϵ, ϵ] → M is a smooth curve such that ρ(0) = p so ρ′(0) := dρi

dt |t=0
∂
∂xi is a tangent

vector at p.
Conversely any v ∈ TpM can be written as the derivative of some curve ρ : ρ(0) = p

We end this section with a characterization of the manifolds given by the Whitney embedding
theorem. This will allow us to consider any manifold as an embedded subspace of RN for N big
enough.

Given a function between manifold we define its differential at p as

dfp : TpM → Tf(p)N : dfp(v)(g) = v(g ◦ f) (1.1)

Definition 1.9. Define the total differential of the map f is defines as df : TM → TN such that
df((p,X)) = dfp(Xp)

Definition 1.10. Let f :M → N a smooth map between manifold.

• It is called an immersion if its differential is everywhere injective.

• It is called an submersion if its differential is everywhere surjective.

• It is called an embedding if it is an immersion and an homeomorphism onto its image.

in this case the image f(M) is called an embedded submanifold.

Theorem 1.11 (Whitney embedding theorem, ([46] theorem 6.15)). Let M a manifold of
dimension n so there is an embedding between M and R2n

1.2 Vector fields and flows

The disjoint union of all the tangent spaces TM =
⊔
p∈M TpM is called the tangent bundle

Definition 1.12. A function X : M → TM such that X(p) ∈ TpM ∀p ∈ M is called vector
field. The space of all the vector fields over M is denoted as H(M) If there exist smooth vector
fields {X1, · · ·Xn} such that, for any p ∈ M X1(p), · · ·Xn(p) span TpM the manifold is called
parallelilzable.

We give some notable examples of vector fields:

Example 1.13. If (U, (xi)) is a chart of M we have that H(U) is spanned by { ∂
∂xi ∈ TM}, where

∂
∂xi (p) =

∂
∂xi |p. This set of vector fields is called the coordinate vector fields for X in U

Example 1.14. Given X,Y ∈ H(M) the lie bracket of the two vector fields is defined as [X,Y ] =
XY − Y X. Let p ∈ M . (U, (xi)) a chart containing p. If Xp = Xi ∂

∂xi |p, Yp = Y j ∂
∂xj |p the

coordinate expression for the Lie bracket is:

[X,Y ] = (XiY i − Y iXi)
∂

∂xi
(1.2)

So the Lie bracket of two vector fields is a vector field. This implies that (H(M), [., .]) is an
algebra.
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Here we have usedthe Einstein summation convention i.e. if α = (i1, · · · , iN ) is a multi-index

AαB
α :=

∑
i1

· · ·
∑
iN

A(i1,··· ,iN )B
(i1,···iN )

unless specified we will always use this convection. We can now define what it means for an ODE
to evolve on the manifold

Definition 1.15. Let M a manifold and X = X ∈ H(M). A differential equation evolving on the
manifold is an equation of the form:

y′ = X(t, y) (1.3)

with y(0) = y0 ∈M

y(t) is called an integral curve of X passing through y0. By expressing the vector field in
coordinates in a neighbourhood of y0 we obtain an ODE in Rn. If the vector field is smooth in
such neighbourhood we have, for the standard results of existence and uniqueness of Odes:

Theorem 1.16. Given a smooth vector field for each point y0 ∈ M exists ϵ > 0 and a curve
y : (−ϵ, ϵ) → M that is solution of (1.3). Any other solution of such equation agreed in their
common domain.

If all the integral curves of a vector field can be extended over all R it is called a complete
vector field.

Theorem 1.17 ([46] theorem 9.16). Every compactly supported smooth vector field is complete.
In particular every smooth vector field on a compact manifold is complete.

Let return to equation (1.3). there exists an operator Ψt,X :M →M such that

y(t) = Ψt,X(y0)

This operator is called the flow of the vector field X.

Proposition 1.18. The flow of a vector field satisfies the following properties:

Ψ0,X(y0) = y0

Ψt,X ◦Ψs,X = Ψt+s,X

Ψt,X = Ψ1,tX

In particular properties the first and the second properties imply that if X is complete for any fixed
y0, Ψt,X is a group in the time parameter.

Proof. The first property follows by the definition of flow, while the second follows because Ψt,X ◦
Ψs,X(y0) and Ψt+s,X(y0) are both the integral curve passing through y0 at the time t+ s.

The third property follows by rescaling the vector field.

Moreover given any operator θ : R×M →M which satisfies the first and the second properties
for any p ∈ M we have that such operator is the flow of a vector field, called the infinitesimal
generator of the flow. This vector field can be obtained by differentiation

X(y0) =
d

dt
θ(t, y0)|t=0

We conclude this section with a theorem on the commutator of flows of vector fields.

Theorem 1.19 ([34] equation 2.4). Let X,Y two complete vector fields,Ψs,X ,Ψt,Y their flows.
Define Φs,t as

Φs,t = Ψs,X ◦Ψt,Y ◦Ψ−s,X ◦Ψ−t,Y

For small s, t we have:
Φs,t(y0) = y0 + st[X,Y ] +O(s2t) +O(st2)

Corollary 1.20. The flows associated to two complete vector fields X and Y commute if and only
if [X,Y ] = 0
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1.3 Lie groups and Lie algebras

We start with some basic definition and theorems on Lie groups and Lie algebras.

Definition 1.21. A Lie group is a group (G,+, i) endowed with a differential structure that is
compatible with the operation of the group, i.e. the addition and the inverse map are smooth maps
in the differentiable structure of G

Definition 1.22. A lie algebra (g, [., .]) over the field K is an algebra whose operation satisfies the
following conditions:

for each x,y,z ∈ g

• skew-symmetry: [x, y] = −[y, x]

• Jacobi identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

The Lie algebra is said finite dimensional if it is finite dimensional as a vector space. Unless
specified in this paper any Lie algebra is supposed to be finite dimensional.

A map f : g → h between two Lie algerbas is said a Lie algebra homomorphism if it preserves
the algebra operation i.e.

[f(X), f(Y )] = f([X,Y ])

Suppose {ei}ni=1 are a bases for a Lie algebra (thought as a vector space). It is possible to
express the element [ei, ej ] as a linear combination of the elements of the bases. Combining the
definition of a bases of a vector space and definition 1.22 we obtain the following:

Proposition 1.23. Given a lie algebra (g, [., .]) over a field K, given a bases {ei}ni=1 for g, ∃!{ckij}
such that

[ei, ej ] = ckijek

Moreover such constants satisfies

• cpij + cpji = 0

• cpmrc
r
kh + cpkrc

r
hm + cphrc

r
mk = 0

Example 1.24. The algebra (H(M), [., .]) of example 1.14 is a Lie algebra

Example 1.25. Let V a finite dimensional vector space over K. The space gl(V ) of the endomor-
phisms of V endowed with the Lie brackets is a Lie algebra over K. In particular if V =M(n,K),
the space of n× n matrices in K The space is called gl(n,K)

It is possible to associate to any Lie group G a lie algebra g. There are two equivalent charac-
terizations of that: as the algebra of left invariant vector fields over G or as the tangent space at
the identity TeG.

Definition 1.26. Let G a Lie group and call Lx : G → G : Lx(y) = xy. A vector field X
is left invariant if dLp(X) = X for any p ∈ G, where dLp is the differential of definition 1.9
((dLp)|h : ThG→ TphG).

By using the coordinate expression of the Lie bracket we obtain that

dLp([X,Y ]) = [dLp(X), dLp(Y )] = [X,Y ]

So the set of all the left invariant vector fields forms a Lie subalgebra of (H(G), [., .]) = that we
call the Lie algebra associated to the Lie group.

We have the following theorem

Theorem 1.27 ([73] theorem 2.3.1). Let G be a Lie group, e ∈ G the identity and g its Lie algebra.
The map X → Xe from g to TeG is an isomorphism. In particular, dim(G) = dim(g).

using theorem 1.27 it is possible to define a global section of the tangent bundle of the Lie
group, indeed if we consider a basis {Si} for the Lie algebra the vectors

(Xi)p = dLp(Si)

forms a bases for TpG for any p ∈ G. So we have proven that
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Proposition 1.28. Any Lie group is parallelizable

by using the results of section 1.2 it is possible to express the commutator of a Lie algebra in
terms of derivative of integral curves of the vector fields.

Proposition 1.29. Let u, v ∈ g and X,Y the associated left invariant vector fields. If f(t), h(s)
the integral curves of that vector fields passing through the identity

[u, v] = [X,Y ] =
∂

∂t∂s
(f(t)h(s)f(t)−1)t=s=0

(this can be proven by using the Leibniz rule and ∂
∂t (f(t)

−1)t=0 = −X)
We end this section with some basic results on the homomorphisms of Lie groups and Lie

algebras

Proposition 1.30 ([69] proposition 2.9). Let G1,G2,G3 Lie groups and g1,g2,g3 the corresponding
Lie algebras. Call ei the identity in the Lie group Gi.

Let ϕ : G1 → G2, ψ : G2 → G3 Lie group homomorphisms.

1. dϕe1 : g1 → g2 is a Lie algebra homomorphism.

2. d(ψ ◦ ϕ)e2 = dψe2 ◦ dϕe1

3. id : Gi → Gi is the identity implies that d(id)ei is the identity of gi

4. If ϕ is an isomorphism of Lie groups, then dϕ is an isomorphism of Lie algebras

5. Ifdϕ is isomorphism of Lie algebras, then ker(ϕ) is a discrete abelian subgroup of G

Corollary 1.31. The Lie algebra of a subgroup H of G is a subalgebra of the Lie algebra of G

Proof. The inclusion i : H → G is a Lie group homomorphism and restricted to its image is the
identity. For proposition 1.30 its derivative is a Lie algebra homomorphism. Restricted to its image
is the identity so h ⊆ g.

1.4 Matrix Lie groups

We now characterize an important class of Lie groups and correspondent lie algebras, called the
matrix lie groups or the linear Lie groups We will use these 2 technical lemmas:

Lemma 1.32 ([46] chapter 3). Let U an open set of an m dimensional manifold M . For each
p ∈M we have:

TpU ∼= TpM ∼= Rm

Lemma 1.33. Let M an n-dimensional manifold, N an k-dimensional manifold with n > k Let
f :M → N a submersion and let c ∈ N a regular value i.e. a value such that the differential of x
is not zero for any value of f−1(c). So f−1(c) is a manifold

Proof. Let p ∈ f−1(c)
By the submersion theorem ([46] theorem 4.12) there are U neighbourhood of p in M , V

neighbourhood of c such that f(U) ⊆ V , f(x1, ...xn) = (x1, ..., xk) and c correspond to 0 in this
coordinate system.

In this coordinate system the first k coordinates of f−1(c)∩U are 0. So If we call ϕ = (xk+1, ..xn)
We obtain a diffeomorphism between f−1(c) ∩ U and an euclidean space.

Example 1.34. The general linear group GL(n,R)

GL(n,R) = {A ∈Mn(R) : det(A) ̸= 0}

Consider the space of the n × n matrices Mn(R). There is an isomorphism between it and Rn2

(this two spaces can be identified by stringing all the coefficents of the matrices on a single row).
So Mn(R) is a n2 dimensional manifold. GL(n,R) is an open subset of that so it is a n2

dimensional manifold as well. As it is a group w.r.to matrix multiplication it is a Lie group.
By lemma 1.32 we have that its Lie algebra T1(GL(n,R) is isomorphic (as a vector space) to

Mn(R) (here identified as Rn2

). To find the multiplication consider the characterization of the
lie algebras of theorem 1.27. If A = (aji ) ∈ Mn(R) we have that the left invariant vector field
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corresponding to A can be written as Ap = dLpAIn for each p ∈ GL(n,R). Writing them in
coordinates we obtain

Ap = xijakj
∂

∂xik

So the the Lie bracket induced by H(M) (equation (1.2)) is

[A,B]p = xij(arjb
k
r − brja

k
r )

∂

∂xik
(1.4)

So the multiplication ofMn(R) is the commutator of the two matrices i.e. we have TIn(GL(n,R)) ∼=
gl(n,R) as a lie algebra.

Example 1.35. The special linear group SL(n,R)

SL(n) = {A ∈ GL(n,R) : det(A) = 1}

Consider the function f :Mn(R) → R : f(A) = det(A)− 1. It is a smooth function because det is
a polynomial function in the coordinates and f−1(0) = SL(n). To show that 0 is a regular value
we want to calculate d(det)A(X), A ∈ SL(n,R). If In is the identity matrix we have

det(A− tX) = det(A−1)tn det(t−1In −A−1X) = tnPA−1X(t−1) (1.5)

Where PA−1X(t) is the characteristic polynomial of A−1X.
Because dfA(X) = ∂

∂t |t=0 det(A− tX) = tr(A−1X) we have that 0 is a regular value for f (take
X = A).

So by lemma 1.33 SL(n,R) is a smooth manifold.
Equation (1.5) also give us that d(det)In(X) = tr(X). So the associated lie algebra is

sl(n,R) = TIn(SL(n,R)) = {A ∈ GL(n,R) : tr(A) = 0}

Example 1.36. The orthogonal group O(n,R)

O(n) = {A ∈ GL(n,R) : AAT = In}

The space of symmetrical matrices Sn(R) is a n(n+1
2 -dimensional vector space so we can define of

it a differential structure as done for Mn(R).
Consider the function f : Mn(R) → Sn(R) : f(A) = AAT . This function is smooth and

f−1(In) = O(n). Let B ∈ O(n). By taking a curve γ : (−1, 1) → O(n): γ(0) = B we obtain.

dfB(X) = XBT +BXT (1.6)

So dfB ̸= 0 and O(n) is a manifold.
Applying equation 1.6 we obtain that the Lie algebra is the set of skew symmetric matrices.

TIn(O(n)) := so(n) = {A ∈ Gl(n) : A+AT = 0}

Example 1.37. The special orthogonal group SO(n)

SO(n) = SL(n) ∩O(n)

By the continuity of the determinant function and the fact that det(A) = ±1 for any matrix in
O(n) we obtain that SO(n) is one of the two connected components of O(n). So it is a manifold.

The Lie algebra is the same of O(n).

We have the following topological result on the Lie groups O(n) and S = (n).

Proposition 1.38 ([31] lemma 2.1.4). The group O(n) and the group SO(n) are compact

We end the section with the characterization of the derivative of the left(right) action of a
matrix Lie group

Lemma 1.39. Let G a matrix Lie group, p, q ∈ G. Lp(q) = pq, Rp(q) = qp. For any A ∈Mn(R)

d(Lp)e(A) = pA

d(Rp)e(A) = Ap

Proof.

d(Lp)e(A) = lim
t→0

1

t
(Lp(e+ tv)− Lp(e)) = pv

The proof for the right action can be done in similar way
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1.5 The exponential map

Lemma 1.40 ([69] chapter 3 proposition 2.11). Let G a Lie group with Lie algebra g for any
v ∈ g ∃! ϕ : R → G Lie group homomorphism such that d(ϕ)e(

d
dt ) = v

A first consequence of this lemma is that any left invariant vector field is complete.

Proposition 1.41 ([69] 3 chapter corollary 2.12). Any left invariant vector field is complete

So if we call X the left invariant vector field associated to v ∈ g we have that ∃! ϕX : R → G :
dϕX( ddt ) = X

ϕ′X(τ) = XϕX(τ)

ϕ′X(0) = v = Xe

(1.7)

Definition 1.42. The exponential function exp : g → G is the function that to each v ∈ g
associates the ϕX(1) where ϕX satisfies the equation (1.7)

ϕX is the integral curve of X passing through the identity so by the third property of theorem
1.18 we obtain that ϕX(t) = exp(tX). In particular exp(0) = e

By using the properties of the flows described in section 1.2 we immediately obtain that the
exponential map is a group homomorphism.

Lemma 1.43. Let G a Lie group and g its Lie algebra, let v ∈ g. The map t→ exp(tv) is a group
homomorphism between R and G. In particular:

exp[(s+ t)v] = exp(sv) exp(tv)

(exp(v))−1 = exp(−v)

An important property of the exponential map is that near the origin is a local diffeomorphism.

Theorem 1.44. Let G a Lie group and g its Lie algebra. d(exp)e = IdG so the exponential map
is a local diffeomorphism near the origin.

Proof. Let v ∈ g and ϕX(t) = exp(tv) as in definition 1.42. By differentiating each member in
t = 0 we obtain:

ϕ′X(0) = v =
d

dt
(exp(tv))t=0 = d(exp)e(v)

Given p ∈ G, X ∈ g if we define ξp(t) = p exp(tX) Using the fact that X is left invariant and
exp(0) = e we obtain that ξp is the integral curve of X through the point p so given any f ∈ C∞

in a neighbourhood of p we obtain

Xpf(x) =
d

dt
f(ξp(t))t=0 =

d

dt
f(x exp(tX))t=0 (1.8)

We now turn our attention on matrix Lie group. In this case the exponential function can be
expressed in terms of a convergent power series of elements of Mn(R)

Lemma 1.45. Let expm :Mn(R) →Mn(R) : expm(A) =
∑∞
k=0

Ak

k! . We have that:

1. The series is absolutely convergent

2. expm(Mn(R)) ⊆ GL(n,R)

3. for any v ∈Mn(R) the map γ : R → GL(n,R) : γ(t) = expm(tv) is the integral curve of the
left invariant vector field associated to v passing through the identity.

Proof. the first statement is proven in chapter 3.1 of [31]. The second is lemma 3.2.2 of [31]. The
last statement can be proven as follow: by theorem 3.2.6 of [31] γ solves the initial value problem
γ(0) = e, γ′(t) = γ(t)v. Let X the left invariant vector field associated to v. By using that
Xp = dLpv and lemma 1.39 we obtain the claim.

With this lemma is straightforward to prove that the matrix exponential is the exponen-
tial function of a matrix Lie group (by using the uniqueness in lemma 1.40)
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1.6 The adjoint representation of a Lie group and its Lie algebra

A representation of a group over a vector space V is a group G homomorphism π : G → Gl(V )
from the group to the group of automorphisms over V .

A representation of a Lie algebra g in a finite dimensional vector space V is a lie algebra
homomorphism between g and gl(V )

In section 1.3 we have defined the Lie algebra of a Lie group as the set of left invariant vector
field. It is possible to define it as the set of right invariant vector field as well.

The Adjoint representation of the Lie group is the map Ad : G → gl(g) which allow us to
change between the left invariant representation and the right invariant representation

Definition 1.46. Let G a Lie group, g its Lie algebra. For any p ∈ G define the inner automor-
phism Ψp : G→ G: Ψp(h) = php−1.

Define Ψ : G→ Aut(G): Ψ(p) = Ψp. The map Adp = dΨp : g → g is an automorphism of g.
The map Ad : G → GL(g) : Ad(p) = Adp is a representation for the Lie group called the

adjoint representation.
In terms of left and right multiplication we have that

Ad(p)(v) = d(Lp ◦Rp−1)(v)

If p ∈ G and v ∈ g and X the left invariant vector field associated to v. Call γ the integral
curve of X passing through the identity. The adjoint representation can be expressed as

Adp(Xe) =
d

dt
(pγ(t)p−1)|t=0

Example 1.47. the adjoint representation of a matrix Lie group is given by

AdP (A) = PAP−1 (1.9)

Indeed by lemma 1.39 and the chain rule we have that

AdP (A) = d(LP ◦RP−1)(A) = dLP (dR
−1
P (A)) = PAP−1

Definition 1.48. Let g be a Lie algebra. The adjoint representation of g is

(ad v)(w) := [v, w]

The set ad g = {ad v : v ∈ g} is a subalgebra of gl(g).
By direct verification, it can be checked that for any v ∈ g, ad v is a derivation of g.

