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Abstract

We introduce a pre-Lie formalism of Butcher trees for the approximation of Hamilton-
Jacobi solutions on any symplectic groupoid G Ñ M. The impact of this new algebraic
approach is twofold. On the geometric side, it yields algebraic operations to approximate
Lagrangian bisections of G using the Butcher-Connes-Kreimer Hopf algebra and, in turn,
aims at a better understanding of the group of Poisson diffeomorphisms of M. On the com-
putational side, we define a new class of Poisson integrators for Hamiltonian dynamics on
Poisson manifolds.
Keywords: Butcher series, Poisson geometry, mathematical physics, geometric numerical
integration, symplectic groupoids, Hamilton-Jacobi equation, pre-Lie algebra, Hopf algebra.
AMS subject classification (2020): 16T05, 37J39, 41A58, 65L06, 70G45.

1 Introduction

1.1 Context

A Poisson bracket on a smooth manifold M equips the space of smooth functions of this manifold
C8pMq with a Lie algebra structure pC8pMq, t., .uq. Therefore, it is natural to ask about the
existence of a Lie group integrating it. In the context of Poisson manifolds, there exists an
extremely profitable approach to this question: instead of looking for a infinite-dimensional
Lie group, we can try to construct a finite-dimensional Lie groupoid G over M . This Lie
groupoid turns out to have a natural symplectic structure. Therefore, symplectic Lie groupoids
are the global counterpart to Poisson structures. They encode in particular three different
aspects of Poisson geometry: foliation theory (the partition of any Poisson manifold into leaves),
symplectic geometry (the geometry along any leave) and Lie theory. Concerning the question
of integrating the Lie algebra of smooth functions, there exists a group object keeping track of
this integration inside the symplectic groupoid: the group of Lagrangian bisections. A major
interest of symplectic groupoids in mechanics is the deep relation between Lagrangian bisections
of the Lie groupoid G and Hamiltonian dynamics on M.

Another interest of Lagrangian bisections lies in mathematical physics purposes. In [18], a
formal correspondence is spelled between symplectic groupoids and C�-algebra theory, where
Lagrangian submanifolds are the elements of the non-commutative algebra. The groupoid inverse

1Univ Rennes, INRIA (Research team MINGuS), IRMAR (CNRS UMR 6625) and ENS Rennes, France.
Adrien.Busnot-Laurent@inria.fr.

2Göttingen Mathematisches Institut, Georg-August-Universität Göttingen, Office 021, Hauptgebaüde, Bun-
senstraße 3-5, 37073 Göttingen - Germany. Oscar.Cosserat@mathematik.uni-geottingen.de

1



corresponds to the conjugation and the product law corresponds to the tensor product. There,
Lagrangian bisections are unitary elements. This correspondence started a research program
on deformation theory and the quantisation of Poisson manifold through symplectic groupoids.
This brought in turn a considerable attention on the topic ([43, 10, 33, 30]).

Symplectic groupoids have also been used for computational purposes. Indeed, the relation
between Hamiltonian dynamics on M and Lagrangian bisections has been applied to the numer-
ical approximation of Hamiltonian flows on the Poisson manifold M ([15]). The idea appears
first in [24], while the case of fiberwise linear Poisson structures has been studied in [22]. More
precisely, given any Hamiltonian H P C8pMq, a Hamilton-Jacobi equation is used to relate its
Hamiltonian flow pϕH

t qt to a smooth family of Lagrangian bisections pLtqt, provided that t is
small enough. A truncation at any order of the solution of this Hamilton-Jacobi equation al-
lows to recover the initially considered Hamiltonian dynamics in an approximated way, and this
approximation has been proved to be numerically satisfying compared to traditional methods
([17]). The relation with previous paragraphs lies at the comparison between the time-step in
numerical purposes and the parameter of deformation in the mathematical physics context. An
analogy seems to hold in-between both situations, and we expect tools from one field to become
fruitful when applied to the other one.

With that respect, a colossal algebraic formalism has been developed since the sixties in
order to deal with the approximation of solutions of ordinary differential equations. Butcher-
series were first introduced in [5, 28] (see also [27, 40, 6]) for the study of order conditions for
Runge-Kutta methods in numerical analysis. They were later applied successfully to a variety
of different fields such as geometric numerical integration [31, 27], quantum field theory [14],
rough paths [26, 29], or stochastic numerics [4, 36, 35]. The modern approach to such algebraic
formalism relies extensively on Hopf algebras [13, 39, 3, 2] that we shall identify in the context
of Hamiltonian systems on Poisson manifolds.

