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Abstract

We present a new class of numerical methods for solving stochastic differential equations
with additive noise on general Riemannian manifolds with high weak order of accuracy. In
opposition to the popular approach with projection methods, the proposed methods are
intrinsic: they only rely on geometric operations and avoid coordinates and embeddings. We
provide a robust and general convergence analysis and an algebraic formalism of exotic planar
Butcher series for the computation of order conditions at any high order. To illustrate the
methodology, an explicit method of second weak order is introduced, and several numerical
experiments confirm the theoretical findings and extend the approach for the sampling of
the invariant measure of Riemannian Langevin dynamics.

Keywords: geometric numerical integration, stochastic differential equations, Riemannian
manifolds, Riemannian Langevin, ergodicity, Lie-group methods, frozen flow, Butcher series,
exotic series, post-Lie algebra, Hopf algebra, order conditions.

AMS subject classification (2020): 16T05, 41A58, 60H35, 37M25, 65106, T0H45.
1 Introduction

Let (M, g) be a smooth connected complete Riemannian manifold equipped with a metric g and
its Levi-Civita connection V. Let Ei,...,Ep be a frame, that is, D smooth vector fields with
dim(M) < D such that

Spang(E1(y), ..., Ep(y)) = T,M, ye M.
Given a smooth vector field F(x) = Zfl):l fx)Ey(x), we consider Stratonovich stochastic dif-
ferential equations on M of the form,

D
dX(t) = F(X(t))dt + V2 )] Bq(X(t)) 0 dWq(t). (1.1)
d=1

Equation (1.1) can be seen as a stochastic differential equation with additive noise w.r.t.the
frame (E4). Under reasonable assumptions, the flow of (1.1) is well-posed on M. The aim of
the present paper is to introduce a new class of intrinsic one-step integrators

Xn+1 = (bh(Xn)v (1'2)
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where @, is a (random) local diffeomorphism of M for a timestep h small enough, for solving
dynamics of the form (1.1) with high order of accuracy in the weak sense. We take inspiration
from Lie-group integrators [70, 77, 71, 72, 47, 73] and more precisely from Crouch-Grossman
and commutator-free methods [29, 82, 25, 81]. In opposition to [64], we consider an approach
with frames allowing us to define a new versatile class of methods that works on any smooth
Riemannian manifold. An important feature of the new integrators is that they do not rely on
the use of embeddings or on local coordinates. Their formulation, convergence analysis, order
theory, and implementation are entirely intrinsic.

It is crucial that a numerical approximation respects the geometry of the problem and lies
on M, especially for the sampling of measures. In particular, our methods extend naturally for
the sampling of measures interpreted as invariant measure of ergodic dynamics. Let us consider
for instance the central example from molecular dynamics of Riemannian Langevin dynamics:

D D
dX(t) = = Y (Ba[V]Eq + Vi, Ea)(X(1))dt + V2 ) Eg(X(t)) 0 dWq(t) (1.3)
d=1 d=1
— —VV(X(t))dt + V2dB(t),

where V' is a smooth potential, the frame (Ej) is an orthonormal frame basis, and the vector
field F' = —VV — > Vg, E,; contains the It6 correction. Note that the choice V' = 0 yields
Brownian dynamics Ba(t) on M. Riemannian Langevin dynamics (1.3) are naturally ergodic
under mild assumptions, that is, the dynamics in long time behaves according to a deterministic
probability measure, called the invariant measure, which takes the explicit form dpe = e~V dvol.
The generator of the SDE is £ = —VV -V + A, where A, is the Laplace-Beltrami operator.
Actually, an integrator of weak order p automatically has at least order p for the invariant
measure [88]. We refer for instance to [33] and references therein for appropriate assumptions
to obtain the ergodicity of a numerical scheme in the context of dynamics in R%. To the best of
our knowledge, there does not exist any intrinsic method of order greater than one for sampling
the invariant measure of Riemannian Langevin dynamics.

There exists a handful of extrinsic stochastic integrators on manifolds, that is, integrators
that rely on an embedding of M in a Euclidean space of higher dimension. In the case of
smooth embedded manifolds M = {z € R” ((x) = 0} defined by constraints, the approach
using projection methods is the most popular in the literature (see [60] and references therein).
We cite in particular the constrained Euler method:

Xn+1 = Xn + hF(Xn) + m&n + )\nvC(Xn)v C(Xn+1) = 0,

where )\, is a Lagrange multiplier and the &, are independent standard Gaussian random vectors.
While the approach using projection methods is straightforward to implement and widely used
in applications, these methods rely on an embedding of M into a vector space of much higher
dimension and use non-intrinsic quantities, so that they often face severe timestep restrictions.
Moreover, the algebraic structure associated to order theory is difficult and does not allow at the
present time for the creation of methods of arbitrarily high order, nor for a systematic approach
to stochastic backward error analysis [15]. Stochastic Lie group methods seldom appear in the
literature [64, 31, 65, 3, 66, 28], but focus on low order approximations on specific manifolds
(typically variants of Lie-Euler on the sphere), with an extrinsic convergence analysis, and no
high order theory. In the recent work [10], a new approach for sampling (1.3) is developed using
the following intrinsic integrator, called Riemannian Langevin method

Xn+1 = eXpRiem(_hVV(Xn) + v 2h£n+1)Xna



where exp®™ is the geodesic exponential for the Levi-Civita connection V. This method has

order one for solving (1.3) in the weak sense and for the invariant measure. One could be
tempted to say that such a method is exact for V' = 0, but it still has only order one, in contrast
to the Euclidean setting where it is exact in law.

We introduce the first intrinsic methods of high weak order for solving (1.1) using only
evaluations of F' and the frame. In particular, we highlight the following new explicit integrator
of second weak order for solving (1.1), and using the minimal number of evaluations of F' per
step:

%h FUX) + \/ﬁﬁfﬁ’l)Ed> X,

(@ — DhfUX,) + (2= V2hfU(H,) + (1= V2)VRE! + x/ﬁgg»z)Ed>

e (35 (1= S)RF06) + (V2= VRS +VERER ) ) X,

where the ¢%! are independent standard Gaussian random variables (or discrete symmetric
approximations with matching moments up to order 4) and we use frozen flows (see Section
2.3). An originality of our approach is that we present a general framework for the analysis of a
new class of stochastic Lie-group methods at any order on any manifold in the weak sense using
a new algebraic formalism similar to the one of Butcher series. The new methods outperform in
accuracy, and versatility the previous attempts.

The calculations of the order conditions are intricate and require the use of appropriate
algebraic tools. We propose a new extension of exotic and Lie-Butcher series, called exotic Lie
series, for the systematic computation of order conditions of the new frozen flow methods at any
order in the weak sense. While Butcher trees and series [41, 21, 68, 22] represent naturally Taylor
expansions of deterministic flows in RP, planar trees and Lie-Butcher series were introduced for
the study of flows on manifolds [47, 81, 79] and later extended for the study of the connection
algebra [78, 35, 5, 40, 74]. On the other hand, the formalism of exotic series was introduced in
[55, 51, 14] for the creation of integrators for solving stochastic dynamics with additive noise
with high order in the weak sense and for the invariant measure. This formalism, combined
with the aromatic B-series [27, 48, 13, 53, 52], was extended in [56] into the exotic aromatic
series formalism for the numerical integration of SDEs on embedded manifolds with projection
methods. The geometric and algebraic properties of the exotic formalism of trees were later
studied in [15, 54] (see also [26, 67, 75, 12] in the deterministic setting). The modern approach
to such algebraic formalism relies extensively on Hopf algebras [26, 23, 63, 12, 14, 83, 15, 36, 20]
that we identify here in the context of stochastic numerics on manifolds.

The paper is organised the following way. We present in Section 2 the main numerical
results of this paper: a robust framework for the Riemannian convergence analysis of stochastic
integrators on manifolds, the new stochastic frozen flow methods, and the associated order
conditions for high weak order. Section 3 introduces the formalism of planar decorated and
exotic forests and translates the geometric operations in the connection algebra in terms of
algebraic operations on graphs. This approach is then applied for the explicit description at any
order of the weak Taylor expansion of the exact flow of (1.1), of the new frozen flow methods,
and of their associated order conditions. The Hoph algebra structure of exotic planar forests is
further detailed in Section 4. In particular, we generalise the Munthe-Kaas-Wright Hopf algebra



[79] to the stochastic context. Numerical experiments confirm the theoretical findings in Section
5 and outlooks and future works are presented in Section 6.

2 New frozen flow methods of high weak order

We generalise the standard Fuclidean framework for weak convergence in the context of Rie-
mannian manifolds, and we introduce new frozen flow integrators and their order conditions for
high weak order. We emphasize that the following convergence analysis is new, even for the
underlying deterministic differential equations (see also [30]).

2.1 Stochastic differential equations on manifolds

For v € TM, we denote |v| = g(v,v)"/?, its Riemannian norm. Let o an arbitrary point on
M. For x € M, we define r(z) = d(o,z) the Riemannian distance function. This function is
1-Lipschitz and the squared distance 72 is smooth on M\Cut,. This allows us to define moments
of a M-valued random variable.

Let us introduce the main classes of test functions. The space C°(M) denotes the class
of smooth compactly supported functions. For ¢ € C(M) we denote d¢ its differential and
|d¢| its Riemannian norm on 7*M, inherited from the norm on 7M. We denote v[¢](x) the
differential of a test function ¢ in a direction v € T, M. We shall use the wider class of test
functions CF (M), which consists in smooth functions satisfying polynomial growth estimates of
the form:

|Eq,[---Ea[¢]...]] (@) <C(1 +r(@)%), ¢=0,1,....
Given a vector field F' and a fixed decomposition in the frame F = Y f¢E,;, we say that
F € Xp(M) if its components are Lipschitz continuous, ‘dfd‘ < C, and satisfy: f¢ e CF(M),
d =1,...,D. We mention that considering test functions and vector fields with polynomial
growth of their derivatives up to a given order p + 2 would be sufficient for the creation of
numerical schemes of order up to p.

Assumption 2.1. The vector fields E1,..., Ep are smooth and bounded. The vector field F' is
in Xp(M). Moreover, there exist constants v =1 and X € R such that on M\Cut,, we have

Lr? < v+ N\, (2.1)

where L is the generator

D
Lo = F¢] + ) EqlEal6]]

Under the smoothness assumption on F', Fy,..., Ep, there exists a unique solution of (1.1),
up to a stopping time 7. Following [43], we recall that a stochastic process X, defined on a
stochastic interval [0, 7], is a solution of (1.1) if and only if for all test functions ¢ € C (M),
we have

H(X (1)) = ¢(Xo) fF dt+\FZJEd ) odWy(t), 0<t<T.