There is a close relation between this map and Ad. To see that we will use this result on the
exponential function

Lemma 1.49 ([73] theorem 2.10.3). If G1, G2 are Lie group and g1, g2 their Lie algebras we have
that, for any analytic homomorphism f : G1 → G2, for any v ∈ g1

f(exp(v)) = exp(df(v))

Theorem 1.50. Let G a Lie group and g its Lie algebra.

d(Ad)e(v) = ad(v)

for any v ∈ g.
Moreover

Ad(exp v) = exp(ad v) (1.10)

Proof. We give the proof for the case of a matrix lie group. The proof of the general case can be
found in [73, Theorem 2.13.2].

By using equation (1.9) with P = expm(tv) we obtain

Adexpm(tv)(w) = expm(tv)w expm(−tv)

By taking the derivative for t=0 we obtain ad(v)(w) = [v, w].
Because ad is the differential of Ad and Ad is an analytic homomorphism (because left and

right multiplication are analytic by the definition of Lie group) by lemma 1.49 we obtain equation
(1.10).
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It is possible to express the differential of the exponential as a formal series in ad(v). Such
series is actually invertible if some technical conditions are satisfied.

Theorem 1.51 ([73] theorem 2.14.3 ). Let G a Lie group and g its Lie algebra. For any v ∈ g we
have that the differential of the exponential at v can be expressed as

(d exp)v =

∞∑
n=0

(−1)n

(n+ 1)!
(ad(v))n (1.11)

In particular (d exp)v is bijective if and only if ad(v) has no eigenvalues of the form (−1)
1
2 2k for

some integer k ̸= 0

Remark. We use the convenction of [73] for the differential of the exponential, for which

d

dt
exp(X(t)) = exp(X(t))(d exp)X

(
d

dt
X(t)

)
Other sources as [30] define the differential of the exponential differently.

The equation (1.11) can be written as expm(ad(v))−e
ad(v) .

By using this formula and the fact that f(x) = x
ex−1 is the generating function of the Bernoulli

numbers (see [1]) it is possible to compute a formula for the inverse of d exp.

(d exp)−1
v =

ad(v)

expm(ad(v))− e
=

∞∑
j=0

Bj
j!

(ad(v))j (1.12)

Where Bj are the Bernoulli numbers.
A truncated expression for equation (1.12) is given by

d expinv(u, v, p) =

q−1∑
k=0

Bk
k!

adku(v) (1.13)

2 Numerical Methods on Lie groups

2.1 Lie group and Lie algebra action

Definition 2.1. An action of a Lie group G on a manifold M is a smooth map Λ : G×M →M
such that for any x ∈M Λ(e, x) = x and

Λ(p,Λ(r, x)) = Λ(pr, x)

If the relation holds for any p, r ∈ G it is called a global action. It it holds only in a neighbourhood
of the identity of G is called local action.

The action can be studied from an infinitesimal point of view, by studying the action on the
manifold of the Lie algebra corresponding to the Lie group. This can be done by differentiating
the Lie group action near the identity.

Definition 2.2. Let, M be a manifold, G be a lie group and g its lie algebra. Consider a smooth
map λ : g×M →M . Consider the map λ∗ : g → H(M) :

λ∗(v)(p) =
d

dt
(λ(tv, p))t=0 (2.1)

λ is a left Lie algebra action if this map is a Lie algebra antihomomorphism.
It is a right Lie algebra action if it is a Lie algebra homomorphism.

Theorem 2.3. Let Λ be a left Lie group action. Define

λ(v, x) = Λ(exp(v), x)

This map is a left lie algebra action
If ΛR is a right Lie group action it is possible to define λR, as above. It is a right Lie algebra

action.
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Proof. The proof that λR∗ is a Lie algebra homomorphism can be found in [46, theorem 20.15].
Let Λ a left action and λ∗ as in equation (2.1). You can define ΛR(x, g) = Λ(g−1, x) This is

a right action so the map λR∗ (g) = λ∗(g
−1) is a lie algebra homomorphism. Because exp(tv)−1 =

exp(−tv) and using the bi-linearity of the Lie bracket you obtain that λ∗ is an anti-homomorphism.

Example 2.4. consider λ : Rn × Rn → Rn the translation on Rn (λ(v, p) = v + p).
λ∗(v)(p) = v so λ is a Lie algebra action of Rn onto itself.

Example 2.5. Let M = G a matrix Lie group. Let λ : g×G→ G : λ(v, p) = expm(v)p. As any
Lie group act on itself by left multiplication, by theorem 2.3 we have that λ is a Lie algebra action

λ∗(v)(p) = − d

dt
(expm(tv)p)t=0 = vp (2.2)

2.2 ODEs on manifolds and the Runge-Kutta methods

We will now define a class of numerical methods, the Runge-Kutta methods. We can express such
methods in terms of the Lie algebra action defined in equation (2.1)

Definition 2.6. Let bi, aij (i, j = i..s) real coefficients. Let ci =
∑s
j=1 aij The s-stage implicit

Runge-Kutta method (RK method) is defined as:

ki = f(t0 + cih, y0 + h

s∑
j=1

aijkj) (2.3)

y1 = y0 + h

s∑
j=1

biki

The RK method is said to have order p if

lim
h→0

y1 − y(t0 + h) = O(hp+1)

By using the B-series formalism described in [27, chapter 3] it is always possible to find order
conditions on the coefficients in equation (2.3) so that the RK method has order p

Example 2.7. Consider the ODE in Rn

ẏ = f(y, t)

y(t0) = y0

Let M = Rn, λ as in example 2.4. Let aij, bj the coefficients of a s-stage, q-th order Runge-Kutta
method. Let cj =

∑
i aij.

Suppose y(t) satisfies the ODE. The algorithm of definition 2.6 can be rewritten as

ki = f(t0 + cih, y0 + h

s∑
j=1

aijkj)

y1 = λ(y0, h

s∑
j=1

biki)

By assuming the existence of a Lie algebra action we can obtain a generalization for ODEs of
differentiable manifolds.

Assumption. Let M be a manifold and y(t) ∈M a curve y(0) = y0 There exists a Lie algebra g,
a left Lie algebra action λ and a function f : R×M → g such that the ODE for y(t) is

y′ = (λ∗f(t, y))(y), y(0) = y0 (2.4)

This assumption is automatically satisfied for any ODE if the Lie algebra action is transitive
(i.e. give any two points x, y of M there is at least an element of v ∈ g such that x = λ(v, y)).

Moreover, we have that the assumption is always satisfied at least in a chart if we choose g to
be the vector space generated by ( ∂

∂xi ) where x
i are the coordinates on the chart.

10



Example 2.8. If M = G is a matrix Lie group and λ is the action of example 2.5 by using lemma
1.39 we obtain that for any v ∈ g and p ∈ G λ∗v(p) = vp. So equation (2.4) is

y′ = A(t, y)y (2.5)

Where A : R×G→ g ⊆ gl(n, k)

The key difference between Rn and any other example of Lie algebra action on a manifold is
that the Lie bracket are not trivial. Consequently the exponential function is not the identity
function and it appears in the definition of the Lie algebra action of theorem 2.3. If we consider
only small t it is still possible to express the solution of the ODE (2.4) as the (left) action of an
element of the Lie algebra on y(0) = y0.

Lemma 2.9 ([55] lemma 8). Suppose M,λ, f, y(t) as in equation (2.4). Let λx(u) = λ(u, x). Call
X the vector field such that X(y0) = λ∗f(y0)(y0) and f̃(u) = d exp−1

u (f ◦ λy0(u)).
So f̃ and X are λy0-related i.e λ′y0 ◦ f̃ = X ◦ λy0

Theorem 2.10. for sufficently small t the ODE (2.4) can be expressed as

y(t) = λ(u(t), y0)

u′ = d exp−1
u (f(t, λ(u, y0)))

u(0) = 0

Proof. in the notation of lemma 2.9 u′ = f̃(t, u), while y′ = X(y), y(0) = λy0(0). So

X(t, λy0(u(t))) = λ′y0(f̃(t, u(t))) = λ′y0(u
′(t)) = y′(t)

Where we have used lemma 2.9 and the chain rule. So y(t) = λy0(u(t)) is a solution of (2.4)

2.3 The RKMK method

LetM a manifold, g a Lie algebra which act on M with the left action λ. It is possible to generalize
the Runge-Kutta method so that it works in this setting.

Definition 2.11 (Runge-Kutta-Munthe-Kaas method). Let M, g, λ, f, y(t) as in equation
2.4, y(0) = y0. Let aij, bj coefficients of an s-stage q-th order Runge-Kutta method. Let ci =∑s
j=1 aij. for i = 1, .., s

vi =

s∑
j=1

aij k̃j

ki = hf(hci, λ(vi, y0)

k̃i = d expinv(vi, ki, q)

v =

s∑
j=1

bj k̃j

y1 = λ(v, y0)

Where d expinv is the truncated expansion of d exp−1 given by equation (1.13)

As the motion on M given by the action λ evolves on M we have the following result.

Theorem 2.12. The algorithm of definition 2.11 stays on the manifold

My0 = {x ∈M : x = λ(vk, ..., λ(v1, y0)); v1, ..., vk ∈ g}

Next we will define an analogous of the Taylor series which work for ODEs on manifolds

Definition 2.13. Let X a vector field and θX,t its flow. The Lie derivative of a smooth function
f w.r.t. X is defined as

X[f ] =
∂

∂t
(θ∗X,tf)t=0 (2.6)

Where θ∗X,tf = f ◦ θX,t is the pullback of f along the flow.
This definition can be extended to any object for which the pullback along the flow is well defined

(e.g tensor fields, see [46])
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Definition 2.14. The Lie series of a smooth function f w.r. to the vector field X is obtained by
iterating equation (2.6).

θ∗X,tf =

∞∑
i=0

ti

i!
Xi[f ]

Where Xi[f ] = X[Xi−1[f ]]

Similarly to the real case a numerical method y0 → y1(h) has order q if the first q+ 1 terms of
the Lie series of y1(h) around h = 0 match the first q + 1 terms of the Lie series of the analytical
solution of the ODE (2.4).

Theorem 2.15. The RKMK method of definition 2.11 has at least order q for any Lie group
action Λ (and so for any Lie algebra action λ(u, x) = Λ(exp(u), x)) on any manifold M

Proof. By theorem 2.10 we know that the analytic solution of the ODE is

y(t) = λ(u(t), y0)

Where u(t) satisfied the ODE

u′ = d exp−1
u (f(t, λ(u, y0)))

u(0) = 0

g is a vector space so we can apply a classical Runge-Kutta scheme to this ODE and obtain
u1 ≈ u(h). This is equivalent to the equations for v in definition 2.11.

By hypothesis the coefficients aij , bj satisfies the order condition for a q-th order Runge-Kutta
method in so u1 has order q.

After that we obtain y1 = λ(u1, y0). Because λ is smooth The order of y1 is at least equal to
the order of u1.

The approximation of the d exp−1
u is of order q so it doesn’t reduce the error

2.4 The Magnus expansion

By theorem 2.10 we know that for small t the ODE (2.4) is the action on a point of the manifold
of the element of the Lie algebra which satisfies the ODE{

u′ = d exp−1
u (f(t, λ(u, y0)))

u(0) = 0
(2.7)

By using the Picard Iteration we obtain the following recursive relation{
u[0](t) = 0

u[m+1](t) =
∫ t
0
d exp−1

u[m](ξ)
f(ξ, λ(u[m](ξ), y0)dξ =

∑∞
k=0

Bk

k!

∫ t
0
adu[m](ξ) f(ξ, λ(u

[m](ξ), y0)dξ

(2.8)

Theorem 2.16. u(t)− u[m](t) has at least order tm+1

Proof. λ is smooth so it at least preserves the order of u[m]. This implies that the proof of the
general case can be done in similar way of [16, theorem 2.1] (where it is proven the particular case
of a matrix Lie group).

The iterated integral of equation (2.8) can be calculated using a quadrature.
In [16] quadrature for order 2,3 and 4 for the case of matrix Lie group are calculated.
We now focus on the case of a linear ODE i.e the case in which f(t, y) = f(t) in (2.4). In this

case we have that u(t) in (2.7) can be written in terms of binary rooted trees.

Theorem 2.17 ([34] chapter 4). Suppose u(t) is a solution of the ODE (2.7) with f(t, λ(u, y0)) =
f(t). For t small enough we have that

u(t) =

∞∑
k=0

∑
τ∈Tk

α(τ)

∫ t

0

Cτ (ξ)dξ

Where Tk is a subset of the set of binary rooted trees.
Tk and Cτ , τ ∈ Tk can be obtained by two composition rules
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1. T0 = {τ0} and Cτ0(t) = u(t)

2. τ1 ∈ Tm1
,τ2 ∈ Tm2

imply that exists τ ∈ Tm1+m2+1 such that

Ctau(t) = [

∫ t

0

Cτ1(ξ)dξ, Cτ2(t)]

and α(τ) is a constant such that α( ) = 1.

α(τ) =
Bs
s!

s∏
i=1

α(τi)

Where τ is decompose as

τ=
Such series is well defined and converges for small t

In either the RKMK method or the Magnus expansion we need to calculate the iterated com-
mutators of elements of the Lie algebra considered. Such task is computational expensive, but
using the framework of free Lie algebras it is possible to optimize this procedure reducing the
number of commutators necessary to obtain the approximation.

2.5 The free Lie algebra

A magma is a couple formed by a set and a binary operation from the elements of the set. This
operation is assumed to be closed.

Definition 2.18. Suppose we have a set A. Give two element of this set we define a binary
operation [., .] which send any couple of elements of a1, a2 ∈ A to the formal bracket [a1, a2].

The free magma over A, M(A) is defined as the smallest set which contains A and it is closed
under this binary operation.

Equivalently we can define the free magma as the set of rooted planar trees with leaves in A
with the operation of composition of trees

It is possible to associate a grading for the elements of the free magma. For each ai ∈ A let
deg(ai) = 1 the degree of ai. For any u, v ∈M(A)

deg([u, v]) := deg(u) + deg(v) (2.9)

Given a set B and a field K it is possible to define the set of the formal linear combination of
element of B with coefficients in K. This is called the free K−module over B.

Definition 2.19. Given a field K and a set A the free K-algebra over A, denoted by D(A) is the
free K-module of the free magma of A. The algebra operation of D(A) is obtained by extending by
linearity the magma operation of M(A).

D(A) has a natural structure of graded algebra given by the grading of M(A)

The free K-algebra is the smallest algebra which contains A. By quotienting by the opportune
ideal is it possible to give some properties to its operation. In particular we are interested in the
Jacobi identity (definition 1.22).

Definition 2.20. Let A a set and K a field. Let D(A) the free K-algebra over A and [., .] its
operation. Consider the ideal I = {[[x, y], z] + [[y, z], x] + [[z, x], y], [x, x] ∀ x, y, z ∈ D(A)}. The
free Lie algebra over A is defined as

L(A) := D(A)/I

with algebra multiplication inherit by D(A)
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Proposition 2.21 ([63] theorem 0.4). the multiplication of L(A) is well defined. L(A) is a Lie
algebra and it is a graded algebra with the grading inherit by D(A).

L(A) is generated as a Lie algebra by A and if deg(ai) = 1 for each ai ∈ A the component of
degree 1 of L(A) are generated by i(A), where i : A ↪−→ L(A) is the inclusion.

Moreover the free Lie algebra satisfies the following universal property: for any L Lie algebra
over K and for any function f : A→ L ∃! f̄ : L(A) → L such that the diagram below commutes

•A •L(A)

•L
f

i

f̄

Any Lie algebra which satisfies this universal property is isomorphism to the free Lie algebra.

This property is what makes the free Lie algebra a useful tool in the field of numerical compu-
tation of Lie algebras, because in some sense it is the most general possible object which satisfies
the property of definition 1.22

If we need to do some calculation in a concrete Lie algebra g we can do that in the abstract
setting and by using the universal property of theorem 2.21 with f(i ∈ B) = Xi ∈ g (where Xi are
the elements of g that we are interested to analyze) we can recover the concrete Lie algebra.

2.6 The universal enveloping algebra

We have seen that the elements of a Lie algebra associated to a Lie group G can be seen as the
element of the tangent space TeG i.e. as derivation of the Lie groups. The universal enveloping
algebra allow to consider higher order differential operators.

Definition 2.22. Let L a Lie algebra over a field K. Consider the tensor algebra over L. T (L) :=⊕
n>0 L⊗n where L⊗n is the tensor product of L with itself n times (see [3] for the definition).
Consider the ideal I = {x⊗ y − y ⊗ x− [x, y] ∀ x, y ∈ T (L)}.

A0 = T (L)/I

with algebra multiplication inherit by the projection T (L) p−→ A0 is called the universal enveloping
algebra of L

Proposition 2.23 ([63] proposition 0.1). The multiplication of A0 is well defined.
Given A0 exists an algebra homomorphism ψ0 : L −→ A0 such that given any associative algebra

A and any Lie algebra homomorphism ϕ : L −→ A exists unique ϕ̄ : A0 −→ A such that the diagram
below commutes

•L •A0

•A

ψ0

ϕ ϕ̄

If there is another couple (A1, ψ1) which satisfies this universal property, A1 is isomorphic to the
universal enveloping algebra of L.

ψ0 can be defined as ψ0 : L i
↪−→ T (L) p−→ A0 where i : L ↪−→ T (L) is the inclusion and p : T (L) −→

A0 is the projection.

The free associative algebra Ã over a set B is defined to be the associative algebra which

satisfies the following universal property : for each associative algebra A and each map B
f−→ A

exists unique an algebra homomorphism Ã
f̃−→ A such that the following diagram commutes:

•B •Ã

•A

i

f f̃

Definition 2.24. Let A is a set. A word on the alphabet A is a finite sequence of elements of A.
Denote the set of all the words with A∗

A non-commutative polynomial on A over the field K is a K-linear combination of words on A.
We can write any polynomial as P =

∑
w∈A∗(P,w)w where all, but finitely many of the coefficients

(P,w) ∈ K are 0.

14



If P =
∑
u∈A∗(P, u)u and Q =

∑
v∈A∗(Q, v)v define the concatenation product to be PQ with

(PQ,w) =
∑
w=uv

(P, u)(Q,w)

Denote K ⟨A⟩· the set of all the non-commutative polynomial on A with the concatenation
product.

K ⟨A⟩· is an associative algebra and satisfies the universal property of a free associative algebra
generated by A [63, proposition 1.2]

We have the following characterization of the universal enveloping algebra of the free Lie algebra

Theorem 2.25. Given a set B, the universal enveloping algebra of the free Lie algebra over B is
the free associative algebra over B.

Conversely if K ⟨A⟩· is the free associative algebra over a set B we can define a Lie bracket on
K ⟨A⟩· as [u, v] = uv− vu (where the juxtaposition represent the algebra operation of K ⟨A⟩·). We
have that (K ⟨A⟩· , [., .]) is a Lie algebra. If we call L the smallest Lie subalgebra of (K ⟨A⟩· , [., .])
which contains B we have that L is the free Lie algebra generated by B. K ⟨A⟩· is its universal
enveloping algebra

Proof.
the proof of the first part can be found in [63] theorem 0.5.
The proof of the second statement can be found in [73] theorem 3.2.8

By the second statement of theorem 2.25 we can identify the free Lie algebra generated by a
set B as the smallest set of non-commutative polynomial which contains B and is closed under the
Lie bracket.