Unlike the Euclidean case, where Lipschitz conditions are sufficient to avoid finite time explosion,
on a manifold, a blow-up can be induced from the geometry, even for a Brownian motion (see



[43] for examples). The Lyapunov-like assumption (2.1) ensures the completeness of the SDE.
This means that the solution X of (1.1) is defined on R4, i.e 7 = 400 a.s. In addition with the
completeness, it provides finite moments estimates (even finite exponential moments) for the
solution of the SDE. This assumption is adapted from [89]. In the case where (E;); is a basis
there exists a new metric § such that (£;); is an orthonormal basis. Using this metric and the
associated Levi-Civita connection V, we find

Lo = Dgo+ (F + Vg E;)[¢],

which is the framework of [89]. The general case is treated likewise, by extracting local basis on
a cover of M.

There exist various simpler criteria which ensure that inequality (2.1) is satisfied. The first
criterion is compactness, which can be used for classical spaces such as the sphere S™ and the
Lie group SO, (R). This condition being seldom satisfied, a second classical criterion is the
Bakry-Emery criterion from [8]. This criterion applies to the case of equation (1.3), where the
generator writes as £ = A — VV - V. One says that the potential V satisfies the criterion if
there exists x € R such that

Ric + Hess(V) > k.

The term Ric designs the Ricci tensor on (M, g) and is defined as the trace of the Riemann tensor.
In this context, the symmetric operator Ric + Hess(V) is called the Bakry-Emery curvature and
the term Hess(V') can be interpreted as an additional curvature. Note that this handy criterion
has been adapted in [6] for equation (1.1) with a lower bound of the operator Ric —VF. We
also cite the moment conditions from [61] which imply stochastic completeness.

By a standard induction, we obtain the following estimates.

Lemma 2.2. Under Assumption 2.1, for all ¢ = 1 we have L(r??) < C(1 + r29).

Proof. The proof comes from classical I' calculus for diffusions (see [9] for instance). For all
u € C3(M) and 7 € C*(R), we have

Lp(u) = 1'(u)Lu + 7" (W) (w),

where
D
P(u) = Y |Eilu]*.
i=1
Applying this formula to « = 72 and 1 :  +> x4, we obtain the result. O

A key tool for the weak expansion of the exact flow is the Kolmogorov equation. Under
Assumption 2.1, the SDE (1.1) generates a semigroup, well-defined on C% (M), and Markovian.
Namely, for all ¢ € CP(M), the function u(t,x) = E[¢(X (t))| X (0) = z] satisfies the Kolmogorov
equation

oru = Lu, u(0,2) = ¢(x).

In order to compare an expansion of the exact solution an expansion of a numerical integrator,
we need more regularity on the semigroup itself. Since the generator L is elliptic, the semigroup
u is C® on ]0, T[xM. We further assume that the semigroup preserves the C% regularity.

Assumption 2.3 (Regularity). For all ¢ € CF(M), u e C*(]0,T[,CH(M)) : for all k = 0,
there exist C' > 0 and k = 0, depending on k, T, and ¢ such that for all x € M

sup |@yu(t,z)| < C (1 +r%(x)).
te]0,T[



Note that Assumption 2.3 is satisfied automatically in R? with our regularity assumptions.
For clarity, we leave the study of sufficient conditions to obtain polynomial growth estimates of
the semigroup for future works.

We are now able to derive the Taylor expansion of the semigroup.

Proposition 2.4. Under Assumption 2.3, for all ¢ € CE(M) and all h < hg small enough, u
has the Taylor expansion

.
u(h,z) = ¢(x) + Z Zfﬁw(x) + PR (9, 2), xEe M, (2.2)
j=17"

with ‘RZ(¢,$)‘ < C(1 4 r(z)X), where C and K do not depend on = and h.

2.2 'Weak order theory on Riemannian manifolds

Following the Euclidean works [88, 69], we present a general theory for achieving high order
weak estimates for intrinsic methods. The approach does not rely on an embedding and does
not assume compactness of M. In order to obtain estimates, we use the Riemannian structure
of M. This structure is not needed to perform the calculations of order conditions of the new
methods.

Definition 2.5. An intrinsic one-step integrator of the form (1.2) is of local weak order p if for
all p € CE(M), there exists C > 0 such that the following estimate holds for all x € M and all
h < hg small enough,

[E[6(X1)[Xo = 2] —E[6(X (h))|Xo = z]| < C(1+r(z)")hPTL.

Similarly, the integrator is of global weak order p if for all p € CE(M), T >0, Nh =T, h < hyg
small enough, and x € M, the following estimate is satisfied:

sup [E[¢(X,)] — E[$(X (nh))]| < CIP.

n=0,...,

Let us assume that the integrator satisfies a Taylor expansion, often called Talay-Tubaro
expansion [87] in the Euclidean context, that is similar to (2.2).

Assumption 2.6. For all ¢ € CF(M) and all h < hg small enough, the numerical integra-
tor (1.2) has a weak Taylor expansion of the form

E[¢(X1)|Xo = 2] = ¢(x) + Y, W Ajp(x) + WWHR)(¢,2), weM, (2.3)
j=1

where the remainder satisfies ‘Rg(gb,:v)‘ < C(1+r(x)X) and the A; are linear differential oper-
ators.

We adapt the standard assumption of bounded moments in the Riemannian context. We
shall give sufficient assumptions on the integrator in Subsection 2.3 so that this assumption is
satisfied.

Assumption 2.7. The numerical integrator (1.2) has bounded moments of any order K > 0,

sup E[r(X,)®]<C(T), Nh=T. (2.4)
0,...,N



Under the above assumptions, we obtain the following convergence result, in the spirit of the
Euclidean theory [87, 88, 69].

Theorem 2.8. Consider a one-step integrator of the form (1.2) for solving (1.1). Under As-
sumptions 2.1, 2.3, 2.6, and 2.7, if the Taylor expansion (2.3) of the integrator satisfies

1 .
Aj = ﬁﬁj’ i=1,...p, (2.5)

then the integrator has global weak order p.

Proof. Let X*(t,) be the exact solution of (1.1) at time ¢, = nh starting from z € M and X?
be the n-th step of the numerical solution. The global error satisfies, thanks to a telescopic sum
argument,

N
E[¢(Xn) — Z (X N = GXNFi ()], d(x) = E[G(X* (1 1))

Assumption 2.3 yields that ¢ € C¥(M). Then, the local order p condition, together with
Assumptions 2.6 and 2.7 give

E[o(Xn) — Z ChP™ (1 +E [r(X% )X]) < CNhT < OhP.
Hence, the global weak order p. O

2.3 Stochastic frozen flow integrators

The deterministic Lie-group methods are divided into two categories that correspond to the
two kinds of coordinates: the Runge-Kutta-Munthe-Kaas (RKMK) methods (see [70, 77, 71,
72]) and the frozen flow methods. We choose the latter option in this paper for the sake of
generality, as the RKMK approach relies on the existence of a transitive group action on M.
The frozen flow methods originally appeared as Crouch-Grossmann methods [29, 82]. The
generalisation presented in the papers [25, 81] allowed the creation of more efficient methods,
called commutator-free Lie-group methods.

The methods rely heavily on the concept of frozen vector fields and flows: given a decompo-
sition of a (potentially random) vector field in the frame G = ), g%Ey,, the frozen vector field

G, € X(M) at point x € M is
= > 19%(x)Ealp
d

The solution of the ODE ¢/(¢t) = G(y(t)) with y(0) = p is denoted exp(tG)p. The frozen flow
exp(tGy)p is the exact flow driven by the frozen vector field G,.

Lemma 2.9. If G € Xp(M) then, the frozen flow exp(tG,)p is globally defined. Moreover, it
satisfies
d (p,exp(tGe)p) < C (1 +r(x)) (2.6)

Proof. The coefficients of the ODE being globally Lipschitz continuous, there exists a global
solution. Let us denote v : t — exp(tG,)p. It is a smooth curve, joining p and exp(G,)p. As
|E4| are bounded, v has a bounded speed

[iuf? DE\g | 1BaGol < 0+ (@)).



Therefore, we have
d(p, exp(tGz) f I7s| ds < C(1 + r(x))

Hence, the result. ]

Remark 2.10. The definition of the frozen vector field and frozen flow do not depend on the
choice of decomposition of G in the frame (Eg). Indeed, let us extract a basis (Eq)qer of the
frame valid in an open set U < M. The vector field G decomposes uniquely as G = Y c; §*Ey
in U. The frozen vector field is given as Gy = Y4y a%Ey. As G(x) = G.(z) and we use a
(local) basis, we obtain o = §%(x). The formulation of the integrators is thus independent of
the choice of decomposition in the frame.

The central assumption that motivates the use of these methods is that while computing the
exact flow of a SDE is difficult, computing the flow associated to a frozen vector field often is a
much simpler problem for a good choice of frame. For instance, in RP with the standard frame
basis E; = ¢;, the frozen flow is the Euler method: exp(G.)p = p + G(z). A second example is
given by homogeneous manifolds. In this context, a natural choice of frame is derived from a
basis (A4) of the Lie algebra g by E4(y) = A4 -y, where we use for simplicity the same notation
- for the Lie group and Lie algebra action on M. On matrix homogeneous manifolds, the frozen
flow is explicitly given by

exp(Gy)p = EXP(ZQ Ad)p,

where Exp is the matrix exponential. We emphasize that a significant part of the manifolds used
in numerical experiments and applications of stochastic dynamics on manifolds are homogeneous
manifolds, such as Lie-groups, spheres, the Stiefel manifold, symmetric positive definite matrices,
.. We further discuss the implementation of the methods in Section 5.1.
We consider the following new class of stochastic frozen flow methods, in the spirit of [82]
for the deterministic part and [84, 32, 55] for the stochastic part,

D s
1 = oo 3 (3 2 08 + Vi) )
d=1

..exp(Z(hZ 0 FUHD) +fZ“)Ed)X

d=1 j=1

Xnt1 = eXP(i ( ZS: D fUHY) + \fZK>Ed) (2.7)

i=1

..exp(i( Z 2, £ H2)+\Fz1)Ed>X

1=1

where the coefficients zZ e Zl ., are deterministic and zk, de are of the form

L L

d 5 d,l
Z ) Zi,k = Z Zi,k,l{n )
=1 =1

where the ¢! are independent standard Gaussian random variables or approximations of Gaus-
sian random variables with the same 2p first moments, vanishing odd moments, and finite



moments of all order. The dependence in n of the Runge-Kutta coeflicients zg, ng, is omitted
for clarity, and we enforce that the random coefficients between two steps in time are indepen-
dent. The constant K is the number of exponentials used per stage. It is well-known [47] that
choosing K = 1 does not allow to reach arbitrarily high order already in the context of ODEs.
In particular, the simplest method is the frozen flow Euler method

D
X1 = exp ( S (nfix,) + x/ﬁgz)Ed) X, (28)
d=1

The assumptions of Subsection 2.1 are in general not sufficient to ensure bounded moments
and bounds on the Talay-Tubaro remainder of the numerical integrators. Aside from the com-
pactness assumption, the following assumption is sufficient.

Proposition 2.11. Assume that the frame E4, d = 1,...,D, and the vector field F satisfy
Assumption 2.1 and

Eq[Ea, [1]]] < C.

Assume further that for an infinite number of arbitrarily large q:
|Eaq,|. .- Eaqr?]...]| <CQA+ iRy, k<4

Then, all consistent explicit frozen flow methods of the form (2.7) satisfy the bounded moments
property and the Talay-Tubaro expansion of Assumptions 2.6 and 2.7.

Proof. Let us first show that the first remainder in the expansion (2.3) acts on the distance
function by

[RL(r,2)| < €1+ r(2), (2.9)

for an infinite number of arbitrarily large q. Without loss of generality, we consider the following
method, where G, = 25:1 g;jEd and 93 = hf(y) +/2h&4,

A Taylor expansion around z = X yields (see Section 3 for the detailed calculations),

FUH) = (@) + Golé] () + fo (1 = g g B[ [P explG ),
and we obtain
| < CE+ (@), (L) - @) < Ch + (@),
where C(£9) is a polynomial in |¢¢]. Then, a Taylor expansion for ¢ = r? yields
E[¢(X1)] = ¢(x) + hLp(x) + h* R} (6, )
RY(6,2) = B (F(H) — fU) Balg) (@) + 3 1 () () g, [ B, [6]) ()
b R (B [ B B [611] + B[ B, (B, [911) + B, [, [ B 61 (2)

) 920 5 () B By B 011 )

9



1 (P(—1¢)?
b [ S ot ot BB [ [Ea o (e

The estimate on R}(¢,z) is straightforwardly obtained from (2.6). Indeed, one shows that the
distance function satisfies
r(exp(tGa)z) < C(E)(1 +r(2)),

where C(£9) is a polynomial in ‘fd‘.

The expansion (2.3) is computed explicitly in Theorem 3.15. The estimate on the remainder
is obtained thanks to the regularity Assumption 2.3. For Assumption 2.7, we use the Talay-
Tubaro expansion (2.3) applied to ¢ = r%:

E[r(Xnt1)?] = E[r(Xn)?] + AE[Lr (X)) + W*E[R] (19, X,,)],

where |E[L¢é(Xn)]| < C(1 + E[r(X,)?]) by Proposition 2.2 and [E[R}(r?,X,)]| < C(1 +
E[r(X,)9]) by equation (2.9) (for ¢ large enough). Thus, we find

E[r(Xp:1)9] < C(1 + h)E[r(X,)7] + Ch,

and a standard discrete Gronwall argument yields the bounded moments (2.4). O

2.4 High-order frozen flow integrators

Let us present the order conditions of the new class of frozen flow methods (2.7) for solving the
stochastic dynamics (1.1), as well as an example of second order frozen flow integrator.
We use the notation of factorial of multi-indices and sums for writing the order conditions.

Definition 2.12. If ke {1,...,K}" is a multi-index that takes ri times the value ki, ..., rp
times the value k,, the factorial of k is

Kl =7yl

n

The factorial sum is given for a finite set S < {1,..., K}" of multi-indices and a functional f

by Z!kes f(k) = ZkeS %f(k)

The weak order conditions for stochastic Runge-Kutta methods in R¢ are presented in [84, 32,
55, 14] and require 4 order conditions for weak order two. On embedded manifolds, the approach
with projection methods of [56] yields 28 order conditions, applies only in codimension one,
and relies on an extrinsic approach with tedious calculations (see [56, App.D]). The approach
proposed here is intrinsic, versatile, generalises the order theory of Lie-group methods to the
stochastic setting, and yields a surprisingly low number of order conditions for weak order two.

Theorem 2.13. Let a frozen flow integrator of the form (2.7) that satisfies the order conditions
in Table 1, then, under Assumption 2.3 and the assumptions of Proposition 2.11, the integrator
has local weak order two for solving (1.1). The additional order conditions for weak order three
are presented in Appendiz A.

Theorem 2.13 is a direct consequence of Theorem 3.13 and Theorem 3.15, postponed to
Section 3. The approach relies on a new algebraic framework of exotic planar forests and series
that gives the explicit expression of the operators A; in (2.5). It allows us to provide the order
conditions for arbitrarily high weak order.

10



Exotic forest 7w | Differential F(7)[¢] Order condition a(w) = e(n)
. f'Eil¢] 2, =1
00 Ea, [Ea, [¢]] Shiom Elzizi] =1
! FE;[fEi[¢] Dl =%
QP Eg, [Eq, [f]1Ei[] 25% E[Zf,zng,;]z?,kl =1
.o f1 BB )] Shasks ks = 3
%o Eq, [f1Ei[Ea, [4]] ook 22 BIZEL 201 = 0
ol E4, [/ Ea, [Ei[9]] zzm DL ElZh, 50 =1
« 00 fUEi|Eq, | Eq, []]] Zkl oy s Bl 2] = §
De® J'Eq, [Ei[Eq,[]]] Zk1>k3>k2 ?kgE[zgézgll] 0
O0e FiBa,[Eq, [Eil¢]1] S ks shasks 2k B2 2] = 3
0000 Eg,[Eay [Ea, [Eay [0]1]] Z}clzk2>k3>k4 E[zk4 zki]E[sz Zk1] =3
0000 | BarlBa[Ea[Ea[0111] | Sk, shymkasks Iz 22 |E[22 2] = 0
0000 | BalEw[Ea[Baldll] | hsryoksok Blzi 22 B[z 211 ] = 0

Table 1: Order conditions of frozen flow methods up to weak order 2. The sums on the indices that do
not satisfy inequalities (except the d;) are omitted for clarity. The order conditions do not depend on
the dimension of the problem.

Remark 2.14. We shall prove in Section 3.5 that the coefficient maps a and e of the numerical
and exact flow are characters of the shuffle algebra over exotic forests (EF,w, A.). Following
[81], an important consequence is that the order conditions are not independent. Up to second
order, the following "shuffle relations" are satisfied (and similarly for e):

a(.)2 = 2“(- 0)7
ale)a(@) = ale@a) + ¢lage) T 2(@ed):
a(0)® = 24(ee0) *+ 24(e0e) * 24(0ee)-

The minimal number of order conditions is not given by the number of entries in Table 1, as one
has to substract the number of shuffle relations. In particular, there are 2 conditions for order
1, 8 conditions for order 2, and 70 conditions for order 3 (against 2, 11, and 92 exotic forests
of order 1,2, and 8). This is further discussed in Remark 3.16.

Let us now provide an example of a second order method. Let fff’l, 5272, d=1,...,D, be
bounded independent random variables satisfying

E[(E) =1, E[(&H =3, E[H* =0, ¢=012....

For weak order two, one can use for instance

so that the first four moments coincide with the ones of standard Gaussians.
The new method is the following. It is explicit, intrinsic, uses two evaluations of the vector
field F per step, and three frozen flow exponentials.

11



Method SFF2 (New explicit frozen flow integrator of weak order two for equation (1.1))

)Q)E.A4
forn=0,...,N do

Hl
D
1
= ex hfd VheES 2.10
p(; I + Vhe! ) B ) (2.10)
D
X1 —exp<2 ? DhfA(H) + (2 —x@hfd(H%H(1—\@)@52’%%5%2)&)

d

D
exp ( 3 (0= ynstaty + (s + x/%‘i’l)Ed) Xa.
d

=1

Il
—_

end for

Example 2.15. Brownian dynamics on M are defined as the solution of

D D
1
=3 Z Vi, Ea)(X())dt + Y Eq(X(t)) o dWy(t),
d—1 d=1
where Eq is an orthonormal frame of M. In the specific case of a Lie group equipped with a
bi-invariant metric, we find ), VE,Eq =0 and a second order integrator is

Xni1 = exp ( i ((“2§ — D)V + ?ﬁﬁﬁ@)Ed) exp <C§\/E§Z’IE¢1) Xo.  (211)

d=1

3 Order theory of stochastic frozen flow methods

This section is devoted to the formalisation of the order theory of stochastic frozen flow methods
with the help of the new algebraic formalism of exotic Lie series governing the Taylor expansions
of the exact flow and the frozen flow integrators.

3.1 Connection algebra of vector fields

For a given initial value, the new integrators (with bounded random variables) evolve in one

step in an open neighbourhood U of M. Taking the stepsize small enough, we can extract

a frame basis from the frame (Ey). Following Remark 2.10, we do not lose any generality in

assuming that (Ey) is a frame basis. We shall write our statements globally on M for the sake

of simplicity, and all of them are valid in a neighbourhood of the starting point of the method.
Define the product =: X(M) x X(M) — X(M) by

D D
FeG= 2 Fl¢%E; G = 2 ¢*E,.
d=1 d=1
The product is well-posed as there is a unique decomposition of G in the frame basis. The
operation = defines a new connection on X(M), which does not coincide with the Levi-Civita
connection V. We extend the notation to test functions: F' = ¢ = F[¢]| (independent of the
choice of connection).

12



Remark 3.1. The frozen flows p — exp(v)p are the geodesics for the connection =. Moreover,
the map x — exp(Gy) is the parallel transport of the vector field G along the geodesics.

Define the bracket [—, —] by
[F,G] =[F,G] - F>G+Gr=>F,
where [F, G] is the Jacobi bracket of vector fields:
[F,Gl=¢=F=(Ge=g)— G (F=9).