The elements of the free Lie algebra are so called Lie polynomials

2.7 Hall bases

We want to represent the free Lie algebra of definition 2.20 as linear combination of bases elements.
There are various suitable bases for this vector space, one of the most common is the Hall bases.

Definition 2.26. Let A a set and M(A) its free magma. A set H is called an Hall set if:

1. A ⊆ H

2. H has a total ordering < defined as follow: deg(u) < deg(v) −→ u < v, where deg is the order
of M(A) defined in equation (2.9). If two elements have the same length they are ordered
lexicographically.

3. Let h ∈ M(A) such that deg(h) = 2. h ∈ H if and only if h = [a1, a2] with a1, a2 ∈ H and
a1 < a2

4. Let h ∈M(A) such that deg(h) ≥ 3. h ∈ H if and only if h = [u, [v, w]] with u, v, w, [v, w] ∈ H
and v ≤ u < [v, w]

Such set always exists for any A ([8] chapter 2 proposition 11).
If L(A) is a free Lie algebra for A the immersion of the Hall set into L(A) is a (vector space)

bases for L(A) ([8] chapter 2 theorem 1)

Remark. Definition 2.26 is based on [8, page 132] and [58]. Some authors like [63] give a different
definition of the Hall set (they reverse the order of the inequalities).

The dimension of the component of length n can be calculated using the Witt formula

Theorem 2.27 ([8] chapter 2 theorem 2). Let A be a finite set and H is one of its Hall sets,
the number of elements of A of length n i.e. the dimension of the module of homogeneous Lie
polynomial of degree n is given by the Witt formula

νn =
1

n

∑
d|n

µ(d)s
n
d

where s is the number of generators and µ : Z+ −→ {−1, 0, 1} : if d = pn1
1 ...pnk

k is the prime
factorization of d

µ(d) =


1 for d = 1

(−1)k if all ni = 1

0 otherwise

(2.10)
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The Witt formula can be extended so that it consider other grading other that the length
defined in equation (2.9). In particular given a grading function for the set A ω : A −→ Z+ such
that ω(ai) = ωi we can extend such function to the Hall bases by additivity

ω([u, v]) = ω(u) + ω(v)

This induces a grading on the free Lie algebra of A

Example 2.28. Suppose P,Q ∈ Mn(R) are matrices which depend by a small parameter h as
P = O(hnP ), Q = O(hnQ). We have that [P,Q] = O(hnP+nQ). So the function ω(P ) = nP is a
grading function.

Theorem 2.29 ([58] theorem 3.1). Lat A be a set of s elements and L(A) its free Lie algebra, let
ω be a grading function for A such that ω(ai) = ωi ∀ ai ∈ A. Consider the polynomial

P (T ) = 1−
s∑
i=1

Tωi

and call {λi}max(ωi)
i=1 its roots. Call L(A)n the subspace of the free Lie algebra composed by the

elements of degree n with respect to the grading induced by ω. We have that the dimension of these
subspaces is

dim(L(A)n) =
1

n

∑
d|n

(

max(ωi)∑
i=1

λ
−n
d
i )µ(d) (2.11)

where µ(d) is the Möbius function of equation (2.10)

2.8 Optimization of the RKMK algorithm

Theorem 2.29 allow us to reduce the number of commutators necessary for implementing the
algorithm of definition 2.11 in the case of a linear ODE. Indeed with the same notations of (2.4)
let

y′ = λ∗(f(t))(y)

a linear ODE on a manifold M . The algorithm for a s-stage RKMK method is

vi =
∑s
j=1 aij k̃j

ki = hf(hci)

k̃i = d expinv(vi, ki, q)

v =
∑s
j=1 bj k̃j

y1 = λ(v, y0)

(2.12)

where aij , bj , ci and d expinv are the same of definition 2.11
Consider the grading function of example 2.28. The goal is to find a change of bases {ki} −→ {Qi}

such that, with respect to that grading deg(Qi) = i. For doing this we define the Vandermonde
matrix (Vij)

s
j=1 = (cj−1

i ) and define the new basis as

(Q1, .., Qs)
T = V (c)−1(k1, ..., ks)

T

We have that

Qi =
hi

(i− 1)!
f (i−1)(ξi) for some ξi ∈ (0, h) (2.13)

Another possible optimization is given by the time-reversal symmetry. Indeed if we consider
the equation y′ = λ∗(−f(t− h))(y) we obtain a flow which in the time t ∈ (0, h) go from y1 to y0.
So if we use a Taylor series around t = 1

2h we obtain that under the symmetry f(t) −→ −f(h− t)
Qi −→ (−1)iQi.

Remember that λ(v, x) = Λ(exp(v), x). So under the time reverse symmetry we have that
v = v(Q1, ..., Qs) −→ −v(Q1, .., Qs) = v((−1)Q1, Q2, ..., (−1)sQs). So v depends only through
terms on the Hall set of odd degree.

In the end the algorithm (2.12) becomes

V = ((ci +
1
2 )
j−1)si,j=1

ki = hf(hci)

Qi =
∑s
j=1(V

−1)ijkj

v = v(Q1, ..., Qs)

y1 = λ(v, y0)
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3 Riemannian geometry

3.1 Riemannian manifolds definition and examples

Definition 3.1. letM a smooth manifold, TM its tangent bundle and T ∗M its dual (the cotangent
bundle). Define

T r
s (M) :=

⊗
r

TM ⊗
⊗
s

T ∗M

An (r, s) tensor field is a smooth section of T r
s . In particular, (0, 0) tensors are smooth functions

and (1, 0) tensors are vector fields

We are interested in a particular type of tensor:

Definition 3.2. A pseudo-Riemannian structure on a smooth manifold M is a (0, 2)-tensor g such
that

g(X,Y ) = g(Y,X)

and for each p ∈M gp is not degenerate.
M has a Riemannian structure if gp is positive definite for each p ∈ M . In such case gp is a

metric on TpM and we will denote it as gp(., .) ⟨., .⟩p
Proposition 3.3. Any smooth manifold admits a Riemannian structure

Proof. Let A := (Uα, ψα)α∈I a locally finite atlas on M . By lemma 1.5 exists a partition of unity
(τα)α∈I subordinated to A. Because Uα is diffeomorphic to an open subset of Rn it is possible to
define a metric on it as gα := ψ∗

αg
eucl = geucl ◦ ψ−1, where geucl is the standard euclidean metric.

Define
g =

∑
α∈I

ταgα

This sum is finite for any p because of the locally finiteness of the partitition of unity and g is a
Riemannian metric for M

Definition 3.4. A map between Riemannian manifolds f : (M, ⟨., .⟩M ) −→ (N, ⟨., .⟩N ) is an isom-
etry if for any p ∈M and u, v ∈ TpM

⟨u, v⟩M |p = ⟨dfp(u), dfp(v)⟩N |f(p)

f is a local isometry at p ∈M if it is an isometry in a neighborhood of p

Example 3.5 (warp products). Let (B, gB), (F, gF ) two Riemannian manifolds with not zero
dimension. Let πB : B × F −→ B and πF : B × F −→ F the natural projections of the product
manifold. Let f : B −→ [0∞) a positive, smooth function. The warped product B ×f F is defined
as the Riemannian manifold (B × F, ⟨., .⟩) where

⟨X|X⟩ := gB (π∗
B(X), π∗

B(X)) + f2 (πB(X)) gF (π∗
F (X), π∗

F (X))

Example 3.6. given a Lie group G a metric is said to be left invariant if Lx is an isometry for
any x ∈ G. G is right invariant if Rx is an isometry for any x ∈ G and is biinvariant if it is left
and right invariant.

Any Lie group admits a left (or right) invariant metric. Given any metric ⟨., .⟩e on the Lie
algebra g we define

⟨u, v⟩x = ⟨dLx−1(u), dLx−1(v)⟩e
Any compact Lie group admits a biinvariant metric (see [23] exercise 7) If ⟨., .⟩ is a biinvariant

metric on G we have that
⟨[u,w] , v⟩ = −⟨u, [v, w]⟩

(see [23] example 2.6)

There is a more general result which characterizes the Lie groups that admits a bi-invariant
Riemannian structure

Proposition 3.7 ([52] lemma 7.5). A connected Lie group admits a bi-invariant metric if and
only if it is isomorphic to the Cartesian product of a compact Lie group with an abelian Lie group
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3.2 Connnections and curvature

in Rn a vector field along a curve c : I −→ Rn is said parallel if its directional derivative is 0.
To define the concept of parallelism on a general smooth manifold we have to specify an affine
connection

Definition 3.8. Let M a smooth manifold and H(M) the set of all the vector field on M (see
example 1.12). An affine connection ∇ on M is a map

∇ : H(M)×H(M) −→ H(M)

that for any X,Y, Z ∈ H(M) and f, g smooth functions has the following properties:

1. C∞-linearity in the first component.

∇fX+gY Z = f∇XZ + g∇Y Z

2. H(M)-linearity and Leibnitz rule in the second component

∇X(Y + Z) = ∇XY +∇XZ

∇X(fY ) = f∇XY +XfY

If (U, xi) is a chart and ( ∂
∂xi ) is the corrresponding local section of TM we define the Christoffel

symbols of second kind Γkij as the smooth function such that:

∇ ∂

∂xi

∂

∂xj
|p = Γkij(p)

∂

∂xj
|p (3.1)

for any p ∈ U . From now on we will omit the dependency by p when there is no risk of confusion.

By using equation (3.1) and the properties of the connection it is straightforward to see that if
Xp = Xi(p) ∂

∂xi |p and Y = Y j(p) ∂
∂xj |p for any p in a chart (U, xi) that, for any p ∈ U

∇XY |p =
(
Xi(p)Y j(p)Γkij(p) +Xi(p)

∂

∂xi
|pY k(p)

)
∂

∂xk
|p (3.2)

Theorem 3.9 ([23] proposition 2.2). Given a smooth manifold with a connection (M,∇) there
exists a unique correspondence that associates to any vector field V along a curve γ : I −→ M
another vector field along γ D

dtV such that, for any V,W vector fields along γ and any f smooth
in I

1. D
dt (V +W ) = D

dtV + D
dtW

2. D
dt (fV ) = d

dtfV + f DdtV

3. if there is Y ∈ H(M) : Vt = Yγ(t) then D
dtV = ∇ dγ

dt
Y

D
dt is called the covariant derivative along γ

It is possible to consider the covariant derivative of tensors:

Definition 3.10. Let T ∈ T 0
s a (0, s)-tensor. The covariant differential ∇T is a (0, s+ 1) tensor

given by:

∇T (Y1, · · · , Ys, Z) = ZT (Y1, · · · , Ys)− T (∇Z , Y1, · · ·Ys)− · · · − T (Y1, · · · ,∇ZYs)

for any Y1, · · · , Ys, Z ∈ H(M).
The covariant derivative of T is the (0, s)-tensor

∇ZT (Y1, · · · , Ys) = ∇T (Y1, · · · , Ys, Z)

Definition 3.11. Given an (r, s)-tensor on a Riemannian manifold (M, g,∇) it is possible to
define the contraction as the map i : T r

s −→ T r−1
s+1 such that

i
(
T a1,···arb1,···bs

)
:= ga1,bs+1

T a1,···arb1,···bs

In this way is it possible to extend the definition of covariant differential also to controvariant
tensors
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We can now define the concept of parallelism for vector field on a manifold.

Definition 3.12. Let (M,∇) a smooth manifold with a connection and V a vector field along a
curve γ : I −→M . V is parallel if D

dtV = 0 for any t ∈ I.

Let (U, xi) a chart and suppose J ⊆ I is an interval such that γ(J) ⊆ U . Let Vt = V j(t) ∂
∂xi |γ(t)

for any t ∈ [t0, t1]. By using equation (3.2) we obtain that if V is a parallel vector field for each
t ∈ [t0, t1] and for any k

d

dt
V k + ΓkijV

j dγ
i

dt
= 0 (3.3)

Given a tangent vector v0 ∈ Tγ(t0)M , where t0 ∈ I the coefficients of a vector field V parallel to γ
such that V0 = v0 has to satisfies the ODE (3.3) in any chart that contains γ(t0).

By standard calculus and the compactness of γ(I) we know that such vector exists and it is
unique. It is called the parallel transport of v0 along γ For Riemannian manifolds there are
some particular choices of affine connection, namely those for which the covariant differential of
the metric tensor is 0.

Definition 3.13. Let (M, ⟨., .⟩ ,∇) a Riemannian manifold with an affine connection. ∇ is said
compatible with the metric if, or any X,Y, Z ∈ H(M)

X ⟨Y,Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩

This condition is equivalent to:
∇Z ⟨X,Y ⟩ = 0

Definition 3.14. An affine connection ∇ is said torsionless (or symmetric) if, for any X,Y ∈
H(M)

∇XY −∇YX = [X,Y ]

As
[
∂
∂xi ,

∂
∂xj

]
= 0, we obtain

Γkij
∂

∂xk
= ∇ ∂

∂xi

∂

∂xj
= ∇ ∂

∂xj

∂

∂xi
= Γkji

so for torsionless connections Γkij = Γkjk for any k

Theorem 3.15 (chapter 2 [23] theorem 3.6). Let (M, ⟨., .⟩) a Riemannian manifold. There exists
a unique connection that is torsionless and compatible with the metric. Such connection is called
the Levi-Civita connection associated to the metric.

If we call gij :=
〈
∂
∂xi ,

∂
∂xj

〉
and gij = (gij)

−1 the Christoffel symbols of such connection are

Γmij =
1

2
gkm

(
∂

∂xi
gjk +

∂

∂xj
gki −

∂

∂xk
gij

)
We can now define the curvature tensor.

Definition 3.16. Let (M, ⟨., .⟩ ,∇) a Riemannian manifold endowed with the Levi-Civita connec-
tion.

The Riemann curvature tensor R : H(M)×H(M)×H(M) −→ H(M) is defined as

R(X,Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

Lemma 3.17. Let R the Riemannian curvature tensor of (M, ⟨., .⟩ ,∇).
For any p ∈ M and for any k ∈ N we have that R|p and ∇kR|p are smooth functions on the

tensor bundle.

Proof. Follow directly by the definition of H(M) and of the covariant derivative of a tensor

Definition 3.18. Let (M, ⟨., .⟩ ,∇) a Riemannian manifold endowed with the Levi Civita connec-
tion, let R the Riemannian curvature tensor. Let u, v two linearly independent tangent vectors at
the same point. The sectional curvature (or Gauss curvature) is

K(u, v) :=
⟨R(u, v)v, u⟩

⟨u, u⟩ ⟨v, v⟩ − (⟨u, v⟩)2

We now give an expression for the curvature tensor of the warp product, defined in Example
3.5
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Lemma 3.19 ([4] proposition 2.1). Let R the Riemannian curvature of the warp product B ×f F
(see Example 3.5) and RF the curvature tensor of F .It is possible to show that for any U, V,W
vector fields of F , if we call Ũ ,Ṽ ,W̃ their lifting over the warp product.

R(Ũ , Ṽ )W̃ = RF (U, V )W +
||∇f ||2

f2
|gF (W,U)V − g(V,U)W |

In the case of a Lie group endowed with a bi-invariant metric it is possible to express the
covariant derivative of a vector field and the curvature in terms of elements of the Lie algebra,
more precisely,

Proposition 3.20 ([28] proposition 21.19). For any Lie group G equipped with a bi-invariant
metric, the following properties hold:

• The Levi Civita connection is given by: ∇XY = [X,Y ] for any X,Y left invariant vector
fields

• The Riemannian curvature tensor is given by R(u, v) = 1
4 ad[u,v] for each u, v ∈ g

• The sectional curvature is given by K(u, v) = 1
4 ⟨[u, v] , [u, v]⟩ for any u, v ∈ g

The connection also allow us to generalize the gradient and divergence to the case of a Rie-
mannian manifold:

Definition 3.21. Let (M, g,∇) a Riemannian manifold endowed with the Levi Civita connection.
The gradient of a smooth function is defined as the algebraic dual of the differential i.e for

any X ∈ H(M)
⟨grad f,X⟩ = df(X) := Xf

where ⟨., .⟩ = g(., .) as usual. In local coordinates the gradient can be expressed as

grad f = gij
∂

∂xi
f
∂

∂xj

The divergence of a vector field is defined as the contraction i (see definition3.11 ) of the
covariant differential of the vector field i.e

divX := i(∇X)

in local coordinates, if X = ai ∂
∂xi we have that

divX =
1√

det(g)

∂

∂xi

(√
det(g)ai

)
Definition 3.22. Let (M, g,∇) a Riemannian manifold endowed with the Levi Civita connection.
The Laplace Beltrami operator is defined as ∆M : C∞(M) −→ C∞(M) such that

∆Mf := div grad f

In local coordinates the Laplace Beltrami operator is expressed as

∆Mf =
1√

det(g)

∂

∂xi

(√
det(g)gij

∂

∂xi
f

)
For any orthonormal bases {Xi} of TpM we have ([32] proposition 3.1.1)

∆Mf = trace∇2f =

d∑
i=1

∇2f(Xi, Xi)

If Xi =
∂
∂xi for any i we have

∆Mf(x) = gij(x)

(
∂2f(x)

∂x1∂xj
− Γkij(x)

∂

∂xk
f(x)

)
(3.4)
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3.3 Geodesics and the Riemannian exponential

Definition 3.23. Let (M, ⟨., .⟩ ,∇) a Riemannian manifold endowed with the Levi-Civita connec-
tion. A parametrized curve γ : I −→ M is a geodesic if D

dt
dγ
dt = 0, i.e. if the vector field dγ

dt is
parallel w.r.t. γ. If γ(t) = (x1(t), · · · , xn(t)) in a chart (U,x) around γ(t0), by equation (3.3) we
obtain that γ is a geodesics if and only if

d2

dt
xi + Γkij

dxi

dt

dxj

dt
= 0 (3.5)

By using equation (3.5) and the existence and uniqueness theorem for second order linear ODE
it is immediate to see that, given (q, w) ∈ TM there is an unique geodesics defined in some interval
I such that γ(0) = q, dγdt (0) = w

Lemma 3.24 ([23] chapter 3 proposition 2.7). Given p ∈ M there exists a neighbourhood V of p
and ϵ > 0 and a smooth map γ : (−2, 2)×U −→M , where U := {(q, w) ∈ TM : q ∈ V |w| ≤ ϵ} such
that γ(t, (q, w)) is the unique geodesic such that γ(0) = q, dγdt (0) = w for every w ∈ TqM such that
|w| ≤ ϵ

with lemma 3.24 it is possible to define the geodesics exponential map

Definition 3.25. Let p ∈ M and U ⊆ TM and γ : (−2, 2) × U −→ M as in lemma 3.24. The
geodesics exponential Exp : U −→M is defined as

Exp(q, w) := γ(1, (q, w))

We have an analogous result to the case of the Lie group exponential

Proposition 3.26. there exists ϵ > 0 such that in the open ball Bϵ(0) ⊆ TqM

Exp |TqM := Expq : Bϵ(0) −→M

is a diffeomorphism onto its image

Proof.

d(Exp)0(v) =
d

dt
|t=0γ(1, q, tv) =

d

dt
|t=0γ(t, q, v) = v

where we have used the homogeneity of a geodesic: γ(τ, q, tv) = γ(tτ, q, v) ([23] lemma 2.6)

Definition 3.27. Let p ∈M and V a neighbourhood of the origin of TpM such that the exponential
map is a diffeormorphism onto its image in V . Expq(V ) is called a normal neighborhood of M .