The torsion and curvature associated to = are T(F,G) = —[F,G] and R = 0, which is an
additional difference between = and V, as the Levi-Civita connection has vanishing torsion and
non-vanishing curvature in general.

Let us now consider the associative non-commutative concatenation product - as the differ-
ential operator '

(Fo--F)e¢= > fir.  f{'Ei[...Ey[¢] -],
1 yeenyin
defined on the tensor algebra (T'(X(M)),-). This product is called the frozen composition of
differential operators.

We shall see that the Taylor expansions of the numerical and exact flows for the equation
(1.1) typically write in T(X(M)). The number and complexity of the differential operators
involved in the Taylor expansions of numerical and exact flows motivate the introduction of
decorated and exotic planar forests.

3.2 Decorated planar forests

We introduce decorated planar forests and decorated Lie series.

Definition 3.2. A decorated planar tree 7 is a connected oriented graph in which every node
has an outgoing edge except for a node called a root. An ordered, possibly empty, collection of
decorated planar trees is called a decorated planar forest. The sets of decorated planar trees and
forests are denoted by Tp and Fp, respectively.

The vector spaces spanned by Tp and Fp are denoted by 7p and Fp. Decorated planar
trees Tp are used as a convenient formalism for representing vector fields X'(M) that appear in
a Taylor expansion of a numerical or exact solution of a differential equation, while decorated
planar forests Fp are used to represent differential operators T'(X'(M)) that appear in a Taylor
expansion of a test function applied to a numerical or exact solution. We note that Fp = T(7Tp).

We use decorated planar forests Fp with D = {e, 0!, ... o} to represent the Taylor expan-
sion of a test function applied to the one-step of a frozen flow method introduced in Section 2.
We consider a map Fi¢ : Fp — T(X(M)) defined as follows.

Definition 3.3. Let the map F% : Fp — T(X(M)) be defined for 7 € Fp and ¢ € C°(M) as

D
Fl(m) == ), ( [ B [Fdec(v)i”]> Erg 9],

iy=1 veV
veV ()

13



with F4(e) = f and Fé¢(o!) = ¢MEy where R is the set of roots of w, V is the set of nodes of
7, II(v) is the set of predecessors of v ordered from right to left, Er[¢] = E;,[... Ey[¢]...] for
I = (ip,...,i1). The notation can also be frozen for x,pe M,

D
(Fa(m) = ) (p) = ), ( [ Emw [Fdec(v)i”](w)) Erx[0](p),

tp=1 veV
veV ()

1 . .
For example, Fd¢¢( { ) = ¢ = ¢V B[] f*E;j[Ek[¢]]. Decorated Lie series are formal series

of differential operators indexed by decorated planar forests. They do not converge in general,
but their truncations at any order belong to T'(X(M)).

Definition 3.4. Given a one form a € F},, called a coefficient map, a decorated Lie S-series is
the following formal power series in h in T(X(M)),

Sdec l>¢ _ 2 h\7r| Fdec )l>¢), SdBC( ) Sfec(a).

weFp

A decorated Lie series is only indexed on decorated trees and is the formal vector field,

Bdec( ):: 2 h'T‘a(T)FdEC(T), Bdec(a) _ Bldec(a)‘

T€TD

These series can also be frozen:

dec l>¢ _ Z h\ﬂ’\ Fdec )>¢, Bdec 2 h\‘r\ Fdec )

weFp T€lp

We endow the space Fp with the shuffle product 1 defined inductively for 7, € Tp and
m,n € Fp as
T W Ayn = 7(m W yn) + y(rw wn).

For example,
1 1 1
=Je2 o012 +.21,
1 1 1 1 1 1 1
i%mog:i%og"i'iocl)o iog})"i‘oicl)g"i'oigcl)"i'ogicl)

iu—l.

o
|

A case of particular interest is when the coefficient map a is a character over (Fp, ), that is,
when a(m; W me) = a(m)a(my). This condition is satisfied by the frozen flow, as expressed in
Proposition 3.5.

Proposition 3.5. Let a € T, the frozen flow associated to the vector field B(a) satisfies
¢(exp(By*(a))) = exp’(B*(a)) = ¢ = §9(a) > ¢,

where a € F}y extends a to a character of (Fp,W), that is, a(m; W me) = a(m)a(mre). Moreover,

a(ry)...a(m). (3.1)

14



Proof. The proof is analogous to the proof of Lemma 2.4 from [81]. The fact that a € F} is a
character with respect to the shuffle product follows from the formula (3.1) using the fact that

there are ("J;m) terms in 7 L 7 with 7 and 1 having n and m trees, respectively. O

Remark 3.6. Representing Taylor expansions of wvector fields with formal series indexed by
tree-like structures is very natural from the geometric point of view. In [67, 75, 54], it is shown
that exotic, aromatic and standard B-series are completely characterised by universal geometric
properties of equivariance and locality. The extension of these properties to the planar case are
open questions, even for standard Lie-Butcher series.

3.3 Exotic planar forests

This section adds planarity to the exotic forests from [55, 14, 15]. We use decorated planar
forests to define exotic planar forests in Definition 3.7 which are the main object of interest
for representing weak stochastic Taylor expansions. Exotic planar forests are decorated planar
forests in which the decoration is used to denote the pairing between certain leaves.

Definition 3.7. An exotic forest is a decorated forest (w,a) € Fp with the decorations D =
{e} UN, N = {1,2,3,...}, that follows the following rules. If a natural number is used as a
decoration, then it must decorate exactly two leaves, that is, |~ (n)| € {0,2} for alln € N. Two
exotic forests (w1, 1) and (mwa, a2) are considered to be identical if 71 = 7o and there exists a
map ¢ : D — D with ¢|N € Sy and p(e) = o such that oy = p o ag. The set of numbered leaves

that correspond to the same number, that is a1 (n) for n € N, is called a liana.

We gather the numbered nodes in V, and the black nodes in V,. The order of an exotic

forest 7 is then defined as
. 2 .

The set of exotic forests is denoted by EF'. The set of all exotic forests of order p is EFP, and
the ones of order less than or equal to p is EFSP. Exotic forests with one root are called exotic
trees and form a set denoted ET. The corresponding vector spaces are denoted by EF and ET,
and similarly for the graded subspaces EFP and EF<P.

The exotic trees of order up to three are the following. Note that the order does not coincide
with the number of black nodes in general.

L190 v b oo oy o Sp qf ¥ ogee

We also note that the choice of the number used to denote the liana does not matter, for example,

the following exotic forests are identical:
@ ©
O _ ®

Our main focus with exotic planar forests is to represent some specific elementary differentials
in 7(X(M)) and to translate the connection algebra to a natural algebraic structure on EF.

The vector space EF of exotic forests forms an algebra (EF,-) w.r.t. the non-commutative
concatenation product. We emphasize that it does not coincide with the tensor algebra T (ET)
as for instance qq cannot be expressed as the concatenation of exotic trees.
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We introduce the new formalism of exotic Lie series for the study of order conditions of
stochastic frozen flow methods. The formalism mixes the features of the exotic formalism [55,
51, 14, 15] for the stochastic part and the planar forests formalism [47, 81, 79] for Lie-group
methods.

Definition 3.8. Let the map F : EF — T(X(M)) for m € EF and ¢ € C*(M) be defined as

Fr)e¢= ), &, (H Byl ) Ergl¢],

iv=1,....,D veEV,
veV

where R is the set of roots, II(v) is the set of predecessors of v ordered from right to left,
Er=FE;,...Ey for I =ip,... i1, and 0;;, = 0 if there exists i, # i, with a(v) = a(w) (that is,
(v,w) is a liana), and is 1 else. The notation can also be frozen for x, p e M:

(Fo(m)=¢)p) = Y, 6 (H B [fi“](x)) Erz[9](p)-

iv=1,....,D veEVe
veV

Ezotic Lie S-series and exotic Lie-Butcher series are defined analogously to Definition 3.4: given
a one form a € EF* (resp.a € ET*), an exotic Lie S-series (resp. exotic Lie-Butcher series) is
the following formal series

a)=¢:= Y Wa(m)F(r)=¢, Bu(a):= ) hl7la(

TeEF TeET

and analogously for their frozen counterparts S, and By, .
The exotic series arise naturally by considering the expectation of decorated series.
Proposition 3.9. Let a®* be a character on (Fp, W) with D = {e,0',... oF}, then
E[S%(a™) =¢] = S(a) = ¢,

where a = a%“ o ® is a character on EF with respect to the shuffle product and ® : EF — Fp is
the map that forgets the pairings of the white leaves.

For example, one finds
2211

E[Fdec( %v )] - IF((?\? + @3@;@{? + @%Zﬁ?)-

Proof. The proof is analogous to [14, Sect.4.1] where the white leaves decorated by the same
number are paired using the Isserlis formula [49]. That is,

E[Sdec( dec >¢ [ 2 h|ﬂ'\ dec Fdec ] Z h,|ﬂ'| dec E[Fdec( )] > ¢.

welp weFp

We use Isserlis formula to write

EFdeCﬂ'a EFﬂae
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where (7, ) and (7, ae) denote decorated and exotic planar forests as defined in Definitions 3.2
and 3.7 with the sum being over all . such that a,!(e) = o !(e) and o, !(N) is a union of
partitions into pairs of a=1(o!) for [ = 1,..., L. We note that E[F4(7)] = 0 if 7 contains an
odd number of nodes of color o for an I € {1,...,L}. Therefore, we have,

E[Sdec(adec) > ¢] = Z h‘ﬂ—|adec(¢)(’ﬂ'))F(7‘() > = S(adec 0 ®) >,
TeEEF

and the statement is proved. ]

Example 3.10. Consider the Euler frozen flow method (2.8). Using Proposition 3.5, its Taylor
expansion in decorated forests is given by

d(exp(hF, + V2heEy)p) = exp (hF + V2he Ey) = ¢(p) = F4(exp’ (he + V2ho)) = d(p)
- (id +hY2N2EU B, + h(F + €%¢h By - By

V2

1 1
+h3/2(7€dF'Ed+7§dEd'F+?§d3§d2§dlEd3 - Ey, .Ed1)+'”> > ¢

V2 V2
1 1 V2

:Fdec 1+h1/2 2o+ h{e+ oo +h3/2 ——eotT —=o0etT S 000
1 1 1 1 1

+h2(§..+§.°°+§0.0+§00.+60000)+"'>l> (p)

Then, the expectation pairs the decorated nodes together as detailed in Proposition 3.9 and yields

E[p(exp(hFy + V2he Ea)p)] = F(1+ h(u + o)
FR(Ge ot 1000+ 3000+ 5000+ $0000 T 10000+ $0000) > > ¢(p)
2°* 73 3 3 6 6 6
= (id+h(F+Ed-Ed)+h2(%F-F+%F-Ed-EdJr%Ed-F-EdJr%Ed-Ed-F

1 1 1
+ =B, B, Bay - Bty + 54y - Bay - Eay - Eay + 5 Eay - Bay - By - Egy) + . ) = o(p).