In particular, if Bϵ(0) is a ball whose closure is contained in V Expq(Bϵ(0)) is called a geodesic
ball

In case the Riemannian manifold is a Lie group equipped with a bi-invariant metric the defini-
tion of Riemannian and Lie group exponential coincide

Proposition 3.28 ([28] proposition 21.20). Let G a Lie group equipped with a bi-invariant metric.
The geodesics passing through the origin are the curves γu(t) = exp(tu), where exp is the Lie group
exponential. So we have that Expe = exp.

Moreover, given any p ∈ G the map Ip : G −→ G such that Ip(q) = pqp−1 is an isometry which
fixes p and such that, for any geodesics γ, passing through p, Ip(γ(t)) = γ(−t). This implies that
any Lie group that admits a bi-invariant metric is a Riemannian locally symmetric space (see [30])

The geodesics satisfy a local length minimizing property

Definition 3.29. The arc length of a curve gamma : [t0, t1] −→M is defined as

l(γ) :=

∫ t

t0

∣∣∣∣dγdτ
∣∣∣∣ dτ

If γ is a geodesics it follows that

d

dt

∣∣∣∣dγdt
∣∣∣∣ = 2

〈
D

dt

dγ

dt
,
dγ

dt

〉
= 0

so for any geodesics dγ
dt has constant norm. If such norm is 1 the geodesics is said normalized.
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Proposition 3.30 ([23] chapter 3 proposition 3.6 and corollary 3.9). Let p ∈ M , U a normal
neighbourhood of p and Bϵ(p) ⊆ U a geodesic ball. Let γ : [0, 1] −→ B the segment of geodesic with
γ(0) = p. For any piecewise differentiable curve joining γ(0) and γ(1) we have l(γ) ≤ l(c). The
equality holds if and only if γ([0, 1]) = c([0, 1]).

Conversely, if a piecewise differentiable differentiable curve γ : [a, b] −→ M with parameter
proportional to the arc length has length

l(γ) = min{l(c) with c : [a, b] −→Mpiecewise differentiable curve : c(a) = γ(a) and c(b) = γ(b)}

then γ is a geodesic.

Given a Riemannian manifold it is always possible to define a distance as

d(p, q) := inf{l(c) with c : [a, b] −→Mpiecewise differentiable curve : c(a) = p and c(b) = q} (3.6)

Proposition 3.31. d(., .) defined in equation (3.6) is indeed a distance and the topology induced
by such distance coincide with the original topology of M .

Moreover, for any fixed p0 ∈M the function f(p) := d(p, p0) is continuous

Proof. The only non straightforward result in the definition of a distance is that if d(p, q) = 0 so
p = q.

If this is not true there exists a geodesic ball Bϵ(p) that doesn’t contains q. Consider a curve
c : I −→M that join p and q. The length of the segment c(I) ∩Bϵ(p) is greater or equal than ϵ for
proposition 3.30, but this is impossible for the definition of infinimum.

By the definition of d is immediate to see that metric balls contains geodesics balls. the converse
follow by proposition 3.30 if we take ϵ so that there exists a minimizing geodesic γ joining p and
q. indeed in such case d(p, q) = l(γ).

The continuity of f follow by the equivalence of the two topologies (the distance is continuous
in the metric topology).

Definition 3.32. A Riemannian manifold is said geodesically complete if for any p ∈M Expp is
defined for all v ∈ TpM i.e if any geodesic starting at p is defined for any t ∈ R

Theorem 3.33 (Hopf and Rinow [23] chapter 7 theorem 2.8). Let M a Riemannian manifold.
the following assertions are equivalent:

1. there exists p ∈M such that Expp is defined on all TpM

2. M has the Heine-Borel property, i.e. any closed bounded set is compact

3. M is complete as a metric space

4. M is geodesically complete

If any of such statement is true also holds that for any p, q ∈ M there is a geodesics γ joining p
and q such that l(γ) = d(p, q).

Because any compact set is a complete metric space we have the following result:

Corollary 3.34. Any compact Riemannian manifold is geodesically complete.

Because closed subset of a complete space are complete we have also that

Corollary 3.35. Any closed submanifold of a complete Riemannian manifold is geodesically com-
plete in the induced metric. In particular, any closed submanifold of Rn is geodesically complete
with respect to the induced metric.

We end the section with this result on universal covering of complete Riemannian manifolds

Lemma 3.36. Let M A smooth manifold and π : M̃ −→ M the universal covering. Given any
Riemannian metric g on M there exists a unique metric g̃ on M̃ such that π is a local isometry.

If (M, g) is complete so it is (M̃, g̃)

Proof. Let g̃ := π∗g. It is straightforward to check that w.r.t. such metric, π is a local isometry.
If g̃ is a local isometry g̃(X,Y )q = g(π∗X,π∗Y )π(q) so such metric is unique.

SupposeM complete and γ : (a, b) −→ M̃ is an incomplete maximal geodesics. π(γ) is a geodesic
(because π is a local isometry) and can be extended to a geodesics γ′ : (a, b+ ϵ) −→ M . By lifting
such geodesic we obtain an extension of γ, but this is a contradiction.
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3.4 Horizontal vector spaces

We are interested in studying solution of stochastic differential equation on manifold. As we will
see the definition of a solution of an SDE on a manifold will rely on the Whytney embedding
theorem 1.11. To characterize a such solution it is possible to lift the processes to the fiber bundle.

In this section we will define such bundle and we will give a decomposition of its tangent space
in its vertical and horizontal components. During all the section (M, g,∇) denotes a Riemannian
manifold endowed with the Levi-Civita connection

Definition 3.37 ([32] chapter 2.1). A frame at p ∈M is an R-linear isomorphism u : Rd −→ TpM
The space of all the frames at p ∈ M is denoted as F(M)p. The frame bundle is defined as

F(M) :=
⊔
p∈M F(M)p. It is possible to show that is a smooth manifold.

Moreover, each fiber of F(M) is diffeomorphic to GL(d,R) and M = F(M)/GL(d,R). i.e
(F(M),M,GL(n, d)) is a principal bundle and TM = F(M) ×GL(d,R) Rd with respect to the left
action (u, e) −→ ue.

The canonical projection π : F(M) −→M is a smooth map.

The tangent space at u of the frame bundle is denoted as TuF(M). X ∈ TuF(M) is called
vertical if it is tangent to F(M)πu. The space of vertical tangent vectors at u is denoted with
VuF(M).

A curve ut in F(M) is a smooth choice of frames at each point of the curve πut. ut is an
horizontal curve (w.r. to ∇) if for each e ∈ Rd ute is parallel along the curve πut. A tangent vector
is horizontal if it is the tangent vector of an horizontal curve. The space of all the tangent vectors
is denoted as HuF(M). It is possible to show [32, chapter 2.1] that

TuF(M) = VuF(M)⊕HuF(M)

So given a frame up at p, the map π∗ : HuF(M) −→ TπuM induced by the canonical projection is
an isomorphism.

Definition 3.38 ([32] chapter 2.1). Given a curve γt in M and a frame ut there is an unique
horizontal curve {ut} such that πut = γt. It is called the horizontal lift of γt from u0.

For each e ∈ Rd we define He vector field on F(M) by the relation

He(u) = {the horizontal lift of ue ∈ TπuM to u}

Given a set of coordinates (ei)i=1,···d on Rd we define the fundamental horizontal vector field of
F(M) as Hi = Hei

We have the following coordinate description of such vector fields

Theorem 3.39 ([32] proposition 2.1.3). Let (U, xi) a local chart of M and consider the chart on
F(M) (π−1(U) = Ũ , (xi, eij) where e

i
j : for a frame u ∈ Ũ we have uej = eij

∂
∂xi .

In this chart VuF(M) is spanned by ∂
∂eij

so ( ∂
∂xi ,

∂
∂eij

) span TuF(M) for every u ∈ Ũ .

In this chart the fundamental vector field have the following local expression:

Hi(u) = eji
∂

∂xj
− ejl e

l
mΓkjl

∂

∂ekm
(3.7)

Definition 3.40. Let {ut} the horizontal lift of a curve γt. The anti-development of γt is a curve
in Rd defined as

wt :=

∫ t

0

u−1
s

d

dt
γsds

It satisfies the following ODE on F(M).

d

dt
ut = Hi(ut)

d

dt
wit (3.8)

The development in F(M) of a real curve wt at the starting frame at x0 u0 is the unique solution
of the ODE (3.8). The development of wt in M is the projection of the development in F(M)

23



3.5 Manifolds with bounded geometry

An homogeneous space for a Lie group G is a not-empty smooth manifold M such that G act
transitively on M .

In section 4.4 we will describe how to obtain order condition for a weak stochastic RK method
in Rn. Such estimate will depend from a formal series expansion that can be derived from the
Kolmogorov backward formula i.e. the Talay-Tubaro expansion (I.2) (see also theorem 5.29).

We wish to expand such method to a general diffusion process over a Lie group or, more
generally, over an homogeneous space.

We will now define a class of manifold for which the diffusion process will be a Feller process
and it will satisfy the hypothesis of theorem 5.29, under some technical conditions.

Definition 3.41. Given an (r, s)-tensor T in a Riemannian manifold (M, g) the pointwise norm
||.||g is defined, for a point p ∈M

||Tx||2 := gp1,l1 · · · gpr,lrgq1,k1 · · · gqs,ksT p1,··· ,prq1,··· ,qs T
l1,··· ,lr
k1,··· ,ks

where gij = g( ∂
∂xi ,

∂
∂xj ) and g

ij = g−1
ij in a chart (U, xi) containing p

Definition 3.42. Let (M, g,∇) a Riemannian manifold endowed with a connection. The injectivity
radius at p ∈M is defined as

r(p) = sup{r > 0 : Expp : Br(0) ⊆ TpM −→M is a diffeomorphism}

The global injectivity radius is defined as

r(M) = inf
p∈M

r(p)

We have the following result:

Theorem 3.43 ([49] lemma 9). If a Riemannian manifold has a strictly positive global injective
radius it is geodesically complete

Definition 3.44. A Riemannian manifold (M, g,∇) endowed with the levi-Civita connection is
said of k-th order bounded geometry if it has strictly positive injectivity radius and

||||∇kR||g||∞ <∞

We will give two important examples of manifold of bounded geometry of any order.
We start with the following lemma:

Lemma 3.45. Let (M, g) a compact Riemannian manifold, so it has positive injectivity radius.

Proof. For any p ∈M there is a positive number r(p) > 0 such that p is contained in a δ(p)-normal
neighbourhood. Such neghbourhoods form a open cover of M , so they admits a finite subcover.
So r(M) = min1≤i≤N r(pi) that is stricly positive.

Example 3.46. Any compact Riemannian manifold M is of bounded geometry of any order

Proof. By lemma 3.17 any covariant derivative of the curvature tensor is continuous, so its norm
is upper semi-continuous.

It is a well known result of general topology that if f : K −→ R is a upper semi-continuous
function from a compact set over R, it is bounded above, so the derivatives of the curvature tensor
are bounded at any order. By lemma 3.45 we obtain that M is of bounded geometry.

Example 3.47. Smooth Riemannian manifold which possess a transitive group of isometries have
bounded geometry. In particular, any homogeneous space with an invariant metric and any Lie
group with a left (or right) invariant metric has bounded geometry

Proof. Because there is a transitive group of isomorphism on the manifold the finite estimate for
the injectivity radius and the covariant derivative translate to an uniform estimate for all the points
of the manifold

Other examples of manifold of bounded geometry and a description of their basic properties
are shown in [24].
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4 Stochastic differential equations

4.1 Theory of stochastic integration

We give a rapid survey of the necessary background to understand the theory of stochastic differ-
ential equation.

Given a probability space (Ω,F ,P), where Ω is a sample space, F a σ-algebra and P is a
probability measure and a measurable space(S,Σ) where S is measurable with respect to the
σ-algebra Σ, a stochastic process is a collection of S-valued random variables

{Xt : t ≥ 0}

The finite dimensional distribution of the process X are the measures µt1,..,tn(F1 × ...× Fk) =
P[Xt1 ∈ F1, ..., Xtk ∈ Fk] where F1, ..., Fk ∈ Σ.

Two process are said to be equal in law if they have the same finite dimensional distributions.

Definition 4.1. Let (Ω,F ,P) a probability space. Let (Ft) a filtration i.e an increasing family of
σ-algebras of subset of Ω.

A function g : R× Ω is said Ft adapted if ω −→ g(t, ω) is Ft-measurable for any t ≥ 0.

Given a probability space the smallest filtration for which a process Xt is adapted is called the
filtration generated by the process.

Definition 4.2. Let (Ω,F , P ) a probability space, Ft a filtration. A random variable τ is called a
stopping time with respect to the filtration Ft if {τ ≤ t} ∈ Ft for each t ≥ 0

We will now define the most general process that can be the integrator of a stochastic imtegral:
the semi-martingales.

Definition 4.3. Let Ω an open set of Rn. Let u ∈ L1(Ω). The total variation of u is defined as

V (u,Ω) := sup

{∫
Ω

u∇ · ϕ : ϕ ∈ C1
c (Ω)||ϕ||L∞ ≤ 1

}
The set of function of bounded variation over Ω is defined as

BV(Ω) := {u ∈ L1(Ω) : V (u,Ω) <∞}

Definition 4.4. A stochastic process Xt is called a martingale with respect to a filtration Ft if Xt

is Ft-adapted and {
E[|Xt|] <∞
E[Xt|Fs] = Xs

where E[.|Fs] is the conditionated probability with respect to Ft.
A stochastic process is a local martigale (w. r. to a filtration) if it is an adapted stochastic

process such that exists a sequence of Ft-stopping times {τn} such that

P [τk < τk+1] = 1

P
[
lim
k−→∞

τk = ∞
]
= 1

Xmin(t,τk) is a martingale for any k ≥ 0

A process is called a semi-martigale if can be decomposed as a sum of a local martingale and a
cadlag process with bounded variation

Definition 4.5. a d-dimensional stochastic process Wt is called a Wiener process (or Brownian
motion) if

1. W0 = 0

2. Wt has independent increments

3. Wt is adapted

4. Wt+u −Wt is a Gaussian process with mean 0 and variance u

5. W has continuous paths i.e Wt is continuous for a.e t
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It is possible to show that such process exists ([40] definition 5.1)

Given a σ-algebra F it is always possible to consider its completion i.e. the σ-algebra generated
by F ∪N where N is the set of elements with measure 0 w.r.t. the probability measure. In similar
way it is possible to define the completion of a filtration so that all the elements ofN are measurable.

It is possible to show that if Wt is a Wiener process respect a particular filtration is a Wiener
process, remains a Wiener process also respect its completion.([40] theorem 7.9)

Moreover it is possible to show that the completion of the filtration generated by the Wiener
process satisfies

Ft =
⋂
ϵ>0

Ft+ϵ

([40] proposition 7.7)
Given a d-dimensional semimartigale Zt and an L2 function g : R× Rm×d −→ Rm it is possible

to construct a new process, called stochastic integral , we refer to [40] or [59] for the details.
Consider a partition 0 = t0 < t1, ..., < tN = 1. It is possible to show that the sum

N∑
i=1

g(τi, Zτi)(Z(ti)− Z(ti−1)

converges in mean square to different values depending on τi := θti + (1− θ)ti−1.

If θ = 0 this sum converges to the Itô integral and it is denoted with
∫ T
0
g(s, Zs)dZs

If θ = 1
2 this sum converges to the Statonovich integral and it is denoted with

∫ T
0
g(s, Zs) ◦ dZs

([59])

Definition 4.6. Given a filtered probability space (Ω,F ,P,Ft) we define the space L2
ad ([0, t]× Ω)

of square integrable, adapted processes. It is a normed space with norm

⟨Xt, Yt⟩L2
ad([0,t]×Ω) := E

[∫ t

0

XsYsds

]
It is possible to show that if g ∈ L2 adn Wt is a Brownian motion the Itô stochastic integral∫ t

0
g(s)dWs is a martingale ([59] theorem 3.2.1). Moreover, we have the following important formula

for the Itô integral:

Theorem 4.7 (Itô Isometry ([59] Corollary 3.1.7)). Let Wt a Brownian motion and Xt, Yt
stochastic processes adapted to the natural filtration of the Brownian

E
[∫ t

0

XsdWs

∫ t

0

YsdWs

]
= E

[∫ t

0

XtYtdt

]
(4.1)

In other words the Itô integral thought as a function from the space L2
ad ([0, t]× Ω) to L2(Ω) is an

isometry

Definition 4.8. Let Ws is a d-dimensional Wiener process, Ft a filtration such that Wt is a
martingale w.r.to the filtration. An Itô process is a stochastic process Xt on a probability space of
the form

Xt(ω) = X0 +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dWs

denoted as dXt = utdt+ vtdWt where ut is Ft-adapted and vt is progressively measurable i.e

1. (t, ω) −→ f(t, ω) is B × F measurable (where B is the Borel σ-algebra on [0,∞])

2. f(t, ω) is Ft adapted

3. f ∈ L2
loc([0,∞])

Theorem 4.9 (Itô’s lemma [59] theorem 4.2.1). Let dXt = utdt + vdWt an m-dimensional Itô
process. Let g : R+ × Rm a C2 map. Than g(t,Xt) is an Itô process whose components are given
by

d(gk(t,X)) = L0gk(t,X)dt+ L1gk(t,X)dWt (4.2)

where

L0 =
∂

∂t
+ ut

∂

∂x
+

1

2
v2t
∑
i,j

∂2

∂xi∂xj

L1 = vt
∑
i

∂

∂xi
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If the process is defines by using the Stratonovich integral, the Itô’s formula becomes

d(gk(t,X)) = (
∂

∂t
+ u

∂

∂x
)gk(t,X) + L1gk(t,X)dWt

4.2 Solution of stochastic differential equation

We define now the strong solution for stochastic differential equations

Definition 4.10. Let (Wt)t≥0 be a Brownian motion with respect to a filtration Ft. A progressively
measurable process Xt is a (strong) solution with initial condition ξ if{

Xt −X0 =
∫ t
0
a(s,Xs)ds+

∑
r

∫ t
0
br(s,Xs)dWr(s)

X0 = ξ
(4.3)

holds for a.e. t ≥ 0

Definition 4.11. Let a : R × Ω and b : R × Ω two progressively measurable function. Let Xt a
strong solution of equation (4.3). That is said to be pathwise unique if, given any other solution
Yt of (4.3) we have that

P(sup
t=0

(|Xt − Yt|) = 0) = 1

We have the following result of (strong) existence and unicity for an SDE

Theorem 4.12 ([59], theorem 5.2.1). Let T > 0 and a(.; .) : [0;T ]×Rn −→ Rn; b(.; .) : [0;T ]×Rn −→
Rn×m be measurable functions such that for any t ∈ [0, T ], x, y ∈ Rn satisfy

|a(t, x)|+ |b(t, x)| ≤ C(1 + |x|) (4.4)

for some constant C.

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ D|x− y| (4.5)

for some constant D.
Let Z be a random variable which is independent of the σ-algebra generated by the Wiener

process Wt and such that
E[|Z2|] <∞

Then the stochastic differential equation of equation (4.3) has a unique t-continuous solution Xt(ω)
with the property that Xt is adapted to the filtration generated by Z and Wt and

E

[∫ T

0

|Xt|2dt

]
<∞

Given a semi-martingale Zt and a matrix valued vector field V it is possible to define the
Stratonovich SDE

Xt = Vi(Xt) ◦ dZit
By converting the Stratonovich integral to the Itô integral (see [6] page 137) we obtain the equiv-
alent formulation for the SDE:

Xt = Vi(Xt)dZ
i
t +

1

2
∇Vj

Vi(Xt)d
〈
Zi, Zj

〉
t

where d
〈
Zi, Zj

〉
t
is the covariation process i.e

d
〈
Zi, Zj

〉
t
= lim

|π|−→0
(Zitk − Zitk−1

)(Zjtk − Zjtk−1
)

where π with range over the partitions of the interval [0, t].
In particular is known that if Zt is a Brownian motion d

〈
Zi, Zj

〉
t
= δi,jdt ([40] chapter 3.3) so

in this case the Itô formulation became

Xt = Vi(Xt)dZ
i
t +

1

2

∑
i

∇Vi
Vi(Xt)dt

By the Itô’s formula we obtain that for any f ∈ C2([0, T ])
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f(Xt) = f(X0) +

∫ t

0

Vi(f(Xt)) ◦ dZit

f(Xt) = f(X0) +

∫ t

0

Vif(Xt)dZ
i
t +

1

2

∑
i

∇ViVi(f(Xt))dt

In the next sections we will describe various numerical time-discretization methods for numerical
solution of SDEs. In order to evaluate the accuracy of such methods there are two ways: strong
convergence and weak convergence Suppose X̄N be a numerical approximation to XtN after N
steps with constant step size h = tN

N . X̄N is said to converges strongly to X with order p if ∃C > 0
and δ > 0 such that for each h ∈ (0, δ)

E[|X̄N −XtN |] ≤ Chp

X̄N is said to converges weakly with order p to X if for each test function ϕ in a suitable space
there is a constant C > 0 and δ > 0 such that, for all h ∈ (0, δ) such that

|E[ϕ(X̄N )]− E[(ϕ(XtN )]| ≤ Chp

4.3 Itô-Taylor expansion

Let a : R × Ω −→ Rn, {σr : R × Ω −→ Rn×d}r=1,··· ,q progressively measurable functions. Let
{Wr}r=1,··· ,n n independent d-dimensional Brownian motions. Consider the system of (Itô) SDEs

dX = a(t,X)dt+
n∑
r=1

σr(t,X)dWr(t) (4.6)

It is possible to define an analogous to the Taylor expansion by recursively applying the Itô’s
formula (4.2).

Definition 4.13. Let α = (j1, · · · , jl) a multi-index. Define α− = (j1, · · · , jl−1). Let f : R×Rn −→
Rn a smooth function.

Let ρ, τ two stopping times 0 < ρ(ω) < τ(ω) < T
The multiple Wiener (Itô) integral is defined recursively as follow:

Iα[f(., X.)]ρ,τ =


f(τ) if α = ∅∫ τ
ρ
Iα−[f(., X.)]ρ,sds if jl = 0∫ τ

ρ
Iα−[f(.)]ρ,sdWs if jl > 0

We have the following result on the first momentum of the Itô multiple integral:

Theorem 4.14 ([41] lemma 5.7.1). Let α a multi-index such that at least one of its terms it is
different by 0, f a smooth function and 0 < ρ < τ < T two stopping times from the interval [0, T ].
Then almost surely

E[Iα[f ]ρ,τ |Fρ] = 0

Theorem 4.15 ([41] theorem 5.5.1). A set of multi-indexes A is called hierarchical if it is not
empty, all the multi-indexes of A are of finite length and for each α = (j1, · · · , jl) ∈ A/∅ we have
that −α := (j2, · · · , jl) ∈ A.

The remainder set of a hierarchical set is defined as B(A) = {α multi-index : α /∈ A : −α ∈ A}.
Given Xt solution of the SDE (4.6) define the diffusion operators of the process as

L0 =
∂

∂t
+ ak

∂

∂xk

∑
i

σki σ
l
i

∂2

∂xk∂xl

for j ∈ {1, · · · , n} define

Lj = σkj
∂

∂xk

Let ρ, τ 2 stopping times 0 ≤ ρ(ω) ≤ τ(ω) < T , A a hierarchical set and f : R+ × Rd −→ R a
smooth function. The Itô Taylor expansion

f(τ,Xτ ) = f(ρ,Xρ)+
∑

α=(j1,··· ,jl)∈A/∅

Iα[L
j1 , · · · , Ljlf(ρ,Xρ)]ρ,τ+

∑
α=(j1,··· ,jl,jl+1)∈B(A)

Iα[L
j1 , · · · , Ljl+1f(., X.)]ρ,τ

holds if all the derivatives and the multiple integrals of the definition are well defined
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Example 4.16. If n = 1 and A = {∅} we have that B(A) = {(0), (1)} so the Taylor Itô expansion
became:

f(τ,Xτ ) = f(ρ,Xρ) +

∫ τ

ρ

L0f(s,Xs)ds+

∫ τ

ρ

L1f(s,Xs)dWs

That is the Itô formula of equation (4.2)

We have the following result about the weak convergence of numerical schemes for SDEs.

Theorem 4.17 ([41] Corollary 5.12.1). Let a : R × Ω −→ Rn, {σr : R × Ω −→ Rn×d}r=1,··· ,q
progressively measurable functions which satisfy the linear growth condition (4.4) and the Lipschitz
condition (4.5). Suppose Xt is the solution of equation (4.6) with respect to a filtration Ft.

Let β a positive integer. Λβ = {α multi-indexes : |α| ≤ β}.
for each α = (j1, · · · , jn) let fα = Lj1 , · · · , Ljlf where f is a smooth function. Let T̃α,t0,. some

random variables such that there exists some constant K such that for any αk ∈ Λβ/∅

|E[
l∏

k=1

Iαk,t0,t −
l∏

k=1

Ĩαk,to,t|Ft0 ]| ≤ K(t− t0)
β+1

for l = 1, · · · , 2β + 1. For t ∈ [t0, T ] define

Uβ(t) =
∑
α∈Λβ

fα(t0, Xt0)Ĩα,t0,t

Than for any test function ϕ ∈ C2(β+1) there exists a constant Cϕ and a positive integer r such
that

|E [ϕ(Xt)− ϕ(Uβ(t))|Ft0 ]| ≤ Cϕ(1 + |Xt0 |2r)(t− t0)
β+1

with Xt = X
t0,Xt0
t

Example 4.18. Consider the SDE of equation (4.3) with one Brownian motion. Let ϕ ∈ C2 a
test function. Consider the truncated Taylor expansion given by

ϕ(Xt+h) = ϕ(Xt0) +

∫ t0+h

t0

L0ϕ(Xs)ds (4.7)

Let Xt0 = x. By using the Itô formula we obtain that up to order one

E[ϕ(Xs)|X0 = x] = ϕ(x) + hL0ϕ(x) (4.8)

Suppose now X1 is a numerical scheme for Xt. Suppose this schemes has a weak Taylor expansion

E [ϕ(X1)|X0 = x] = ϕ(x) + hA0ϕ(x) + h2A1ϕ(x) + · · ·

To have (local) weak order 1 it is necessary and sufficient that A0 = L0. (see theorem 5.29)

4.4 The exotic aromatic trees formalism

We will now describe how by extending the classical Buthcer tree formalism described in [27,
chapter III] is it possible to simplifying the calculation that occurs in the SRK method. Following
[45] we will consider the particular case of additive noise

dX(t) = f(Xt) + σdWt

where σ > 0 is constant, Wt is a d-dimensional Brownian motion and f : Rd → Rd is a smooth
function that admits a C∞ potential V such that f(x) = ∇V (x) is globally Lipschitz.

The stochastic RK scheme that we consider is
X0 = x

Yi = Xn + h
∑
j aijf(Yj) +

∑
k d

(k)
i σ

√
hξ

(k)
n

Xn+1 = Xn + h
∑
i bif(Yi) + σ

√
hξ

(1)
n

(4.9)

where aij , bi, d
(k) are coefficients and ξ

(k)
n are independent standard Gaussian random variables

(see [67] for an analysis on the convergence of this method).
In the study of numerical solution of SDE the divergence and the Laplacian operators arise

naturally and the classical Butcher theory as no way to represent it.
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Definition 4.19. The set of aromatic forest is a directed graphsγ = (V,E) in which any node has
at most one outgoing edge. Its connected components are called aromatic trees.

There are two kind of aromatic trees:

• Aromas that are aromatic trees connected with one single edge ( , , )

• rooted trees

Definition 4.20. The elementary differential of an aromatic forest γ is defined as follow: denote
π(v) = {w ∈ V, (w, v) ∈ E} the set of all predecessors of the node v ∈ V and r the root of γ.
We also call V0 = V/r = {v1, ..., vm} the other nodes of γ. Finally we introduce the notation
Iπ(v) = (iq1 , ..., iqs), where the qk are the predecessors of v and where

∂Iπ(v)
f =

∂f

∂xiq1
...∂xiqs

Ff (γ) is defined as:

Ff (γ) =

d∑
iq1 ,...,iqs

(
∏
v∈V0

∂Iπ(v)
fiv )∂Iπ(r)

f

Example 4.21.

Ff ( ) = ∇ · f

Ff ( ) = (∇ · f)f
′
f

′′
(f, f)

We further extend the set of aromatic trees by adding the concept of ”liana”, a new kind of
edge that is represented as a dashed arc linking two given nodes. Such liana correspond to non
oriented edges between two nodes of the forest.

So an exotic aromatic tree is a triple γ = (V,E, L) where V are the nodes, E are the edges and
L are the lianas. We can define as well a new elemental differential.

Definition 4.22. We name r the root of γ = (V,E, L) and V0 = V/r = v1, ..., vm the other nodes
of γ. We denote l1, ..., ls the elements of L and for v ∈ V , JΓ(v) the multiindex (jlx1

, ..., jlxt
) where

Γ(v) = {lx1
, ..., lxt

}. Then Ff (γ) is defined as

Ff (γ) =

d∑
iq1 ,...,iqs

d∑
jlx1

,...,jlxt

(
∏
v∈V0

∂Iπ(v)
∂JΓ(v)

fiv )∂Iπ(r)
∂JΓ(r)

f (4.10)

Example 4.23.

Ff ( ) = ∆f

Ff ( ) =

d∑
i,j,k=1

d∑
l=1

∂lf∂ifj∂j∂lfk =
∑
l

∂lf
′(f ′(∂lf))

We also need a new kind of node to describe the Gaussian random variable which appears in
equation (4.9).

Definition 4.24. A grafted node is a new kind of node that is represented by a cross.
Let V be a set of nodes whose subset of grafted nodes is Vg let E be a set of edges such that each

node in Vg has exactly one outgoing edge and no ingoing edge, and let L be a set of lianas that
link nodes in V/V g; then γ = (V,E,L) is a grafted exotic aromatic forest. If γ = (V,E,L) is a
grafted exotic aromatic rooted forest, ϕ : Rd → R a smooth function, and ξ a random vector of Rd

whose components are independent and follow a standard normal law, the associated elementary
differential of γ is, with the same notation of equation (4.10) and V0 = V/{Vg ∪ {r}}

Ff (γ) =

d∑
iq1 ,...,iqs

d∑
jlx1

,...,jlxt

(
∏
v∈V0

∂Iπ(v)
∂JΓ(v)

fiv )(
∏
v∈Vg

ξiv )∂Iπ(r)
∂JΓ(r)

ϕ (4.11)
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Example 4.25.

Ff ( ) = ϕ
′′
(ξ, ξ)

Definition 4.26. Let EAT g the set of grafted exotic aromatic forest.

The order of τ ∈ EAT g is |τ | = N(τ)− Nc(τ)
2 +Nl− 1 where N is the number of nodes, Nc the

number of grafted nodes and Nl the number of lianas.
A grafted exotic aromatic B-series is

B(a, ϕ) =
∑

τ∈EAT g

h|τ |α(τ)F (τ)(ϕ) (4.12)

We can now use this new tree formalism to compute the expectation of the first stage of the
stochastic RK method (4.9).

Theorem 4.27 ([45]). Let γ ∈ EAT g be a grafted exotic aromatic rooted forest with an even
number of grafted nodes 2n, let ϕ : Rd → R be a smooth function, and let V × = {c1, ..., c2n} be the
set of grafted nodes of γ. We call P2(2n) the set of partitions by pair of {1, ..., 2n}.

Finally we define ψγ : P2(2n) → EAT g the application that maps the partition p of γ to the
aromatic forest where the grafted nodes are linked by lianas according to p. Then, the expectation
of F (γ)(ϕ) is given by

E[(γ)(ϕ)] =
∑

p∈P2(2n)

F (ψγ(p))(ϕ) (4.13)

Example 4.28.
E[Ff ( )(ϕ)] = 3Ff ( (ϕ)) = 3∆2ϕ

The number 3 is the number of ways we can pair the grafted nodes.
More in general if you have γ as a tree with only the root and 2n grafted nodes the mean is

E[F (γ)(ϕ)] =
(2n)!

2nn!
∆nϕ

Let’s compute the first stage of equation (4.9){
Y1 = x+ h

∑
j aijf(Yj) +

∑
k d

(k)
i σ

√
hξ

(k)
n

X1 = x+ h
∑
i bif(Yi) + σ

√
hξ

(1)
n

(4.14)

By inserting the first equation into the second and computing the Taylor series around x we obtain
(up to second order in h:

X1 = x+ σ
√
hξn + h

s∑
i=1

bif + h
3
2σ

s∑
i=1

bi

l∑
k=1

d
(
ik)f

′
(ξ(k)n )+

+ h2

 s∑
i=1

bi

s∑
j=1

aijf
′(f) +

σ2

2

s∑
i=1

bi

l∑
k=1

(d
(k)
i )2f

′′
(ξ(k)n , ξ(k)n )

+ · · ·

Where we have omitted the dependence on x of f .
Now let ϕ a test function with enough regularity (for example a polynomial). We are interest

to calculate ϕ(X1) up to second order. By expanding it in Taylor series around x we obtain:

ϕ(X1) = ϕ+ ϕ′

[
σ
√
hξn + h

s∑
i=1

bif + h
3
2σ

s∑
i=1

bi

l∑
k=1

d
(k)
i f

′
(ξ(k)n )+

+h2

 s∑
i=1

bi

s∑
j=1

aijf
′(f) +

σ2

2

s∑
i=1

bi

l∑
k=1

(d
(k)
i )2f

′′
(ξ(k)n , ξ(k)n )

]

+ϕ
′′

[
σ
√
hξn + h

s∑
i=1

bif + h
3
2σ

s∑
i=1

bi

l∑
k=1

d
(k)
i f

′
(ξ(k)n ) + o(h

3
2 ),−

]

+ϕ(3)

[
σ
√
hξn + h

s∑
i=1

bif + o(h),−,−

]
+ ϕ(4)

[
σ
√
hξn,−,−,−

]
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By expanding the product, taking the middle value and remembering that all the not integer
powers of h (corresponding to an odd number of normal distributions) disappear we have

E[ϕ(X1)|X0 = x] = ϕ(x) + hL+ h2A1

where

L = E[
s∑
i=1

biϕ
′
(f) +

σ2

2
ϕ

′′
(ξ(1)n , ξ(1)n )]

A1 = E[
∑
i

bi
∑
j

aijϕ
′
(f ′(f)) +

σ2

2

∑
i

bi
∑
k

ϕ
′
(f

′′
(ξ(k)n , ξ(k)n )) + σ2

∑
i

bid
(1)
i ϕ

′′
(ξ(1)n , ξ(1)n )+

+
1

2
ϕ

′′
(f, f) +

1

2
σ2ϕ(3)(ξ(1)n , ξ(1)n , f) +

σ4

24
ϕ(4)(ξ(1)n , ξ(1)n , ξ(1)n , ξ(1)n )]

In the formalism of exotic aromatic trees this two quantities can be rewritten as

A1 = E[
∑
i

bi
∑
j

aij +
σ2

2

∑
i

bi
∑
k

d
(k)
i + σ2

∑
i

bid
(1)
i +

1

2
+
σ

2
+
σ4

24
]

By using theorem 4.27 we obtain that

A1 =
∑
i

bi
∑
j

aij +
1

2
+
σ2

2
+ σ2

∑
i

bid
(1)
i +

σ

2
+
σ4

24

An analysis on the order condition to obtain an approximation of weak order 2 is done in [45].
An important property of a class of exotic aromatic B-series is that they are unchanged under

some affine transformations, namely.

Definition 4.29. Given a subgroup G ⊆ GL(d,R) ⋊ Rd, a differential operator G is said G-
equivariant if for all (A, b) ∈ G and for all f ∈ C∞(Rd,Rd)

Φ(Af(A−1(x− b) = (A, b) ◦ Φ(f) ◦ (A, b)−1

The exotic aromatic B-series B(a) with a() = 1, where is the empty tree are called exotic
aromatic B-series methods. It is possible to prove [45, theorem 3.6] that such methods are isometric
equivariant i.e are O(d,R)⋊Rd-equivariant.

The exotic aromatic trees formalism describes weak approximation of SDEs on Euclidean spaces.
Finding an extension of such formalism for SDEs on Riemannian manifold is an actual subject of
research and it can lead to a better understanding of the properties of the numerical schemes that
approximate such processes.

5 Feller semi-groups

5.1 Feller processes

We will now describe a useful tool to calculate the solution of stochastic differential equation. We
start with the following definition

Definition 5.1 (Markov processes). Given a filtered probability space (Ω,F ,P, (Ft)t≥0) and a
measurable space S a stochastic adapted process Xt : Ω −→ S is said to have the Markov property if
for each measurable A ∈ S

P (Xs+t ∈ A|Fs) = P (Xs+t ∈ A|Xs)

where the P(.|Fs) is the conditionated probability w.r.to the filtration Ft and P(.|Xs) are the con-
ditionated probability w.r. to the filtration generated by the process.

If for every stopping time τ we have

P (Xt+τ ∈ A|Fτ ) = P (Xt+τ ∈ A|Xτ )

where Fτ := {A ∈ F : ∀t ≥ 0 (t ≤ τ) ∈ Ft},we say that the process has the strong Markov
property.
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Definition 5.2. A d-dimensional Markov family is an adapted process X on some measure space
(Ω,F) together with a family of probability measures {Px}x∈Rd such that for all x ∈ Rd Px(F)
is universally measurable (i.e it is measurable w. r. to any complete probability measure which
measure all the Borel sets)

Px(X0 = x) = 1

Px (Xs+t ∈ A|Fs) = P (Xs+t ∈ A|Xs)

Px (Xt ∈ A|Xs = y) = Py (Xt ∈ A) P xX−1
s a.e.

Proposition 5.3. If a Stochastic process has independent increments it is a Markov process. In
particular, the Brownian motion is a Markov process

Proof.

E [Xt+s|Xs] = E [Xt+s −Xs +XS |Xs] = E [Xt+s −Xs + x]x=Xs
= E [Xt+s|Fs]

where we have used lemma A.3 of [71] (the freezing lemma)

A particular class of Markov families is given by the Feller processes, such processes are char-
acterized by the property of their transition law.

Definition 5.4. The transition kernel of a stochastic process p(s,X, s+ t,H) is given by

p(s,Xs, s+ t,H) = P(Xs+t ∈ H|Xt)

a process is called time homogeneous if p(s,Xs, s+ t,H) = p(0, Xs, t,H) := µt(Xs, H).
Given a time homogeneous stochastic process, if we call C0 the set of continuous functions that

vanishes at infinity the transition operator associated with the kernel of the process is given by
Tt : C0 −→ C0 :

(Ttf)(x) :=

∫
µt(x, dy)f(y)

Because µt is a probability measure the transition operator is a positive contraction operator i.e if
0 ≤ f ≤ 1 we have 0 ≤ Ttf ≤ 1

Proposition 5.5. The transition operator {Tt}t≥0 associated to a time homogeneous Markov
family is a semi-group

Proof. µ0(x, .) = δx the Dirac delta centered in x. The operator associated to such kernel is the
Identity operator.