3.4 Conversion of geometric operations into exotic Lie series

We saw in Proposition 3.5 that the frozen flow rewrites as a tree series operation. The following
result, proved anologously to [81, Lemma 2.3], provides an algebraic description of the Taylor
expansion of a frozen vector field.

Lemma 3.11. Let a smooth map ¢: M — M with expansion ¢(¢(p)) = (S(a) = ¢)(p) with
a € EF*, then the frozen vector field Fiy: p — F,)(p) satisfies

Foe¢=(S(a)=hF)>=¢=Ba)=¢, a(r)=a(B (1)), ac&T™

Let two smooth maps ¢!, ?: M x M — M, typically ©F(p) = exp(ka(x)) .p with ¥*: M —
M. We use two possible ways to compose the ¢*. The standard composition of the maps would
read

' 0 D*(0) = ya (95 (P)).
On the other hand, the frozen flow methods (2.7) rely on the frozen composition:
o0 () = ¢y - 2 (p) = (D).
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The decorated and exotic Lie series allow to represent naturally all the geometric operations
needed for the analysis of the frozen-flow methods (2.7). We present the following result in the
context of exotic series (with h = 1 for simplicity), and we mention that decorated series satisfy
analogous identities. Let the deconcatenation product A : EF — EF @ EF be defined as

n
Ay, pn) = Z T,k @ Tht1, . n, With m; € Irr,
k=0

where w1, = m -7y, Ty = 1, and Irr is the space of irreducible exotic forests introduced in
Section 4.3. The composition and the Munthe-Kaas-Wright coproduct are further discussed in
Section 4.

Theorem 3.12. Let two smooth maps ©*, p?: M x M — M with expansions ¢(¢(p)) =
(Sz(a¥) = ¢)(p) with a € EF*. The frozen composition is given by

dp' - 0%) = (S(a*) - S(a')) =¢ = S(a*-a') = ¢, a®-a' =po(a®®a')oA.

Let two smooth maps @', p?: M — M with expansions ¢(¢*(p)) = (S(a¥) = ¢)(p) with
a¥ € EF*. The composition of exotic series as differential operators is given by the composition
law, dual of the MKW coproduct,

p(el o p?) = S(a?) = (S(a!) = ¢) = S(a?xa') =, a®xal =po(a®®ab) o Ayrw.
Proof. The expression for the frozen composition is derived similarly to [81, Lemma 2.2]. The
composition of flows derives from Theorem 4.6. O

3.5 Exotic Lie series of the exact and numerical flows

The exotic Lie series formalism allows us to give explicit expressions of the Taylor expansions
of both exact and numerical flows. The generator of equation (1.1) rewrites as

D D

Ll¢] = . f'Eql¢] + ) EalEql¢]] = Flo + @o)l¢] = SD[¢], 1 =46, + o0

d=1 d=1

The formal expansion (2.2) then rewrites straightforwardly in terms of forests. The proof is a
generalisation of the works [82, 85, 14].

Theorem 3.13. The Taylor expansion of the exact flow of (1.1) is given by the exotic Lie series
oo l*
u(h, p) = exp(hL)[$](p) = Su(e) = (p), e=exp*(l) = D, —.

In addition, let o(m) be the number of different ways the exotic planar forest m can be obtained by
successive applications of the Grossman-Larson product of a black node, or of a pair of decorated
nodes. Then, the coefficient e is given by

a(m)

e(m)

L
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The first terms are the following

t2
exp(tL) ZIF(]l—i-t(.—i-@@)—i-?(I—i-%D—i-. .+2®(P+.@@+@@.+@@@@> —i—...),

where the second order term is %.62 = %St(l) x Se(l) = %St(l x[).
Let us now present the expansion in exotic series of the frozen flow integrators. For the sake

of clarity, the random Runge-Kutta coefficients z,‘f, szk: are chosen as centered Gaussians. They

can be replaced with bounded approximations of Gaussians with the same first moments up to
order 2p and the expansion of the integrator will be an exotic series up to order p.

Definition 3.14. For K > 0, a labelling in Laby (7) of a decorated forest w is a multi-index
map k: V. — {1,..., K} such that ky, = ky, if v and w are in the same tree, with same height
and v is on the right of w.

For instance, a possible labelling in Labg (.G%? ) is 23. 87 . Then, the Talay-Tubaro expansion
of the new methods (2.7) is also given by an exotic Lie series.

Theorem 3.15. The Talay-Tubaro expansion of a frozen flow method of the form (2.7) is an
exotic Lie series:

E[¢(X1)|Xo = p] = Su(a) = é(p),

where a is given by

!

_ 0 dy 0 dy
-5 X X ¥ s 1] Zhaw I 2Zix T1 e 11 st
ty=1,...;s ke Labg () dv=1,...,D (v,w)EE (v,w)eE reRNV, reRNV;

veV vEVo vEVe veVo

where §q, = 0 if there exists d, # dy, with (v,w) € L, and is 1 else. Moreover, the coefficient
map a s a character on (EF, W), that is, a(m W) = a(m )a(ms).

The proof is a stochastic generalisation of [81].

Proof. Let us consider one step of the algorithm, with one Gaussian for the sake of simplicity:
ng = Ziykfd, z,ﬁf = éké‘d. Let the intermediate steps

gk—exp (hZZzO]kf H])—i_\/»szZEdEd)ng 1 gO_ld

7j=1

Theorem 3.12 yields ¢(g) = Si¢(at) = ¢ and ¢(H') = S(al) = ¢ with of = 01, af(1) = 1,
and

n S
z' 0 Jp+1(p— 7
Gy, Z ak 1( T Tp)( Z Zi,jp+1,kaK (B Tp+1)]]'7'p+17&o + Zi7k]1‘7p+1:o>
p=0 Jp+1=1
]n >
( Z Z 7]n7kaK n)]l"'vﬁéo + Zi’k]]"rn:o) .
Jn=1

An induction then yields

. 1/ <3 o N
(T ..mp) = Z E( Z Zgjhklaﬁ(B 71)1171¢0+Zi’k1]ln:o>

klé"'ékn ’ j1=1
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( Z Z,Jmk O‘K (B 7 )lr, 2, + Zi,knﬂrn=o>.
Jn=1

dec)

)

Similar reasoning yields the desired expansion for the last stage of the method as Sgec(a
where a9°¢ is a character by construction. Proposition 3.9 yields the expected formula for the
coefficient map a, as well as the character property. ]

Examples of computations of the coefficient map a associated to frozen flow methods are
presented in Table 1 and Appendix A. A more involved example of order 7 is the following:

9
™= oV
351
! D
_ da 0 dy dy 0 0 0 da 0
=E Z Z Z le,lg,kgZZS,ZS»ksZ23,17,k7Z23,16,k6le,ls,kraZZl,M,kcl is,k3 “ky “i1,k1

11,...,09=1  k1=ko=k3s di,d2=1
kqzks,kg=k7 kg

Remark 3.16. Order conditions for order p are obtained by requiring (a — e)(w) = 0 for all
m € EF\{1} of order |m| < p. This results in the set of order conditions being indexed by the
elements of EF\{1}. The fact that the coefficient maps a and e are characters of (EF, W) induces
relations between order conditions as detailed in Remark 2.1/. In particular, (a —e)(mwn) =0
if (a—e)(m) =0 and (a —e)(n) = 0 using,

(a—e)(mwn) = a(r)a(n) — e(m)e(n) = 0.

Finding the minimal number of order conditions requires us to consider the quotient of EF by
the ideal T :={mwn : m,ne EF\{1}). Using the fact that the order conditions corresponding
to W n are satisfied automatically, we take a — e to be a functional over EF /1, that is a — e €
(EF/1)*. Dualizing EF /1 yields the space of primitive elements Prim of EF with respect to the
deshuffle coproduct A, defined as

Prim := Span{r € EF : Ay(n) =7Q®1+1Qn}.

Therefore, using the identification (a — e)(m) = {a — e, 7), we have a — e € Prim. The detailed
description of Prim is left for future work.

4 Exotic planar forests and their algebraic structure

In this section, we focus on the algebraic structures of exotic planar forests. We first recall
the well-known post-Hopf structure of the connection algebra of vector fields in Section 4.1 and
decorated planar forests in Section 4.2. We then explore how these structures change in the
context of exotic planar forests in Section 4.3. In particular, we show that exotic planar forests
form both the Grossman-Larson and Munthe-Kaas-Wright Hopf algebras. We also observe that
the D-algebra structure is preserved. However, exotic planar forests do not form a post-Hopf
algebra as a connected exotic forest can have multiple roots, which violates the Leibniz rule of
the grafting product.
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4.1 Post-Hopf algebra of vector fields

We recall the connection algebra introduced in Section 3.1 with the connection =. It is checked
straightforwardly that the new connection then satisfies the following identities:

Fe|G,H=[F>G,H|+[G,F>H]|,

and
[F,G]>H=F>(Gz>H)— (F>-G)>H—-G>(F>H)+ (G>F)>H.

Following [35, 40], we observe that (X(M),[—, —], =) has a structure of post-Lie algebra.

The deshuffie coproduct A;: T(X(M)) = T(X(M)) @ T(X(M)) is, for A, B € T(X(M)),
F e X(M),
where we recall (A®B)-(C®D) = (A-C)®(B- D). Following the post-Lie extension [35] of the
so-called Guin-Oudom process [80], the product = extends to T(X(M)), for A, B, C € T(X(M)),
F, G e ¥(M), by

1>A=A4, As=1=0,
(F-AAG=F>(AG)—(F=>A)>G,

where we use the Sweedler notation w.r.t. Ay,. The triple (T'(X(M)), -, =) is called a D-algebra
[79]. The tensor algebra is equipped with the associative non-commutative Grossman-Larson

product
AxB= Ay (Apy=B), (A*B)=C=A>(Bx=C).