By the Chapman-Kolmogorov equation (see e.g. [60] chapter 2.2) we obtain that Tt ◦ Tsf =
Tt+sf

Definition 5.6. A Feller semi-group is a collection of positive contraction linear maps on C0 such
that they form a semi-group w.r. to the composition and limt−→0 ||Ttf − f || = 0 i.e it is strongly
continuous.

A Feller process is a time-homogeneous Markov process such that their transition operators
form a Feller semi-group.

A Feller semi-group is characterized by its infinitesimal generator.

Definition 5.7. The infinitesimal generator of a strongly continuous semi-group is given by

Lf = lim
t−→0

t−1(Ttf − f)

for any f ∈ D(A) := {f ∈ C0 : ∃ limt−→0 t
−1(Ttf − f)}

Theorem 5.8. A strongly continuous semi-group is uniquely determined by its infinitesimal gen-
erator

Proof. Let Tt, St two strongly continuous semi-groups and let (A,D(A)) an operator such that

A = lim
t−→0

Ttf − f

t
= lim
t−→0

Stf − f

t
(5.1)

because t −→ ||Tt|| and t −→ ||St|| are continuous there is C > 0 : ||Tt||||St|| < C.
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For a fixed T > 0 and ϵ > 0, there exists a δ > 0 such that, for any f ∈ D(A), for any 0 ≤ h ≤ δ

h−1||Thf − Shf || <
ϵ

TC

Now by using the semi-group property and (5.1) as in [61] we obtain that

||Ttf − Stf || < ϵ

The result follows by the arbitrariness of ϵ, T and f

Example 5.9. The Brownian motion transition operator is given by

Ttf(x) =
1

2π
√
t

∫ t

0

e−
(x−y)2

t dy

It is easy to see that has the Feller property and using the Itô’s formula we obtain that the in-
finitesimal generator is the Laplacian

We have the following properties of the Feller semi-group and its infinitesimal generator, of
great importance for our analysis

Theorem 5.10 (Kolmogorov backward and forward equations [37] theorem 19.6). Let
{Tt}t≥0 a Feller semi-group and (L,D(L)) its infinitesimal generator. Tt is strongly continuous
and Ttf is differentiable at 0 iif f ∈ D(L). Moreover, it satisfies the Kolmogorov backward and
forward equations

d

dt
(Ttf) = LTtf (5.2)

d

dt
(Ttf) = TtLf (5.3)

In particular, L commutes with Tt for any t

Example 5.11. Let Tt : C0(R) −→ C0(R) given by

Ttf(x) = f(x+ t)

It is strongly continuous and ||Ttf || = ||f || so it is a Feller semi-group. Its infinitesimal generator
is

Lf = lim
t−→0

t−1(f(x+ t)− f(x)) =
d

dx
f(x)

The Kolmogorov backward (and forward) equations say that

d

dt
f(x+ t) =

d

dx
f(x+ t)

A linear operator A : D(A) −→ H from a linear subspace D(A) of a Banach space to an Hilbert
space H is said closable if there is an extension Ã : D(Ã) −→ H with D(A) ⊆ D(Ã) that is closed
(i.e xn −→ x and Ãxn −→ v imply x ∈ D(Ã) and Ax = v). We want to know when a linear operator
is closable and its closure is the infinitesimal generator of a Feller semi-group

Theorem 5.12 (Hille-Yoshida([37] theorem 19.11)). Let A a linear operator in C0 with domain
D(A). Then A is closable and its closure is the generator of a Feller semi-group on C0 iif

1. D(A) is dense in C0

2. there exists λ0 > 0 such that Im(λ0I −A) is dense in C0

3. (positive maximum principle) if max(f, 0) ≤ f(x) for some f ∈ D(A) and some x then
Af(x) ≤ 0

Theorem 5.13 (Dynkin’s formula ([37] lemma 19.21)). Let Xt a Feller process, L its infinites-
imal generator. Than for any initial distribution ν of X the process and for any f ∈ D(L)

Mf
t = f(Xt)− f(X0)−

∫ t

0

Lf(Xs)ds (5.4)

is a martingale. in particular, for any bounded stopping time τ

E [f(Xτ )|X0 = x] = f(x) + E
[∫ τ

0

Lf(Xs)ds|X0 = x

]
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We continue by giving an abstract formulation of the Feynman-Kac formula.

Definition 5.14. The resolvent of a C0 semi-group Tt is its Laplace transform

Rλ =

∫ ∞

0

e−λt(Ttf)dt

If Tt is a Feller semi-group and L is its generator,then Rλ = (λI − L)−1 (where I is the identity
operator) ([37] theorem 19.4)

Theorem 5.15 (Feynman-Kac formula). Let (E, E) a measure space and v a not negative E-
measurable function such that Rλv(x) <∞, for each x(where Rλ is the resolvent of the transition

kernel of Xt). Let At :=
∫ t
0
v(Xs), where Xs is a progressively measurable E-valued Feller process

in some filtered probability space (Ω,F ,P, (Ft)t≥0). Define

T vt f(x) := E
[
e−A(t)f(Xt)|X0 = x

]
Let Rvλ the resolvent of this semi-group and We have that

Rvλ = Rλ −RλvR
v
λ

Moreover if v is a continuous non-negative function and we call L the generator of X, {P vt }t≥0 is
a Feller semi-group with generator

Lvf(x) = Lf(x)− v(x)f(x) (5.5)

(the theorem still holds in the more general case in which Xt is a Markov process , see ([64] chapter
III.19)

Proof. We will give an idea of the proof.
At is a perfect, continuous, homogeneous, additive functional (PCHAF) of X (see [64] chapter

III.18). In particular we need that it is an Ft adapted process such that F-a.s. in Ω:

1. t −→ At is continuous and not decreasing and A0 = 0

2. calling θt : Ω −→ Ω the time shift θt(ω)(s) = ω(s+ t) we have

As+t(ω) = As(ω) +At(θt(ω))F-a.s ∈ Ω

By the continuity of At and the additive property 2 and the Feller property of Xt we obtain that
T vt is a Feller semi-group. Because of the measurability hypothesis we apply the Fubini theorem,
so the resolvent of T vt is

Rvλf(x) = E
[∫ ∞

0

dte−λt−A(t)f(Xt)|X0 = x

]
for any bounded measurable function that vanish at infinite.

(Rλ −Rvλ)f(x) =

=E
[∫ ∞

0

dte−λt−A(t)f(Xt)(e
A(t) − 1)|X0 = x

]
= E

[∫ ∞

0

dte−λt−A(t)f(Xt)

∫ t

0

ds v(Xs)e
A(s)|X0 = x

]
=

=E
[∫ ∞

0

ds e−λsf(Xs)

∫ ∞

0

v(Xu ◦ θs)e−λu−Au◦θsdu|X0 = x

]
= E

[∫ ∞

0

e−λsv(Xs)R
v
λf(Xs)ds|X0 = x

]
=

=RλvR
v
λf(x)

There is a way to associate to any Feller semi-group an associated semigroup of Markov kernels.
Indeed by the Markov-Riesz theorem given any linear functional Tt on C0 there is an unique Radon
measure µt such that

Ttf =

∫
µt(x)f(x)

If such measures are probability measures the system is called conservative.
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In that case by the Kolmogorov existence theorem ([40] chapter 2.2 theorem 2.2), given any
probability distribution µ0 there is a process Xt with finite dimensional distributions

P(Xt1 ∈ A1 · · ·Xtn ∈ An) =

∫
χA1

(x1) · · ·χAn
(xn)µtn−tn−1

(xn1
, dxn) · · ·µt1(x0, dx1)µ0(dx0)

Where χA is the indicator function of A (χA(x) = 1 if x ∈ A, and it is 0 otherwise).
By this formula it is possible to characterize the action of a conservative Feller semi-group as

Ttf(x) = E [f(Xt)|X0 = x] (5.6)

If the Feller semi-group on a space S is not conservative it is always possible to extend it
to a conservative process in the space S ∪ {∂}, where ∂ is the point at infinity of the one point
compactification if S is not compact and an isolated point if S is compact. Any function on C0(S)
can be extended to C0(S ∪ {∂}) by imposing f(∂) = 0 and the corresponding Feller semi-group is

T̂tf = f(∂)− Tt(f − f(∂))

This is a Feller semi-group and generate Markov kernels µt such that µt(x, {x}) = 1 ([37] lemma
19.13 and proposition 19.14) .

The random time e(X) := inft≥0{Xt = ∂} is called the explosion time of the process.

5.2 An example of Feller process: the Itô diffusion

A process is called Itô diffusion (on Rn) if is a solution of the SDE

Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dWs (5.7)

with b, σ globally Lipschitz coefficients.

Proposition 5.16 ([71] theorem 19.9). The Itô diffusion is a Feller process with Feller semi-group
given by

Ttf(x) = E [f(Xx
t )]

and infinitesimal generator given by

Lf(x) = bj(x)
∂

∂xj
f(x) + aij(x)

∂2f(x)

∂xi∂xj

where a(x) = σ(x)σT (x)

It is easy to see, by using the Itô’s formula that Mf
t of equation (5.4) is a martingale.

If we call u(t, x) = Ttf(x) equation (5.2) became

∂

∂t
u(t, x) = Lu(t, x) and u(0, x) = f(x)

that is the classical Kolmogorov backward formula (see [59] theorem 8.1.1)
Moreover by applying equation (5.5) to u(t, x) := T vt f(x) = E

[
e−A(t)f(Xt)|X0 = x

]
∈ C0 and

using equation (5.3) we obtain
∂

∂t
u(t, x) = (L − v)u(t, x)

that is the classical Feynman-Kac formula described in [59] theorem 8.2.1

5.3 Exponential map of semi-groups

Definition 5.17. A strongly-continuous semi-group Tt is said uniformly continuous if

lim
t−→0

Tt = I

where I is the identity operator

Example 5.18. The operator etA :=
∑∞
n=1

tn

n!A
n is a uniformly continuous operator for any

bounded operator A.
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Example 5.19. Consider the Hilbert space l2 and let {en} its standard orthonormal bases. Define

Ttf =

∞∑
n=1

e−nt ⟨en, f⟩ en

Because ||Tten − en|| = (1− e−nt) it is a strongly continuous semi-group, but for the same reason
it is impossible to make the norm arbitrarily close to 1 for all en so it is not uniformly continuous

The uniformly continuous semi-groups admits a nice representation in terms of their infinitesi-
mal generator.

Theorem 5.20 ([61] theorem 1.2). Let (L,D) a linear operator. It is the infinitesimal generator
of an uniformly continuous semi-group if and only if it is bounded.

The semi-group can be represented as

Ttf(x) := etLf(x) :=

∞∑
n=1

tn

n!
Lnf(x) (5.8)

We want to generalize equation (5.8) also in the case of unbounded generators, as the Laplacian
(generator of the Brownian in Rn) and more generally the Laplace-Beltrami operator associated
to a Riemannian metric (see definition 3.22) are unbounded operator in C0. In such case the series
doesn’t need to converges, but the set of functions for which this happens is dense in the domain
of the operator.

Definition 5.21. Let L,D(L) a linear operator. Name D(L∞) :=
⋂
nD(Ln).

f ∈ D∞ is called an analytic vector on a set U ∈ R if equation (5.8) converges for any t ∈ U

Example 5.22. Let Tt : C0(R) −→ C0(R) the time translation semi-group of example 5.11. We
have that D(L∞

) = C∞(R) and

etLf(x) =

∞∑
n=0

tn

n!

dn

dxn
f(x)

i.e. etLf(x) is the Taylor series of f(x) around 0. The set of analytical vectors are the functions
that are analytic in 0. This set is properly contained in C∞ and so in C0. Indeed d

dx is not a
bounded operator in C0

If the vector is analytic on R is called entire. If Tt is a strongly continuous group on a Banach
space X the set of entire vectors is dense in X (see [26] exercise II 3.12(2)). A similar result holds
in for Feller semi-groups.

We start by giving the following lemmas

Lemma 5.23 (Yoshida approximation ([37] lemma 19,7)). Let Tt a Feller semi-group, (L,D)
its infinitesimal generator and Rλ its resolvent. Let Lλ := λLRλ. It is a bounded operator and its

associated semi-group is Tλt := etL
λ

. We have

|Ttf − Tλt f | ≤ t|Lf − Lλf |

Moreover, Lλ λ−→∞−−−−→ L and Tλt f
λ−→∞−−−−→ Ttf for any f ∈ C0 uniformly for bounded t ≥ 0

Lemma 5.24 ([61] theorem 2.7). Let (L,D) the generator of a strongly continuous semi-group on
a Banach space X and let D(L∞) as in definition 5.21. D(L∞) is dense in X

Lemma 5.25. Let (L,D) a closed and densely defined linear operator on a Banach space X.
g : [0,∞) −→ X a continuous function. If g([0,∞)) ∈ D and t −→ Lg(t) is C0

L
∫ ∞

0

g(t)dt =

∫ ∞

0

Lg(t)dt

Proof. The adjoint L∗ of a closed, densely defines operator is densely defined so for any x∗ ∈ D(L∗)〈
L
∫ ∞

0

g(t)dt, x∗
〉

=

∫ ∞

0

⟨g(t),L∗x∗⟩ dt =
∫ ∞

0

⟨Lg(t), x∗⟩ dt =
〈∫ ∞

0

Lg(t)dt, x∗
〉

the result follow by the density of D(L∗)
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Lemma 5.26. The function gn : R −→ R defined as

gn(x) :=

{ √
n

2
√
2πx2

e−
n
x2 if x ̸= 0

0 otherwise

is a C∞(R) function such that

lim
x−→0

dk

dxk
gn(x) = 0 = lim

x−→∞

dk

dxk
gn(x)

for any k ≥ 0

Proof. Continuity in zero follow by lim
x−→0

x2e
n
x2 = ∞ and the fact that gn(x) is positive.

In [46] lemma 2.20 it is proven that

f(t) =

{
e−

1
t if x ̸= 0

0 otherwise

is C∞ and all the derivatives vanishes, the same proof applies to gn(x)

Theorem 5.27. Let Tt a Feller semi-group on a Banach space X and (L,D) its infinitesimal
generator. The set of analytic vectors on [0,∞) is dense in X and if f is an analytic vector on
U ⊆ [0,∞) equation (5.8) holds for Ttf for t ∈ U

Proof. Suppose f is an analytic vector on U and let t ∈ U . By the Yoshida approximation (lemma
5.23) we know that

Ttf = lim
λ−→∞

etL
λ

f

because Lλf −→ Lf and etLf is a well-defined function, the dominated convergence theorem implies
that equation (5.8) holds.

Let now f ∈ D(L∞) and gn as in lemma 5.26 we define

Snf :=

∫ ∞

0

gn(s)Tsfds

As the semi-group is a contraction we have

||Snf || ≤
∫ ∞

0

gn(s)||f ||ds = ||f ||

so the integral is well defined. By lemma 5.25, the Kolmogorov equation (5.2) and the integration
by parts formula we obtain, for any k > 0

AkSnf =

∫ ∞

0

gn(s)
d

ds
TsA

k−1fds = (−1)k
∫ ∞

0

dk

dsk
gn(s)Tsfds

This together with lemma 5.26 imply that the series (5.8) converges for Snf and any t ∈ [0,∞),
i.e. Snf is an analytic vector on [0,∞) for any n.

By applying a change of variable and using the strong continuity and the contraction property
of the semi-group

lim
n−→∞

Snf = lim
n−→∞

1

2
√
2π

∫ ∞

0

e−u
2

T u√
n
fdu = f

The boundedness of Sn and the Banach-Steinhaus theorem assure that the convergence is uniform.
So the set of analytic vectors on [0,∞) is dense in D(L∞) and D(L∞) is dense in X

A sufficient condition for a function to be an analytic vector on an interval [0, ρ) is given by
the following theorem, that is a consequence of the Cauchy-Hadamard theorem.

Proposition 5.28. Let (L,D) a closed, densely defined operator and suppose that f ∈ D(L∞) is
such that

lim sup
n−→∞

(
1

n!
||Lnf ||

) 1
n

=: ρ <∞

then, f is an analytic vector for t ∈
[
0, 1ρ

)
.

If ρ = 0, f is an analytic vector on [0,∞)
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We will now state a generalization of the Talay-Tubaro expansion (I.2). This will be the majot
tool to specify the order conditions of a weak stochastic Runge-Kutta method on Lie groups.

Theorem 5.29. Let Tt a Feller semi-group with generator (L,D). Suppose f ∈ D(Ln+1
) and

||Ln+1f || ≤M <∞. Define the n-th remainder as

RLnf = Ttf −
n∑
i=0

ti

i!
Lif

We have

||RLnf || ≤ M

(n+ 1)!
tn+1

Proof. By the contraction property of Tt

||Ln+1Ttf || = ||TtLn+1f || ≤ ||Ln+1f || < M

By equation (5.2), the integration by part formula and T0f = f∫ t

0

(t− τ)n

n!
TτLn+1fdτ =

∫ t

0

(t− τ)n

n!

dn+1

dτn+1
Tτfdτ = · · · = Ttf −

n∑
i=0

ti

i!
Lif = RLnf

and ∣∣∣∣∣∣∣∣∫ t

0

(t− τ)nTτLn+1fdτ

∣∣∣∣∣∣∣∣ ≤M

∫ t

0

|t− τ |n

n!
=

M

(n+ 1)!
tn+1

6 Stochastic Lie groups methods

We will now descibe stochastic generalization of the two methods that we have seen so far: the
Magnus expansion and Runge-Kutta methods. In the first section, folowing [38] we will present a
stochastic Magnus expansion for an Itô SDE on GL(n,R). We will verify how, in the simplest case
in which the vector fields are constant the formula will agree with the estimate given by theorem
5.29.

In the second section we will give a definition for a semi-martingale on a differentiable manifold.
Such definition will rely on the Whitney embedding theorem 1.11. Using the manifold semi-
martingales it is possible to give a definition for the solution of an SDE on a manifold. After
that, by following [25] we will give a characterization of martingale on a manifold in terms of the
connection.

In the third section we will further characterize SDEs on a manifold in terms of their develop-
ment on the frame bundle and the corresponding anti-development in Rn (see section 3.4)

In the fourth section we will define the main subject of the chapter: diffusion on manifold. Any
Feller process on a manifold will be shown to be a diffusion process. The converse is in general not
true.

Following [49] we will show how in a manifold of bounded geometry (see section 3.5) it is
sufficient to impose some condition on the coefficients of the diffusion operator to assure that the
process associated to it is Feller.

We will use this result and theorem 5.29 to find a weak second order Lie Runge-Kutta method
in a general matrix Lie group endowed with a left invariant metric.

As usual, through the whole chapter we will use the Einstein summation convention for repeated
indexes.

6.1 The stochastic Magnus expansion for Itô integrals in the general
linear group

The Magnus expansion described in section 2.4 can be generalized to the case of SDE in the
Stratonovich (as outlined in [74]) or Itô formalism.

Here we will present the latter in the particular case of a process with a single Brownian motion.
For the general case and the analysis of the convergence of such expansion can be found in [38].