Then, (T(X(M)),-,AyL) and (T(X(M)),*,Ay) are Hopf algebras. We note that the Hopf
algebra (T'(X(M)),-, Ay) equipped with the additional product = is a post-Hopf algebra with
(T(%X(M)), =, A)) being the respective subadjacent Hopf algebra [35, 62, 24].

By the Cartier-Quillen-Milnor-Moore theorem, the tensor algebra T'(X(M)) coincides with
the universal enveloping algebra U (X(M)) of (X(M), [—, —]). The concatenation and Grossman-
Larson product satisfy, in particular, for F', G € X(M):

[F.Gle¢=(F-G-G-F)o¢, [F,Gleé=(Fx+G-GxF)cg.

4.2 Decorated planar forests

We recall the discussion of the decorated planar forests in Section 3.2. We present an alternative
definition of the decorated planar forests in Definition 4.1.

Definition 4.1. Let 11,...,7, € Tp be decorated planar trees, then, a decorated planar forest
m € Fp is a concatenation 71 ---T,. Let 1 € Fp be a decorated planar forest, then, a decorated
planar tree T € Tp is defined as B:{ (m) where the map B; : Fp — Tp attaches all roots of w to
a new root decorated by d.

We define the left grafting operation —~: Fp ® Fp — Fp by

l—~7=7m nm—1=0,

(T m) ~mg =7 (m —~ 7o) — (7 — ) — 7o,
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T (7 - o) = (my ) - (T2) > T2),

with 7 € Tp,m,m1,m € Fp and Ay (7) = (1) ® (o) using Sweedler notation. When restricted
to trees, the left grafting operation is defined as

T~ B;(ﬂ') = B:{(T-ﬂ) +B;[(T —~ 7).

Let Lie(7p) denote the space 7 extended with the Lie bracket [—, —], that is, given 71,70 € Tp,
we have [11, 7o] = 71-7a—72-71 € Lie(Tp), but [11,72] ¢ Tp. The space (Lie(Tp), [—, —], —) forms
the free post-Lie algebra of primitive elements of the Hopf-algebra (Fp, -, Ay). Consequently,
(Fp, -, Au, ) is a free post-Hopf algebra.

The universal property of (Fp, -, Ay, ) allows us to define a post-Hopf algebra homomor-
phism Fde¢ : Fpp — T(X(M)) by Fdec(d ) = f¢ satisfying

Fdec(ﬂ'l . 71'2) — Fdec(ﬂ'l)]Fdec(FQ), ]Fdec('ﬂ'l - 7T2) — Fdec(ﬂ'l) DFdeC(Trg),

and we note that Bj (r) = m —~ ¢. We recall the notion of a D-algebra introduced in [79]
and note that (Fp,-, ) is the free D-algebra generated by the set D. That is, (Fp,-) forms a
graded associative algebra and for all 7 € Tp and w,n € Fp, we have, 7 ~ 7 € T, as well as,

T (men) = (T w7 (T ),

To(m ) = (1w St (TeT)
We note that [F is also a D-algebra homomorphism.

Remark 4.2. The space of decorated planar forests forms the tensor algebra T(Tp) of the space
of decorated planar trees. It is the universal enveloping Lie algebra Fp = U(Lie(Tp)) of the Lie
algebra Lie(Tp) with the Lie bracket |x,y| = x -y —y -z for z,y € Lie(Tp). Moreover, Lie(Tp)
is the space of primitive elements with respect to the deshuffle coproduct Ay, that is,

Lie(Tp) ={reFp : Au(n) =7®1+1®mn}.
The Grossman-Larson product over decorated planar forests is defined as
mon:=mqy - (7@ —~n), formmneFp,

and F(7 o n) = F(7) + F°(n) due to the fact that FI¢ is a D-algebra and post-Hopf
algebra homomorphism. We generalize the concatenation and Grossman-Larson products by
specifying the order in which the trees of the operands are concatenated. Let m,n € Fp and let
w denote an ordering of the roots of 7 - ) such that the order of roots in 7 and 7 is preserved,
that is, if 1 and 79 are roots of m or n and r; < 79, then ri < 79 according to w. We define
‘w : Fp X Fp — Fp to be the concatenation product with roots arranged according to the
ordering w. The Grossman-Larson product ¢, : Fp x Fp — Fp is defined as follows,

T oy 1 = Ty w (T(2) ~ M)

where the ordering w is defined over the roots of 7 - 7. For example

1wt -val rwiecaci<a
2 b ¢ d cabpd
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We note that 7-,n = 7-n and 7o, n = won for w which takes the roots of 7 to be smaller than
the roots of 5. If the ordering w in 7 -, 7 does not specify the order between some roots in m -,
then, the roots of m are taken to be smaller than the roots of 7. The generalised concatenation
and Grossman-Larson products are used in the context of planar exotic forests to describe the
structure of the Grossman-Larson Hopf algebra.

4.3 Exotic planar forests

The algebraic structures described in this section are applied in Section 3 for the description of
the composition law and the order conditions of stochastic frozen flow methods.

We construct the space EF from the space of decorated planar forest Fp and inherit a
number of algebraic structures from it. There are two possible approaches: with an appropriate
subspace or with a quotient. We use the first approach to define the algebras and the second
approach to define coalgebras.

Let us consider decorated forests Fp with D = {,,@ : d € N} and let F, L denote its quotient
by the subspace K spanned by the forests in which a numbered node is found at a position which
is not a leaf. It can be checked that K is an ideal with respect to concatenation, shuffle, grafing,
and Grossman-Larson products, and, therefore, F B forms an algebra when endowed with one of

these products. Let 7% denote its completion with respect to the grading given by the number

of nodes, that is, 7@ is a space of formal sums over F L% . We define the subspace .7:15) of .fé,
corresponding to exotic forests, spanned by

p(mal):= Y (ma),

aeP(ae)
with ¢ : EF — F% an isomorphism. P(«,) is the set of decorations a with a~!(e) = a1(e) and
a(vy) = a(va) if  ae(v1) = ae(v2), for vi,ve € V(m).
Some examples of the values of ¢ are
QR QD
e 00 @ o o @ o
pE) =%, ()= ¥
i=1 ij=1

We take p : EF — .Fg to be an algebra homomorphism with respect to the generalised
concatenation, shuffle, grafting, and generalised Grossman-Larson products which induces the
corresponding algebraic structures over £F. For instance, the shuffle product i : EF x EF —
EF permutes the roots of forests. Let m -, 7 be the generalised concatenation obtained by
concatenating the forests m and 1 with the roots permuted according to the ordering w of the
roots of m - 7. The shuffle product is defined as

WLU??:ZT("UJT],
w
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where the sum is over orderings of the roots of 7 - n such that the order of the roots of m and 75
is preserved, that is, if 71 and 7y are roots in 7 or 1 and r; < ro, then r; < ro according to w.
For example, we find

(P(D'w ) :(PI@, forw:a <c<b,
ab C Cb

a

where we label the roots for illustration purposes, and,

(P@LUIZ(P@IﬂL(PI@JrI(P@,
@@LUI@{@ = @@I+@I@@{@+@I@+I@@@¥®+I(§{@@+I@p@@,

with 1 being the neutral element for LL.

Let us now consider the subspace of F j% orthogonal to F 187 with respect to the inner product
with which F' 6 forms an orthonormal basis of F [L). We denote it by Z and we can see that it is
a coideal in the coalgebra (F5, A,)) using the fact that the deshuffle coproduct is adjoint to the
shuffle product. Taking a quotient of (F ,%, Ay) by Z gives a definition of the coalgebra of exotic
forests (EF, Ay) through the isomorphism

O(m o) = (ma0) + I € F5/z. (4.1)

We refer to [15] for a precise analogous definition with non-planar exotic forests.

An exotic forests 7 is irreducible if it cannot be written as a concatenation of two exotic
forests, that is, m # v - n for v,n € EF\{1}. The space of irreducible exotic forests is denoted
by Irr ¢ £F. An exotic forests 7 is connected if it cannot be written as # = v -, n for any
v,n € EF\{1} and any ordering w of the roots of v - 7. The set of connected exotic forests is
denoted by EF¢ and the corresponding space by Conn := Span FF¢. We note that Conn < Irr.

Remark 4.3. Analogously to Remark 4.2, the space of planar exotic forests forms the tensor
algebra T(Irr) of Irr, and, thus, a universal enveloping Lie algebra EF = U(Lie(Irr)) with the
Lie bracket |x,y| =z -y —y-x on EF. The first terms are

Lie(Irr) = Span{e, 0@ & X, P2, 03 0+ 0 0000 0000 [+ 0] - - - }-

In order to show that the space of exotic planar forests forms a Hopf algebra, we need to prove
the compatibility between the algebraic and coalgebraic structures. We consider the product
Ay, EFQEF — EF defined as

TGN =T Oy — 71, forme EFo,neEF,
(7w ) n = TG (Y en) — (Tyy) e,  for v € EF.

Intuitively, the product ~,, is a modification of the generalised Grossman-Larson product ¢, in
which we require each element of EF¢ in the left operand to attach at least one root to a node
of the right operand. For example, let w: a < ¢ < b, then,

@
oF -9 o
We note the following property

T oy N =T w (T2)wn), formnelF,

where Ay, () = (1) ®@7(2) is the deshuffle coproduct defined on £F. We note that mon = mo,n
with w being the order for which 7 -, n=m-n.
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Theorem 4.4. The space of exotic forests EF together with Grossman-Larson product and
deshuffle coproduct forms a Hopf algebra.

Proof. We note that the algebra structure is obtained by considering a subalgebra of (F: f),o),
while the coalgebra structure is obtained by taking a quotient of the coalgebra (F lL), A). This
means that the algebra and coalgebra structures are not automatically compatible. We prove
the compatibility condition of the generalised Grossman-Larson product for any ordering w,

A(m 0w n) = A(m) oy A(n),

by induction on the number of connected components in 7. Assume the compatibility is proven
for all forests with the number of components less or equal to the number of components in .
Consider 7 -, m with 7 € EF¢ and ordering w of roots of 7 -7 -7 with an arbitrary order between
the roots of 7 - 7 and 7, then,

ey T) 0 1)
) = AT~y m) 0w Aln)
0w A1) = A(T - ) 0w A1),

where we use the associativity of ¢, and coassociativity of A. It remains to show that

A(T o, n) = A(T) o, A(n), for 7€ Conn,ne EF.

AT 0w m) 0w n) = AT 0 (T 0w ) — (7
= A(T) 0w A(T) 0w An

= AT oy, m—T 4y, T)

We note that 7 has multiple roots which, when grafted onto different connected components of
7, connect them into a single component. Therefore, we have

AT own) = (7 0w ne1)) @1e2) + 101) @ (T 0w N(2)) = Aw(F) 0w Au(n).

This proves the compatibility between the Grossman-Larson product and deshuffle coproduct.
Therefore, £EF forms a graded connected bialgebra, that is, a Hopf algebra. O

Remark 4.5. The space (EF,-, Ay, —) is not a post-Hopf algebra, as defined in [62], since in
general
o~ (T - o) # (7T(1) ~oTTy) - (71'(2) —~ ) in EF.

Moreover, (EF, -, Ay, =) is not a post-Hopf algebra for the same reason. This is due to the fact
that a connected planar exotic forest can have multiple roots. However, we see that (EF, -, —)
is a D-subalgebra of (Fp,-,—), as defined in [79], with the grading of the associative algebra
(EF,-) given by the number of roots. A straightforward extension of the arguments in [80] fails
to show that the spaces (EF, ) and (EF,~=) are either brace or symmetric brace algebras for
the same reason.

The Connes-Kreimer Hopf algebra structure is the dual of the Grossman-Larson one in a
Euclidean setting. On homogeneous spaces, it generalises into the Munthe-Kaas-Wright Hopf
algebra [79, 36].

Let an admissible cut ¢ of an exotic planar tree 7 be a subset of edges of 7 such that it
contains at most one edge from each path in 7 from a leaf to the root. If e = (u,v) is in ¢, then
all incoming edges of v which are to the left of e are also in ¢. Moreover, given a liana with
nodes v1 and ve, if any edge in the path from v; to the root is in ¢, then the path from vy to the
root must also contain an edge in c.

Given an admissible cut ¢, 7\c is an exotic planar forest. Let R°(7) be the component of
7\c¢ which contains the root of 7. Let P¢(7) be the linear combination of exotic planar forests
obtained by taking the components of 7\c that do not contain the root of 7 and shuffling the
roots while preserving the order of the roots cut off from the same node.
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Theorem 4.6. Let the Munthe-Kaas-Wright coproduct on EF be, for T € ET and m € EF,
defined as

Y P @R,

adm. cut c

AMKW('/T) = (Zd@ B_)AMKW(B+(7T))7

Apngw (T) :

where the sum is over admissible cuts c. Then, (EF, W, Aykw) is a Hopf algebra dual to the
planar Grossman-Larson Hopf algebra (EF,o,Ay). Its convolution product,

axb= (a®b) OAMKV(U
is called the composition law.

Proof. We recall that the dual of a Hopf algebra is a Hopf algebra. It is clear that W and Ay,
are dual. It remains to show that the Munthe-Kaas-Wright coproduct Ay gw is dual to the
Grossman-Larson product ¢. We recall that Munthe-Kaas-Wright coproduct and Grossman-
Larson product are dual over the planar decorated forests. The Munthe-Kaas-Wright coproduct
over exotic forests is obtained by taking the quotient over Z defined in (4.1) for the construction
of deshuffle coproduct. This is the dual approach to the way the Grossman-Larson product over
exotic forests is obtained. d

Some examples of the values of Ap/iw are

Aurw(oo) =o00®1 +1® oo
A (&) =P R1+50®.+ 1082,

AMKW((P?) =<P?®1 +200®e 1+ (03 + P0) @ o + (03 + Fo) ®1
+ (@?+?@)®.+2‘P‘P®.+1®CP?

The Hopf algebra structures on £F translate to the structures on 7'(X(M)) via the use of
the elementary differential map F defined in Section 3.3. We recall that decorated planar forest
form a free D-algebra with the concatenation and grafting products [79] which is generated
by the set of decorations D. The elementary differential map over decorated planar forests
Fdec ;. Fp — T(X(M)) is a D-algebra homomorphism that is fully characterized by its values on
the nodes decorated by D = {4, : 1 <1< L},

Fdec(o) = fa IE‘dec(ol) = fdJEda

where the %! are independent standard Gaussian random variables. The map F4¢¢ thus defined
is equivalent to the map F9°® from Definition 3.3.

The space of exotic forests EF is isomorphic to a D-subalgebra }"15) of the D-algebra of
decorated forests with D = {,,@ : d € N} through the isomorphism ¢ : EF — F ¢ as is described
in the beginning of Section 4.3, and, thus, inherits the elementary differential homomorphism
as F := Fd¢ o p with Fde¢ : F§ — T(X(M)) defined as

deeC(.) — f7 FdeC(@) — Ed‘

This definition is equivalent to the one given in Definition 3.8.
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Proposition 4.7. The elementary differential F: EF — T(X(M)) is a Hopf algebra morphism:
F(m — me) = F(m) =F(ma), TF(m-me) =F(m) -F(ms), F(mome) =TF(m) = F(me).

In particular, the frozen composition is represented by concatenation and the composition of
differential operators is represented by the Grossman-Larson product:

(F(m1) - F(m2)) = ¢(p) = Fp(m1) & (Fp(m2) = @) (p) = F(m1 - 72) = b(p),
(F(m1) * F(m2)) = ¢(p) = F(m1) & (F(m2) = ¢)(p) = F(m1 © m2) & ¢(p).

5 Numerical experiments

We provide several numerical experiments to confirm the theoretical findings and the numerical
properties of the new schemes. In particular, we present a practical guide for the implementation
of frozen flow methods, convergence curves for the weak error on the orthogonal group, a compar-
ison with the sampling geometric methods from the literature on the sphere, and an ergodicity
test for the simulation of generalised Cauchy measures in a context where the assumptions of
our convergence analysis are not satisfied.

5.1 Practical implementation of frozen flow methods

The implementation of frozen flow methods relies on the ability to find local frames and to
compute the solution of the frozen equation

y'(t) = Y aaBaly(t),  y(0) = yo.
d

On homogeneous manifolds, we recall that global frames can be derived from any basis (A4) of
the Lie algebra g with the derivative of Lie-group action: E4(p) = Ag-p. On matrix homogeneous
manifolds, the solution of the frozen flow equation coincides with the matrix exponential:

y(t) = Exp(} | aaAa) - yo.
a

For sampling the invariant measure of Riemannian Langevin dynamics (1.3), the algorithms
require at each step a local orthonormal frame basis and the solution of the frozen flow equation.
While one can change the orthonormal local frame between different steps, it is crucial to rely
only on one fixed frame per step. On Lie groups, choosing an orthonormal basis (A4) of the
Lie algebra g for the definition of the E; naturally yields an orthonormal frame. On general
Riemannian manifolds, one can provide an orthonormal basis of Tx,M and parallel transport
it around X to obtain a local orthonormal frame basis.

In general, solving the frozen flow equation is not straightforward. It is equally difficult to
solving the geodesic equation, as done in [10]. Similar to the idea of retractions (see, for instance,
the textbook [4]), the frozen flow could be replaced by any approximation with sufficiently high
order of accuracy and that lies on the manifold. A standard example of such an approximation
is the Cayley map [47]. In our numerical experiments, we rely on exact expressions of the frozen
flows using either Lie geometry or coordinates for the sake of simplicity.

We emphasize that the geometric operations needed for stochastic Lie-group methods are
available on a wide collection on manifolds and in a variety of programming language (see, for
instance, [37, 76, 7]).
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5.2 Brownian dynamics on the special orthogonal group

Let M = SO, (R) be the compact Lie group of special orthogonal matrices of size p x p. Let (A4q)
be an orthonormal basis of its Lie algebra so4 of antisymmetric matrices and for the bi-invariant
metric g(A, B) = Tr(ATB). Let E4(y) = Agy be the associated right-invariant orthonormal
frame basis. As the manifold is smooth and compact, the geometric assumptions are all satisfied
automatically and our analysis applies.

Following Example 2.15, Brownian dynamics on SO,(RR) are given by

D
dX(t) = Y. Eg(X(t) 0 dWy(t), D = dim(sop) = p(p;l).
d=1

In this context, the implementation of the new frozen flow methods is very natural as it relies only
on fast linear algebra operations. In particular, the new second order method (2.11) becomes
(under a time rescaling)

& (V2 a1, V2 d,2 c d,1
X1 = Exp ( > (S vier + vl )Ad) Exp ( 3 Ve Ad) X,.
d=1 d=1
Note that there is no timestep restriction for the scheme to be well-posed. This is in striking
contrast to projection methods, which would rely on a tedious non-geometric implementation,
on the embedding of SO,(R) into RP*P (of more than double dimension), and would require a
small enough timestep for the projection map to be well-defined, even in this simple context of

a compact manifold.

We consider the weak approximation of Brownian dynamics on SO3(R) with the Euler frozen
flow method (2.8) and the new second order method (2.11) (with discrete bounded random
variables with correct first moments - see Section 2.3) for the test function

T
o(x) = exp(~ I =TT 10),
the initial condition Xy = Iy, final time T = 1, and different timesteps to observe the order of
convergence. We emphasize that the explicit expression of Brownian dynamics X (¢) on SO3(R)

are not given by Exp(>] AgWy(t))Xo, but rather by a stochastic Magnus expansion (see, for
instance, [19, 18, 47, 92, 50]):

X(t) = Exp(Q(t)Xo,  dQ(t) = dExpgfy (Y Aao dWa(t), Q(0) =0,
d

whose first terms are

00 = $ A0 Wa ()~ 5 [ 3] s Aa Wi (5) o Wiy (9
d1,dz

dy
1 t
+ 12J Z [Adss [Adys Ady Wy (8)Way (8) 0 AWy, ()
0
dy,d2,d3

1 t rs
+ Z J J Z [[Adga AdQ], Adl]]de (u) o de2 (u) o del (S) + ...
00 gy ,dy,ds

For simplicity, the reference solution for E[¢(X(T"))] is chosen as the output of the new second
order scheme with the timestep hp = 27'2. We observe on Figure 1 the correct order of
convergence of the two new methods. The second order integrator reaches the Monte-Carlo
error threshold almost instantly, even for relatively large timestep.
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Figure 1: Brownian excursion at time T = 1 on SO3(R) represented by the trajectories of the three
columns on the sphere S? (left) and error curve for the weak approximation of Brownian dynamics on
SO3(R) with ¢(x) = exp(—Tr((z — I4)T (z — 14))/2d), T = 1 and M = 108 trajectories (right).