We start in the case in which GL(n,R). As the space is diffeomorphic to Rn2

it is possible to
endowed it with the Euclidean metric. So the Itô formula of equation (4.2) holds.

The major theorem that we are going to reference is theorem 1 of [38]:
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Theorem 6.1. Let, Git, i = 0, · · · q bounded, progressively measurable matrix valued processes
on a filtered probability space (Ω,F ,P, (Ft)t≥0) equipped with a standard q-dimensional Brownian
motion W = (W 1, · · · ,W q).

Suppose that the Itô SDE {
dXt = G0

tXtdt+GjtXtdWt
j

X0 = In

has a unique strong solution in [0, T ], then there exists a positive stopping time τ ≤ T such that

1. Xt has a real logarithm (inverse of the exponential matrix) Yt ∈ gl(n) up to time τ i.e
Xt = expm(Yt)

2. such logarithm can be represented as an infinite series Yt =
∑∞
n=0 Y

(n)
t which converges

P-almost surely up the time τ .

By Lemma 1 of [38] we know that the second order differential of the exponential map at
v ∈ gl(n) is given by the map

(M,N) −→ Dv(M,N) expm(v)

where

Dv(M,N) = d expv(M)d expv(N) +

∫ 1

0

τ [d expv(N), exp(adτv(M)]dτ =

=

∞∑
n=0

∞∑
m=0

adnv (M) admv (N)

(n+ 1)!(m+ 1)!
+

∞∑
n=0

∞∑
m=0

[adnv (N), admv (M)]

(n+m+ 2)(n+ 1)!m!

Suppose now Y is a matrix-valued Itô process of the form

dYt = µtdt+ σjtdW
j
t

By using the Itô formula we obtain that

d expm(Yt) =

d expYt
(µt) +

1

2

q∑
j=1

DYt(σ
i
t, σ

j
t )

 expm(Yt)dt+ d expYt
(σjt ) expm(Yt)dW

j
t

Consider now the process Xϵ,δ
t which solves the Itô SDE{

dXϵ,δ
t = δG0

tX
ϵ,δ
t dt+ ϵGjtX

ϵ,δ
t dW j

t

Xϵ,δ
0 = In

(6.1)

It is possible to show [38] thatXϵ,δ
t in (6.1) admits the exponential representationXϵ,δ

t = expm(Y ϵ,δt )

and that Y ϵ,δt solves the Itô SDE

dY ϵ,δt = µϵ,δ(t, Y ϵ,δt )dt+ σϵj(t, Y
ϵ,δ
t )dW j

t Y ϵ,δ0 = 0

With

σϵj(t, .) = ϵ

∞∑
n=0

Bn
n!

adn. (G
j
t )

µϵ,δ(t, .) =

∞∑
n=0

Bn
n!

adn.

δG0
t −

1

2

q∑
j=1

D.(σ
ϵ
j(t, .), σ

ϵ
j(t, .)


(Bn is the n-th Bernoulli number).

Moreover it is possible to express Y ϵ,δt as an infinite series

Y ϵ,δt =

∞∑
n=0

n∑
r=0

Y (r,n−r)
s ϵrδn−r

.
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where we have weighted δ as ϵ2 to respect the ”probabilistic relation”
√
t ≈Wt, i.e

Y (r,n−r)
s = o(h

r
2 (n−r))

The general recursive formula for Y
(r,n−r)
s can be found in [38]. Here we present the terms up

to order 2 in the particular case in which q = 1. Let 0 < s < t < T .
Define the anti-commutator {A, B} = AB +BA

Y
(0,0)
t = 0

Y
(1,0)
t =

∫ t

0

G1
sdWs

Y
(0,1)
t =

∫ t

0

G0
sds

Y
(2,0)
t = −1

2

∫ t

0

[
Y (1,0)
s , G1

s

]
dWs −

1

2

∫ t

0

(G1
s)

2ds

Y
(3,0)
t =

∫ t

0

−1

2

[
Y (2,0)
s , G1

s

]
+

1

12

[
Y (1,0)
s ,

[
Y (1,0)
s , G1

s

]]
dWs+

+
1

4

∫ t

0

1

3

[[
Y (1,0)
s , G1

s

]
, G1

s

]
−
[
Y (1,0)
s , (G1

s)
2
]
ds

Y
(1,1)
t = −1

2

∫ t

0

[
Y (0,1)
s , G1

s

]
dWs −

1

2

∫ t

0

[
Y (1,0)
s , G0

s

]
ds

Y
(0,2)
t = −1

2

∫ t

0

[
Y (0,1)
s , Gos

]
ds

Y
(2,1)
t =

∫ t

0

−1

2

[
Y (1,1)
s , G1

s

]
+

1

12

([
Y (1,0)
s

[
Y (0,1)
s , G1

s

]]
+
[
Y (0,1)
s

[
Y (1,0)
s , G1

s

]])
dWs+

+
1

4

∫ t

0

1

3

[[
Y (0,1)
s , G1

s

]
, G1

s

]
+
[
Y (0,1)
s , (G1

s)
2
]
+
[
Y (2,0)
s , G0

s

]
ds

Y
(4,0)
t =

∫ t

0

−1

2

[
Y (3,0)
s , G1

s

]
+

1

12

([
Y (2,0)
s

[
Y (1,0)
s , G1

s

]]
+
[
Y (1,0)
s

[
Y (2,0)
s , G1

s

]])
dWs+

+
1

2

∫ t

0

−3

4

([
Y (1,0)
s , G1

s

])2
+

1

3

{[
Y (1,0)
s ,

[
Y (1,0)
s , G1

s

]]
, G1

s

}
+

1

6

[[
Y (2,0)
s , G1

s

]
, G1

s

]
ds+

+
1

4

∫ t

0

[
Y (2,0)
s , (G1

s)
2
]
− 1

3

[
Y (1,0)
s ,

[
Y (1,0)
s , (G1

s)
2
]]
ds

We are interested in calculating the quantities E
[∏

i,j Y
(mi,nj)
t

]
with 1

2

∑
imi +

∑
j nj ≤ 2 .

We start with a generalization of the Itô isometry

Lemma 6.2. Let Wt a Brownian motion, {Gjs}i=0,···p bounded, progressively measurable, L2,
matrix-valued stochastic processes on the filtered probability space (Ω,F ,P,Ft), where Ft is the
natural filtration of the Brownian so

E

(∫ t

0

G0
sdWs

) p−1∏
j=1

Gjt

(∫ t

0

GpsdWs

) = E

∫ t

0

G0
s

p−1∏
j=1

Gjt

Gpsds

 (6.2)

Proof. We will prove the result for elementary processes on gl(n,R). The result for L2 functions
will follow by a density argument as in chapter 3.1 of [59]. So Let Git(ω) :=

∑
j e
i
j(ω)χ[tj ,tj+1], for

i = 0 and i = p . The Itô integral of such processes is:∫ t

0

Gis(ω)dWs(ω) :=
∑
j

eij(ω)
(
Wtj+1 −Wtj

)

E

(∫ t

0

G0
sdWs

) p−1∏
j=1

Gjs

(∫ t

0

GpsdWs

) =
∑
ij

E

[
e0i

(
p−1∏
k=1

Gks

)
epj∆Wi∆Wj

]
=

=
∑
j

E

[
e0j

(
p−1∏
k=1

Gks

)
epj

]
(tj+1 − tj) =

∫ t

0

E

G0
s

p−1∏
j=1

Gjs

Gps

 ds
41



Using Fubini theorem we obtain the equality (6.2)

To calculate the mean value of the product of more than two stochastic processes we will need
the following result.

Lemma 6.3 (Isserlis’ theorem [36]). If (X1, · · · , Xn) is a zero mean multivariate normal random
variable then

E[
n∏
i=1

Xi] =
∑
p∈P 2

n

∏
(i,j)∈p

E[XiXj ]

where P 2
n is the set of all the possible partitions in pairs of {1 · · ·n}

By using lemma 6.2 , The Isserlis’ theorem 6.3, Fubini theorem and theorem 4.14 we obtain

E[Y (0,1)
t ] = Y

(0,1)
t

E[Y (0,2)
t ] = Y

(0,2)
t

E[Y (2,0)
t ] = −1

2

∫ t

0

(G1
r)

2dr

E[Y (2,1)
t ] =

1

4

∫ t

0

1

3

[[∫ s

0

G0
rdr,G

1
s

]
, G1

s

]
− 1

2

[
(G1

S)
2, G0

s

]
ds

E[Y (4,0)
t ] =

1

2

∫ t

0

−3

4

([∫ s

0

G1
rdr,G

1
s

])2

+
1

3

{[∫ s

0

G1
rdr,

[∫ s

0

G1
rdr,G

1
s

]]
, G1

s

}
ds+

− 1

4

∫ t

0

1

3

[[∫ s

0

(G1
r)

2dr,G1
s

]
, G1

s

]
+

1

2

[∫ s

0

(G1
r)

2dr, (G1
s)

2

]
+

1

3

[∫ s

0

G1
rdr,

[∫ s

0

G1
rdr, (G

1
s)

2

]]
ds

E[Y (1,0)
t · Y (1,0)

t ] =

∫ t

0

(G1
s)

2dr

E[Y (0,1)
t · Y (0,1)

t ] = (

∫ t

0

(G0
s)dr)

2

E[Y (2,0)
t · Y (2,0)

t ] =
1

4

((∫ s

0

(G1
r)

2dr

)2

+

∫ t

0

[∫ s

0

G1
rdr,G

1
s

]2
ds

)

E[Y (0,1)
t · Y (2,0)

t ] = −1

2

∫ t

0

G0
sdr

∫ t

0

(G1
s)

2dr

E[Y (1,0)
t · Y (1,1)

t ] = −1

2
·
∫ t

0

G1
s

[∫ s

0

G0
rdr,G

1
s

]
ds

E[Y (1,0)
t · Y (3,0)

t ] = −1

2
·
∫ t

0

G1
s

([
−1

2

∫ s

0

(G1
r)

2dr,G1
s

]
+

1

12

[∫ s

0

G1
rdr,

[∫ s

0

G1
rdr,G

1
s

]])
ds

E[(Y (1,0)
t )2Y

(0,1)
t ] =

∫ t

0

(G1
s)

2dr

∫ t

0

G0
sdr

E[Y (1,0)
t Y

(0,1)
t Y

(1,0)
t ] =

∫ t

0

G1
s

(∫ t

0

G0
sds

)
G1
sds

E[(Y (1,0)
t )2Y

(2,0)
t ] = −1

2

(∫ t

0

(G1
s)

2dr

)2

E[(Y (1,0)
t )4] = 3

(∫ t

0

G1
sds

)4

while all the other means are either 0 or can be obtained by permutating the factors of the
multiplication of the integrals above

Using this formulas it is possible to define a numerical scheme of weak order 2 for the case of
constant coefficients G0 and G1

Example 6.4. Let Xt the unique solution of the SDE

dXt = G0Xtdt+G1XtdWt

X0 = In
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where G0 and G1 are constant.

Y
( 1

2 )
t = Y

(1,0)
t

Y
(1)
t = tG0 + Y

(2,0)
t

Y
( 3

2 )
t =

∑
2ϵ+δ= 3

2

Y
(ϵ,δ)
t

Y
(2)
t =

∑
2ϵ+δ=2

Y
(ϵ,δ)
t

Let ξ a standard Gaussian random variable, h ∈ [0, T ] small enough and define the random
variables

Ŷ
( 1

2 )
h =

√
hG1ξ

Ŷ
(1)
h = h

(
G0 − 1

2
(G1)2

)
Ŷ
( 3

2 )
h = −1

4
h

3
2

[
G0, G1

]
ξ

Ŷ
(2)
h = h2

(
1

12

[[
G0, G1

]
, G1

]
− 1

8

[
(G1)2, G0

])

By direct verification we obtain that given any set of indexed αi ∈
{

1
2 , 1,

3
2 , 2
}
such that

∑
i αi ≤ 2

E

[∏
i

Y
(αi)
h −

∏
i

Ŷ
(αi)
h

]
= O(h3)

or, more explicitly

E [Xt|X0 = In] = In + hG0 + h2
1

2
(G0)2 + o(h2) (6.3)

This is consistent with the result of theorem 5.29, Indeed with the indetification Mn(R) ∼= Rn2

the
coefficients are globally Lipschitz, so by theorem 5.7 the process is Feller. Its infinitesimal generator
can be written in a base as

Lf(x) =
(
(G0x)

i ∂

∂xi
+

1

2
(G1x)

i(G1x)
j ∂2

∂xi∂xj

)
f(x)

Let now f : Mn(R) −→ R be a coordinate function. Let K a compact set of Mn(R) and U a
neighbourhood of K. Let fK a smooth function whose support is contained in U and such that it
agrees with f on K. Let τ the exit time from K. By theorem 5.29, for any t < τ

E[fK(Xt)|X0 = In] = In + LfK(In) + L2fK(In) +O(h3)

Because the second derivative of a coordinate function is zero this formula agrees with equation
(6.3)

6.2 Semi-martingales and SDEs on Riemannian manifolds

Definition 6.5. Let M a differentiable manifold and (Ω,F ,P,Ft) a filtered probability space and
let τ a stopping time.

A continuous process X defined on [0, τ) is an M -valued semi-martingale if f(X) is a real
semi-martingale on [0, τ) for any f ∈ C∞(M) (see definition 4.4)

Let M̂ =M ∪ {∂} the one point compactification of a non-compact manifold (if M is compact
M̂ =M) and define the path space

Ŵ (M) :=
{
w : [0,∞) −→ M̂ : w is continuous, w(0) ∈M and if w(t) = ∂ then ∀ t′ > tw(t′) = ∂

}
and let B(Ŵ (M)) the σ-algebra generated by the Borel cylinders sets and define the explosion
time as

e(w) = inf{t : w(t) = ∂} (6.4)
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Definition 6.6. Let {Gi}ki=0 a family of vector fields overM and let Xt a Ft-adapted Ŵ (M)-valued
random variable over a filtered probability space (Ω,F ,P,Ft) and define Ft-Brownian motions W i

t .
Xt is the solution of the SDE

dXt = G0(Xt)dt+Gi(Xt) ◦ dW i
t (6.5)

if, for any f ∈ C∞
c (M) (the set of compactly supported smooth functions over M) f(Xt) if

f(Xt)− f(X0) =

∫ t

0

Gif(Xs) ◦ dW i
s +

∫ t

0

G0f(Xs)ds (6.6)

where the Stochastic integral is intended in the Stratonovich sense.

By the Whitney embedding theorem 1.11 any manifold can be thought as an embedded sub-
manifold of RN for N big enough. We define the coordinates function f : M −→ RN such that
f i(x) = xi, where xi is the i-th coordinate of x in RN . We have the following theorem

Theorem 6.7 ([32] proposition 1.2.7). SupposeM is a closed submanifold of RN and let {f i}i=1···N
be the coordinate functions and let Xt an M -valued continuous process

1. Xt is a semi-martingale on M if and only if f i(Xt) is a real semi-martingale for each i =
1 · · ·N

2. Xt is a solution of the SDE of equation (6.5) up to a stopping time σ if and only if equation
(6.6) holds for any f i, i = 1 · · ·N and for each 0 ≤ t < σ

Given any SDE on a manifold as in equation (6.5) it is possible to extend the vector fields
(considering that as smooth function from M to RN to a vector field on RN . Because vector fields
are tangent to M if X0 ∈M the SDE stays on M.

Moreover, If we define a solution in RN up to its explosion time (defined as in equation (6.4))
it is possible to weaken the sufficient condition for existence and uniqueness of theorem 5.8. In
particular, we don’t need the coefficients to have linear growth anymore (see [32] proposition 1.1.9).
So, because the Locally Lipschitz condition is already satisfies we have an uniqueness result for an
SDE on a manifold. In summary

Theorem 6.8. Let G̃i the extension of the vector fields in equation (6.5) and suppose Xt is the
solution of the extended equation

dXt = G̃0(Xt)dt+ G̃i(Xt) ◦ dW i
t

up to the explosion time e(X) and suppose X0 ∈ M , then Xt ∈ M for any 0 ≤ t < e(X) ([32]
proposition 1.2.8).

Moreover the solution of the SDE (6.5) exists up to the explosion time and is unique ([32]
theorem 1.2.9)

Remark. This formalism for SDE on manifolds relies on a non-canonical embedding in an Eu-
clidean space. It is possible to define the stochastic integral and the solution of SDEs on a Rieman-
nian manifold endowed with a traceless connection intrinsically. This requires to define the space
of second order tangent vectors [25, chapter 6].

If the manifold is a Lie group G with Lie algebra g this space is a submodule of the universal
enveloping algebra of g.

We continue with the definition of a M -valued martingale

Definition 6.9. Let (M, g,∇) a Riemannian manifold endowed with a torsion-free connection and
X an M -valued semi-martingale.

X is a martingale w.r.to the connection ∇ if, for any f ∈ C∞(M) we have

f(Xt) = f(X0) +Mt +

∫ t

0

∇2f(dX, dX) (6.7)

where Mt is a real local martingale. It is possible to characterize a martingale in local coordinates
(see [25] 4.20). By partitioning the interval [0, e(X)) in an increasing sequence of stopping times
{τn} so that the process stays in a local chart for any interval [τn, τn+1].

A semi-martingale Xt is a martingale if and only if there exists a real local martingale such
that in [τn, τn+1]

Xi
t = Xi

0 +M i
t −

1

2

∫ t

0

Γijk(Xs)d
〈
M j ,Mk

〉
s

where d
〈
M j ,Mk

〉
s
is the quadratic variation process and Γijk are the Christoffel symbols
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6.3 Stochastic developments

In section 3.4 we have defined the development of a curve in M and the anti-development of a
curve in F(M)(M). There is a stochastic analogous to that.

In all the section (M, g,∇) is a Riemannian manifold endowed with the Levi-Civita connection
and all the processes are defined on a filtered probability space (Ω,F ,P,Ft) and are Ft-adapted.
We denote π : F(M) −→M the projection from the frame bundle to the manifold.

Definition 6.10. Consider the following SDE on F(M):

dUt =
∑
i

Hi(Ut) ◦ dW i
t (6.8)

where W is an Rd semi-martingale and Ui are the fundamental horizontal vector fields on F(M)
(see equation (3.7)).

An F(M) valued semi-martingale U is said to be horizontal if there exists an Rd-valued semi-
martingale W such that equation (6.8) holds. W is called the anti-development of U (or of X =
πU).

A stochastic development in F(M) of an Rd-valued semi-martingale W at the starting frame
U0 is a solution of equation (6.8). Its projection is a stochastic development of W in M .

U F(M)-valued semi-martingale is a stochastic horizontal lift of an M -valued semi-martingale
X if πU = X

There is a 1-1 correspondence between stochastic processes on a manifold, their stochastic
development and the corresponding anti-development as shown in the next theorems

Theorem 6.11 ([32] theorem 2.3.5 and lemma 2.3.7). Let X an M -valued semimartingale up to
a stopping time τ and U0 a F(M)-valued F0-random variable such that πU0 = X0. Then, there is
an unique horizontal lift {Utt ∈ [0, τ)} of X starting at U0.

The horizontal lift of X is defined up to τ i.e. there is no explosion in the vertical direction.