5.3 Ergodic dynamics on the sphere

Our second test case focuses on the sampling of Riemannian Langevin dynamics on the sphere
S?, following the experiment of [10]. While the approximation for the invariant measure is not
the focus of the new methods implemented in this paper, this example allows us to conveniently
compare the performance of the new frozen flow methods to the alternatives from the literature.
The sphere S? can be seen as a homogeneous manifold with respect to the Lie group G =
SO4+1(R), so that we could consider a natural frame derived from a basis of the Lie algebra
60441 (which would typically fit the simulation of a stochastic rigid body). However, we need
an orthonormal frame to sample from the Riemannian Langevin dynamics (1.3), so that we
use a different choice of frame relying on the standard spherical coordinates. We consider the
coordinates on S? minus the north/south poles:

cos(0) cos(p) o
Yo,p = COS(O) Sin(@) € 827 0 E] - 51 5[7 pEe [07 27T[,
sin(6)
with the associated orthonormal frame basis:
—sin(6) cos(p) —sin(yp)
E(yop) = | —sin(@)sin(p) },  E2(yee) = | cos(y) |,
cos(6) 0

and a second frame associated to the spherical coordinates on S? minus [+1,0,0]. Using two
frames guarantees a bounded Lipschitz constant for the chosen frame and does not impact the
sampled measure. As the manifold is compact, the assumptions of our analysis are satisfied
automatically. The frozen flow is computed explicitly in coordinates. In order to obtain a fair
comparison between the methods, we use Gaussian random variables.

We now compare the numerical behaviour of the frozen flow Euler method (2.8), the new
second order method (2.10), the Riemmanian Langevin method [10], and the extrinsic projection
methods of order one [60] for sampling the invariant measure of Riemannian Langevin dynamics
(1.3) on S%. We consider the potential V (yg,) = — sin(6), the associated vector field (containing
the Ito correction)

F=-VV -VgE —VEg,Es,
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and the test function ¢(z) = z3. In this context, the generator is L = —¢'(VV) + A,
with the spherical Laplacian Ag2. Assuming ergodicity (which is observed numerically for the
methods studied here), the numerical schemes approximate the quantity

§s2 o(z)e V@ dvol(x) B 2
SSQ e V@dvol(z) B m'

We observe the weak error curves in Figure 2, as well as the expected orders of convergence.
The new second-order frozen flow method outperforms the other integrators and reaches the
Monte-Carlo threshold with much larger timestep.

— -h

—
~— Euler SFF
~%— 5FF2 -
—@— Riem. Euler
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error for invariant measure
-
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|
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Figure 2: A trajectory of the new second order method (2.11) (left) and the convergence curve for the
weak approximation of stochastic rigid body equation on the sphere (right) with ¢(x) = 23, T = 10 and
M = 108 trajectories.

5.4 Generalised Cauchy measures

The generalised Cauchy measures are probability measures pg defined on R™ by

I'(6—n/2)
L) -

with § > n/2. They can be interpreted as finite dimensional approximations of Gaussian
distributions, as in [11], and are related to the fast diffusion equation for which they play the
role of the heat kernel and are known as Barenblatt’ solutions (see [90]). A generalised Cauchy
measure is the ergodic distribution of the dynamics

_ij

ps(dr) = (1 +|zf?) 7 Zg =

dX; = —2(8 — 1) Xpdt +V2(1 + | X, ) dB(t), (5.1)

where B(t) is a 2-dimensional Brownian motion. A direct numerical simulation of this SDE
presents numerous difficulties as the multiplicative non-Lipschitz noise brings tedious stability
problems, so that most standard Euclidean numerical methods fail. However, the noise can be
interpreted as additive at the cost of a change of metric g, = (1 + |x|?)"!{-,-). This change is
not simply a transport of difficulties from noise to geometry, as it reinterprets the problem in a
convenient space. The same approach has been fruitful in the study of the associated spectral
gap, i.e. the speed of convergence of the semigroup to the ergodic measure, in [45]. This context
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calls for methods on manifolds, as Euclidean methods are not adapted. We emphasize that the
process (X;); does not have bounded moments at all orders. Thus, the convergence results of the
standard Euclidean analysis, and of our analysis as well, do not hold. This makes the simulation
of generalised Cauchy measures a convenient toy problem for testing our methods.

We are concerned with the simulation of generalised Cauchy measure on R?. As explained
in [44], the adapted manifold can be interpreted as the revolution surface

S = {(tanh(r) cos(#), tanh(r) sin(0), h(r)); (r,0) € Ry x S'}, (5.2)

with h(r) = argsinh(cosh(r)) — cosh™2(r)4/cosh?(r) + 1. However, it is more handy to see it

through a global map, as R, x S, with coordinate (r,6), endowed with the metric

9= ((1) tanl(1)2(r)>

in the basis (0,, ). This map comes from fitting polar coordinates on R?,
(z,y) = (sinh(r) cos(0), sinh(r) sin(h)),
which trivialise the metric g. We define the following orthonormal frame basis on R x St

1
tanh(r)

El(T’, 0) = &’r, EQ(’I“, 0) = 59.
In this manifold, generalised Cauchy measures correspond to Gibbs measures associated to the
potential V3(r,0) = 2(8 — 1) log(cosh(r)) and the generator

L=E?+F;+ (mim — (26 — 1)tanh(r)) E;.

Note that the frozen flow is explicit on S. For all o, 3 € R and (rp,6p) € R* x S!, we find

6] sinh(rg + at)
t(aFE Es)) - 0o) = t,0p + —1 _—
exp (t(aEr + BE3)) - (ro, bo) (To +at, bt + log Sinh (1) ;
for all ¢ = 0 such that r; stays positive. This brings an additional difficulty in this experiment.
Although the potential f! blows up at the origin, the coefficient

a = hfl(r) + V2he

with £ a Gaussian random variable, can be negative and the frozen flow not defined. The use of
bounded random variable is instrumental in avoiding this instability. In particular, the method
(2.8) with Rademacher random variables is well-posed.

Our numerical experiment aims to illustrate the ergodicity of the simplest frozen flow method
(2.8), which, to the best of our knowledge, has not yet been established in the literature. We use
the first eigenfunctions of the generator ¢'(r,6) = sinh(r)? — (8 —2)~!, ¢?(r,6) = sinh(r) cos(d),
which both satisfy S¢k dpg = 0. As a consequence of the Poincaré inequality, the variance of the
semigroup associated to £ converges at exponential speed to 0. The coefficient of the exponential
is given by the spectral gap (see [46] for the spectral gap expression). The test functions ¢* are
extremal for the Poincaré inequality. Hence, for these particular test functions, the exponential
convergence can be observed not only for the variance but also pointwise. In Figure 3, we
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illustrate numerically the exponential convergence to equilibrium of the numerical methods, in
the spirit of [33] in the Euclidean setting. In particular, we observe a convergence in Ce B2t
and Ce 26— for our specific choice of test functions, confirming numerically the results in
[46]. For the first eigenfunction ¢!, the error for the invariant measure reaches the discretisation
bias with exponential speed. We observe that the bias threshold evolves linearly in h (up to
Monte-Carlo error), as expected for a method of order one. For ¢?, we do not observe the bias
of the Euler frozen flow method (2.8), hinting that for this specific test function, the method
might be of higher order of accuracy for the invariant measure. For the sake of comparison, we
mention that the standard Euclidean integrators applied to (5.1) face severe instability issues
and thus fail to converge, let alone be ergodic.
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Figure 3: Evolution in time of the error for the invariant measure of the Euler frozen flow method (2.8) for
the simulation of generalised Cauchy measures on the manifold (5.2) with 8 = 4, M = 10® trajectories,
and the test functions ¢!(r,6) = sinh(r)? — (8 — 2)7! (left) and ¢?(r, #) = sinh(r) cos(#) (right).

6 Conclusion

In this paper, we provided a brand-new class of intrinsic discretisations for the approximation of
stochastic dynamics on Riemannian manifolds with high weak order of accuracy. We presented
a new robust convergence analysis, that naturally generalises the Euclidean analysis, and the
new algebraic formalism of planar exotic trees, forests, and series for the study of the order
conditions. The analysis applies in particular for the creation of high-order sampling methods
for Riemannian Langevin dynamics. The new methods were tested on a variety of different
manifolds, where we observe that the new second order frozen flow method outperforms the
other approaches from the literature in terms of accuracy.

The tools developed in the present paper open several avenues for future research. Similar to
the Euclidean setting, we will extend the analysis to general SDEs with multiplicative noise and
to the creation of integrators with high-order of accuracy for sampling the invariant measure,
and low weak order (in the spirit of [57, 91]). This requires generalisations of the exotic forests
formalism [20], the challenging extension of the integration by parts of trees in the planar
case [55, 56, 14, 15], and the extension of stochastic backward error analysis for the invariant
measure [86, 93, 33, 2, 15] on manifolds. While the focus of this paper is on discretisations
and improvements in accuracy only, our approach could naturally be combined with popular
sampling techniques, such as MLMC [38, 39], perturbations [59, 34, 1],... Then, following the
work [10], one could wonder whether a purely Riemannian approach of algebraic order theory
could be used. Our approach follows the one of deterministic Lie-group methods and thus relies
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on a curvature-free connection, unrelated to the natural Levi-Civita connection on Riemannian
manifolds. The study of such new methods is already open in the deterministic setting and relies
on the challenging general understanding of the connection algebra [5]. Finally, the new algebraic
formalism of planar exotic series is interesting in itself and could be studied for its universal
combinatorial, algebraic, and geometric properties, but also for its potential applications in
different fields, in the spirit of the use of Butcher series and their extensions in rough paths
[42, 58], renormalisation theory [17], variational calculus [53, 52] or approximation of PDEs [16].
These projects will be studied in upcoming works.
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Appendices

A Order conditions for third weak order

For the sake of completion, we detail in Table 2 the 92 additional order conditions for weak order
3 with stochastic frozen flow methods (2.7). Recall that these conditions are not independent
and satisfy shuffle relations (see Remark 2.14), so that only 70 of these conditions are actually
necessary.
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Table 2: Order conditions of frozen flow methods for weak order 3. The expectations and sums that do
not satisfy inequalities are omitted for conciseness.
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