Lemma 6.12 ([32] lemma 2.3.3). Suppose M is a closed submanifold of RN and let P (x) : RN −→
TxM the orthogonal projection from RN to TxM (thought as a subspace of RN ). Let X anM -valued
stochastic process. We have that

dXt = Pα(Xt) ◦ dXα
t

Theorem 6.13 ([32] theorem 2.3.4). An horizontal semi-martingale U on F(M) has a unique
anti-development Wt, namely

Wt =

∫ t

0

U−1
s Pα(Xs) ◦ dXα

s

Where P (x) : RN −→ TxM is the orthogonal projection defined in lemma 6.12

We have the following result that allows us to find an SDE for the horizontal lift of a process

Theorem 6.14 ([32] proposition 2.3.8). Let X be a semi-martingale on M and suppose it is the
solution of the SDE

dXt = Vi ◦ dZit
Let V ∗

i the horizontal lift of Vi and U0 such that πU0 = X0, then the horizontal lift U of X, starting
at U0 is the solution of the SDE

dUt = V ∗
i dZ

i
t

the anti-development of X is given by

Wt =

∫ t

0

U−1
s Vi(Xt) ◦ dZis

6.4 Diffusion processes on a manifold

As in the case of Rn on a manifold is it possible to define a Markov process whose infinitesimal
generator satisfies the Dynkin formula of equation (5.13).

For all the chapter (M, ⟨., .⟩ ,∇) will denote a Riemannian manifold endowed with the Levi
Civita connection.
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Definition 6.15. Given a linear differential operator (P,D(P) ⊆ C0(M)). Let (U,x) a chart.
The total symbol of P is defined as

P (x, ξ) = e−⟨x,ξ⟩P (e⟨x,ξ⟩)

In local coordinates this is equivalent to the map P := aαDα −→ aαξα1
· · · ξalphak , where α =

(α1, · · · , αk) is a multi-index and Dα := ∂
∂xα1

· · · ∂
∂xαk

. The principal symbol of P is defined as the
homogeneous component of maximum degree.

An operator is called elliptic in p ∈M if its principal symbol is positive definite in p.
A second order operator is said uniformly elliptic w.r. to the metric g if exists a constant C > 0

such that
P ij(x)ξiξj ≥ Cgij(x)ξiξj (6.9)

Proposition 6.16. Let (M, g,∇) a compact Riemannian manifold, so any elliptic operator is
uniformly elliptic.

Proof. In any local chart gij is bounded and so equation (6.9) holds.

Given an elliptic operator it is possible to define a diffusion process generated by L

Definition 6.17 ([32] definition 1.3.1). Let L a differentiable elliptic operator of second order and
let (Ω,B (W (M)) ,P, (F)t) a filtered probability space.

A L-diffusion is a M -valued, Ft-adapted stochastic process, defined up its explosion time X :
Ω −→ W (M) defined up to its explosion time e(X) such that for any f ∈ C∞(M) Mf (X)t defined
in equation (5.4) for any t < e(X)

An L diffusion measure is a probability measure over the path space (W (M),B(W (M̂)) such
that, for any f ∈ C∞(M), for any ω ∈W (M) and for any t < e(ω)

Mf (ω)t := f(ωt)− f(ω0)−
∫ t

0

Lf(ωs)ds

is a B(W (M̂))-martingale .
It is immediate to see that the law of a L-diffusion is an L diffusion measure and that if µ is an

L-diffusion measure the coordinate process Xt(ω) := ωt on (W (M),B(W (M̂)), µ) is an L-diffusion.

There is a result of existence and uniqueness for the L-diffusion measures

Theorem 6.18 ([32] theorem 1.3.4 and 1.3.6). given a differentiable elliptic operator of the second
order L and a probability distribution µ0 on M there exists an L diffusion measure with initial
distribution µ0.

An L-diffusion measure with a given initial distribution is unique.

While the L-diffusion satisfies the strong Markov property ([32] Theorem 1.3.7) nothing assures
that such process will be Feller, indeed there are some examples of Riemannian manifolds in which
the Brownian motion is not a Feller process (see, e.g. [62] Example 8.2).

We will show that under some reasonable conditions the diffusion has the Feller property.

Definition 6.19. Define a second order differential operator L,D(L) on a smooth manifold M as

L0f(x) :=
1

2

r∑
k=1

Gk(x)Gk(x)f(x) +G0(x)f(x) (6.10)

for any x ∈M and f ∈ D(L).
In a chart (U, xi), if Gk = Gik

∂
∂xi . for any x ∈ U it is possible to express the operator as

L0f(x) =
1

2
aij(x)

∂2

∂xi∂xj
f(x) + bi(x)

∂

∂xi
f(x) (6.11)

where bi = Gi0 +
∑
kG

j
k
∂
∂xjG

i
k and aij =

∑
kG

i
kG

j
k. Because aij is already semi-positive definite

it is elliptic at p ∈M if and only if its symbol is not degenerate

Definition 6.20. Let (M, g,∇) a manifold of bounded geometry (see definition 3.44) and let r(M)
its injectivity radius.

A function is said Ck-bounded if f ∈ Ck(M) and for every r0 ∈ (0, r(M)) and every multi-index
α there exists a constant Cα <∞ such that |Dα|xf(x)| ≤ Cα.
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A function is Ck-bounded if and only if ||∇kf ||∞ is bounded ([49] Remark 19). The set of
Ck-bounded function over M is denoted by Ckb (M)

A differential operator P of order n is said C∞-bounded if, for every r0 ∈ (0, r(M)) and for
every pair of multi-indexes there is a constant Cα,β ≥ 0 such that Dβ |xPα(x)| ≤ Cα,β in every
geodesic chart (Br0(p),Exp

−1
p ), for any p ∈M .

Proposition 6.21 ([49] Remark 22). Every C∞-bounded vector field G satisfies the following
conditions:

1. Consider the pointwise metric ||.||g defined in equation (3.41)

||||∇kG||g||∞ ≤ ak <∞

2. L0 defined in equation (6.10) is C∞ bounded if and only if the vector fields Gk are C∞-
bounded

3. In a compact Riemannian manifold any smooth vector field is C∞-bounded

Theorem 6.22 ([49] theorem 28). Let (M, g∇) a manifold with bounded geometry and let L0 an
uniformly elliptic second order differential operator defined as in (6.10) with any (Gh)h=0,··· ,r are
real smooth and C∞-bounded vector fields. Let

Dk := {f ∈ C0(M) ∩ C∞(M) ∩ Ckb (M) : L0f ∈ C0(M)} (6.12)

If L the closure of L0|Dk
it is the generator of a Feller semi-group in C0(M). L doesn’t depend

from k

To apply theorem 5.29 to the operator L0 we will consider a restriction of the domain Dk. The
space of compactly supported smooth functions C∞

c (M) is a natural candidate.

Proposition 6.23. Let L0 as in equation (6.10) and suppose that the coefficients Gh are smooth
and C∞-bounded vector fields. Given any f ∈ C∞

c (M) and any n > 0 there exists M = M(f, n)
such that

||Ln0f ||C0 ≤M

Proof. Let {Uα}α∈I an atlas of M . It is an open cover for supp(f). Let {Ui}i=1,···N a finite
subcover and let Ch, h = 0, · · · r, Cf real numbers such that

Ch ≥ max
i=1,···N

(
||Gh||C2n(Ui)

)
Cf ≥ max

i=1,···N

(
||f ||C2n(Ui)

)
Such number exists because the coefficients are C∞-bounded and f is a smooth compactly sup-
ported function. It is straightforward to check that

||Ln0f ||C0
≤

(
1

2

r∑
h=1

C2
h + C0

)n
Cf =:M <∞

Consider now the Laplace-Beltrami operator of definition 3.22. Because its principal symbols
is the metric tensor gij (see equation (3.4)) the operator is uniformly elliptic. By using theorem
6.22 we obtain that in any manifold of bounded geometry such operator is the generator of a Feller
semi-group.

Theorem 6.24 ([49] theorem 39). Let M of bounded geometry. The C0-closure of the Laplace
Beltrami operator is the generator of a Feller semi-group. Its domain is given by Dk defined by
equation (6.12) and doesn’t depend from k.

While theorem 6.22 gives us a sufficient condition for a diffusion process to be Feller, such
condition is not necessary, as shown in the next example.

Proposition 6.25 ([62] corollary 7.2). Let M a Cartan-Hadamard manifold i.e a Riemannian
manifold simply connected, complete and with not positive sectional curvature. The Laplace Bel-
trami operator of M is the generator of a Feller semi-group
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Example 6.26. Consider now the warp product (M = R×fS1, g), where f(t) = et
3

. The curvature
tensor is not bounded (see lemma 3.19), so it isn’t a manifold with bounded geometry.

Let π : M̃ −→ M the universal covering of M . The universal covering map is a local isometry
w.r.t. the pullback metric π∗g so the Riemannian manifold (M̃, π∗g) isn’t of bounded geometry
(local isometries preserve the connection, so they preserve the curvature tensor).

It is possible to show [62, example 8.2] that the sectional curvature of the manifold is

k(t, θ) = −f
′′
(t)

f(t)
≤ 0

Because π is a local isometry that implies that the sectional curvature of M̃ is not positive as well.
Let now d : R× S1 −→ R+ the Riemannian distance (definition 3.6) of R× S1 w.r.t. the usual

metric. By the Hopf-Rinow theorem 3.33 such metric is complete. Let now df : R ×f S1 −→ R+

the geodesic distance of the warp product. Because 0 < et
3 ≤ L < ∞ on compact sets, the two

metric are equivalent, so M is complete. By lemma 3.36 we have that M̃ is complete. So it is a
Cartan-Hadamard manifold and by proposition 6.25 the Laplace Beltrami operator is the generator
of a Feller semi-group.

6.5 Brownian motion on a manifold

Let (M, g,∇) a Riemannian manifold endowed with the Levi Civita connection and let ∆M the
Laplace Beltrami operator (definition 3.22). It is an uniformly elliptic operator because its principal
symbol is the metric, so by theorem 6.18 there is 1

2∆M -diffusion measure on W (M).

Definition 6.27. A Brownian motion on a manifold M with respect to a filtration Ft is an M -
stochastic process X : Ω −→ W (M) that is strong Markov w.r.to Ft and it is a 1

2∆M diffusion
process

We have the following characterization of the Brownian motion

Theorem 6.28 ([32] proposition 3.2.1). X : Ω −→ W (M), defined in a filtered probability space
(Ω,F ,P,Ft) such that it is strong Markov w.r. to the filtration is a Brownian motion in the sense
of definition 6.27 if and only if X is a Ft-semi-martingale on M whose anti-development is a
standard Euclidean Brownian motion.

A process defined on [0, τ) where τ is a Ft stopping time is a Brownian motion if its anti-
development is a local martingale up to τ with quadratic variation ⟨W,Z⟩ = Id t

If {Dn} is an exhaustion by compact of M we define the heat kernel pDn(t, x, y) as the funda-
mental solution of the heat operator on M , namely if

Ttf(x) :=

∫
Dn

pDn
(t, x, dy)f(y)

we have ( ∂∂t−
1
2∆M )Ttf(t, x) = 0 on the closure of Dn and limt−→0 Ttf(x) = f(x). (these conditions

are exactly the Kolmorov backward equation 5.2 and the strong continuity property of the semi-
group).

The minimal heat kernel is defined as pM (t, x, y) = limn pDn(t, x, y). It is possible to prove
([32] proposition 4.1.6) that for any Riemannian manifold endowed with the Levi-Civita connection
pM (t, x, y) the minimal heat kernel is the transition density function of the Brownian motion. If
M is of bounded geometry this is an immediate condequence of theorem 6.24 and the results of
section 5.1.

6.6 Weak second order Lie Runge-Kutta method for matrix Lie groups

Let (M, g,∇) a manifold with bounded geometry, Dk as in equation (6.12) and let Gi(x), i = 0, 1
vector field over M such that G1(x) = G1 and the operator L whose expression in any local chart
(U, xi) of M can be written

Lf(x) :=
(
(G0(x)x)

i + (G1x)
iGi1
)
∂i +

1

2
(G1x)

j(G1x)
k∂jk (6.13)

is uniformly elliptic and C∞-bounded (in a compact manifold this is satisfies for every smooth
vector field G0 by lemma 6.21).
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By theorem 6.22 the closure of the operator L|Dk
is the generator of a Feller semi-group and

by the discussion in the end of section 5.1, up to a random time e(X) such semi-group can be
expressed as

Ttf(x) = E [f(Xt)|X0 = x] (6.14)

where Xt is the solution of the Stratonovich SDE

dXt = G0(Xt)Xtdt+G1XtdWt

X0 = x

where Wt is an Euclidean Brownian motion.
We can now use the result of theorem 5.29 to give an approximation of equation (6.14) in terms

of the infinitesimal generator

Proposition 6.29. Let L the operator defined in equation (6.13) and let f ∈ D(L3) such that
||L3f ||C0

<∞ (e.g f ∈ C∞
c (M)) and let h > 0. On any chart (U, xi) we have that

E [f(Xh)|X0 = In] = In + h

((
Gi0 +

1

2
Gi1G

i
1

)
∂if +Gi1G

j
1∂ijf

)
+

h2

2

(
Gj0∂jG

i
0 + (Gi0)

2 +Gi0(G
j
1)

2 +
1

2
(Gj1)

2∂jG
i
0 +

1

4
(Gi1)

4 +
1

2
Gj1G

k
1∂jkG

i
0 +

1

2
Gj1G

k
1∂jG

i
0

)
∂if+

h2

2

(
Gi0G

j
0 + (Gj1)

2Gi0 +
3

4
(Gj1)

2(Gi1)
2 + 2Gj0G

j
1G

i
1 + (Gi1)

3Gj1 +
1

2
Gj1G

k
1∂kG

i
0

)
∂ijf+

h2

2

(
Gi0G

j
1G

k
1 +

3

2
(Gi1)

2Gj1G
k
1

)
∂ijkf +

h2

8
Gi1G

j
1G

k
1G

l
1∂ijklf +O(h3)

Definition 6.30. Let G a matrix Lie group. Define

Y i = expm
(√

hdG1h+ cikG0(Y
k)
)

Xn+1 = expm

√
hβG1 + hαjG0(Y

j) + h
3
2

∑
j

γ
[
G1, G0(Y

j)
]Xn

X0 = In

where αj , c
i
k are constants and d, β and γ are random variables.

Remark. If G1 = 0 i.e. the SDE is an ODE, it is known that this class of methods can have at
most order 2 (see [55])

We will now expand such scheme and impose the right conditions on the coefficients so that its
mean value will approximate equation (6.14) with x = In up to second order. Choice now a chart
on G such that G0 = {Gi0} and G1 = {Gi1}. By Expanding G0 as a Taylor series around In

Y i = In +
√
hdG1 + h

(∑
k

cikG0 +
1

2
d2(G1)

2

)
+O(h

3
2 ) (6.15)

We now plug equation (6.15) in the expression of X1 and we do a taylor expansion of G0 around
the identity. If we denote b :=

∑
m αm the expansion became

X1 = In +
√
hβG1 + h

(
bG0 +

β2

2
(G1)

2

)
+

+h
3
2

(
bdG

′

0G1 + βbG0G1 +
β3

6
(G1)

3 + γ [G1, G0]

)
+

+h2

(
1

2
b2(G0)

2 +
1

2
bβ2G0(G1)

2 +
β4

24
(G1)

4 +
∑
k

αjc
j
kG

′

0G0

)
+

+h2
(
1

2
bd2G

′′

0 (G1)
2 +

1

2
bdG

′

0(G1)
2 + γβ [G1, G0]G1 + γd [G1, G

′
0G1]

)
+O(h

5
2 )
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In local coordinates the first commutator is equal to[
Gj1

∂

∂xj
, Gi0(0)

∂

∂xi

]
== Gj1∂jG

i
0(0)∂i

Let now f a C∞(M) function. Suppose E[β] = E[γ] = E[d] = E [γd] = 0. Consider the Taylor
expansion of E[f(X1)|X0 = In] around the identity.

E [f(X1)|X0 = In] = In + h

(
∂if

(
bGi0 +

E[β2]

2
Gi1G

i
1

)
+

E[β2]

2
∂ijfG

i
1G

j
1

)
+

+h2∂if

(
1

2

∑
n

αmc
m
n G

j
0∂jG

i
0 +

1

2
b2(Gi0)

2 +
1

2
bE[β2]Gi0(G

j
1)

2 +
E[β4]

24
(Gi1)

4

)
+

+h2∂if

(
1

2
bE
[
d2
]
(Gj1)

2∂jG
i
0 +

1

2
b2E

[
d2
]
Gj1G

k
1∂jkG

i
0 + E [γβ]Gk1∂kG

i
0G

i
1

)
+

+
h2

2
∂ijf

(
bE[β2]Gi0(G

j
1)

2 +
E[β4]

4
(Gi1)

2(Gj1)
2 +

E[β4]

6
(Gi1)

3Gj1

)
+

+
h2

2
∂ijf

(
b2Gi0G

j
0 + 2bE[β2]Gi0G

i
1G

j
1 + 2 (bE [dβ] + E [γβ])Gi1G

k
1∂kG

j
0

)
+

+
h2

2
∂ijkf

(
bE[β2]Gi0G

j
1G

k
1 +

E[β4]

2
(Gi1)

2Gj1G
k
1

)
+
h2

24
E[β4]∂ijklf

(
Gi1G

j
1G

k
1G

l
1

)
+O(h

5
2 )

Any Lie group which admits with a left (or right) metric is a manifold of bounded geometry w.r.t.
that metric as shown in example 3.47. We can now state the main theorem

Theorem 6.31. Let G a matrix Lie group with a left (or right) invariant metric. Let L, f as in
proposition 6.29, Ttf(x) as in equation (6.14) and 0 < h < e(Xt).

Let Xn+1 the numerical scheme of definition 6.30. If the coefficients αj , c
i
k, d, β and γ satisfies

the order condition

E[β] = E[γ] = E[d] = 0∑
m

αm =: b = 1
∑
n

αmc
m
n = 1

E
[
β2
]
= 1 E

[
β4
]
= 3

E
[
d2
]
=

1

2
E [γd] = 0

E [γβ] =
1

4
E [dβ] = 0

we have that:
E [f(Xt)− f(X1)|X0 = In] = O(h

5
2 )

In particular, if we choice β to be a standard Gaussian random variable , η to be a standard
Gaussian random variable indipendent by β i.e. E [βη] = 0 and we define γ = 1

4β, d = 1
2η the

random variables satisfy all the order conditions
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7 Conclusions

The method of definition 6.30 provides a weak second order integrator for diffusion SDE on Lie
groups whose infinitesimal generator has the form (6.13).

The results on the deterministic method (see [55]) suggest that to obtain methods of order
higher than two it will be necessary to use more refined schemes similar to the RKMK methods
described in section 2.3.

While the weak Lie RK scheme require less commutators than the schemes used for strong
approximation (see e.g. [14]) we will expect that the number of commutator will grow sensibly for
higher orders. As far as we know it isn’t known if the tools of the free Lie algebras described in
chapter 2 can be extended to the stochastic case.

Moreover, the order conditions of theorem 6.31 heavily rely on the hypothesis that the coef-
ficient G1 in (6.13) is constant. The presence of a second order term and the form of the Itô
Magnus expansion of section 6.1 suggest that approximating elements of the universal enveloping
algebra can help to handle the non-constant case, but further research will be needed to verify this
statement.

As far as we know It is yet to be explored if the exotic aromatic tree formalism can be extended
to the case of SDE on Lie groups. If such an algebraic structure exists it is possible that will
simplify the calculation and reduce the complexity of the numerical scheme.

We hope that generality of the Talay Tubaro expansion of theorem 5.29 could be used to find
Runge Kutta methods for more general classes of manifold widely used on practical applications,
like Grassmannian manifolds or even general homogeneous manifolds.
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