Let us also mention that Hopf algebras have been used already to approximate geometric
objects in Poisson geometry. A relation between deformation of symplectic groupoids and high-
order Runge-Kutta numerical methods has been explained in [11] and formulated in terms of
operads in [12]. Symplectic realizations are constructed using the Butcher group in [9], while
[7] gave a detailed construction of local symplectic groupoids using Butcher series of Hamilton-
Jacobi generating functions.

It is therefore natural to look for a proper algebraic formalism for the approximation of
Hamiltonian dynamics on a Poisson manifold. This article answers this question and explores
the algebraic, geometric and computational consequences.

1.2 Content of the paper

In Section 2, we recall how the Hamiltonian dynamics of H P C8pMq is recovered by Lagrangian
bisections of a symplectic groupoid G of the Poisson manifold M through a Hamilton-Jacobi
equation. Jets are used to introduce the various groups involved and to deduce an approximation
of the Hamiltonian dynamics at any arbitrary order. In Section 3, we provide a new pre-Lie
combinatorial formalism to compute formal solutions of Hamilton-Jacobi equations. We give
two applications of this pre-Lie algebra formalism. First, we use in Section 4 the Butcher-
Connes-Kreimer Hopf algebra to provide a new algebraic description of the group of Lagrangian
bisections at the identity section, see Theorem 4.2 for a precise statement. In Section 5, we
explain how the new algebraic formalism applies to high order approximations of Lagrangian
bisections using Runge-Kutta numerical methods. It delivers as a byproduct new Hamiltonian
Poisson integrators.
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2 Preliminaries

2.1 Reminders on Poisson geometry

In this section, we give a concise summary of various notions of Poisson geometry. We do not
intend to give any introduction of the topic. Instead, the reader may consult [38] about Hamil-
tonian dynamics and symplectic geometry and [19, 20] about Poisson structures and symplectic
groupoids.

Let pM, t., .uq be a Poisson manifold. In this article, we are interested in Hamiltonian dy-
namics on M : for any Hamiltonian H P C8pMq, we study the differential equation on M

9xptq � XH

�
xptq

�
(2.1)

where XH : f P C8pMq ÞÑ tH, fu P C8pMq is the Hamiltonian vector field1 of H. Since one
main motivation of the present work is the construction of new numerical methods, let us recall
the notion of Hamiltonian Poisson integrator.

Definition 2.1 ([17]). A Hamiltonian Poisson integrator for the Hamiltonian H P C8pMq at
order k P N is a family of map φt : M Ñ M, t P I a small real parameter, with the following
property: there exists a time-dependent Hamiltonian pH̃tqtPI P C8pM � Iq such that φ is the
time-dependent Hamiltonian flow of H̃. The Hamiltonian Poisson integrator is said to be of
order k if for any test function f P C8pMq,

@ 0 ¤ i ¤ k,
Bipf � φtq

Bti |t�0
�
Bipf � ϕH

t q

Bti |t�0
. (2.2)

Symplectic methods are an important particular case of Hamiltonian Poisson integrators and
they are a major motivation for this work. An other remark is that h is an approximation of
the Hamiltonian H of the same order as the integrator: H̃t � H � o

�
tk
�
. As we can see in the

equation (2.2), Taylor series with respect to the time t play an important role in our context to
count the order of approximation of a dynamics.

We introduce now a geometric space used to construct Hamiltonian Poisson integrators.
To any Poisson manifold pM, t., .uq is associated a local symplectic groupoid G Ñ M over M
([18, 34]). We write α : G Ñ M and β : G Ñ M for the source and target maps respectively.
The tubular neighborhood theorem of [42] provides a local model around the identity section
of G Ñ M to realize G as a neighborhood of the zero section inside T �M. With a slight abuse
of notation, we keep the same letters: the tubular neighborhood we call again G and α and β
denote again the resulting maps from G to M.

Theorem 2.2. There exists a tubular neighborhood G � T �M of the zero section of T �M and
two surjective submersions α and β from G to M such that

1. α � 0 � β � 0 � IdM , where 0: M Ñ T �M is the zero section of the vector bundle T �M,

2. α is a Poisson morphism and β is an anti-Poisson morphism, where G is equipped with
t., .uω the Poisson bracket of the canonical symplectic form on G � T �M,

3. α and β have symplectically orthogonal fibers: @ f, g P C8pMq, tα�f, β�guω � 0.
1We denote derivations of C8pMq and vector fields the same way.

3



This realization of the local symplectic groupoid inside T �M was named birealization in [15].
The zero section is the identity for the groupoid product. Following [7], one can show that the
inverse is the multiplication by �1 on each cotangent fiber. We emphasize that the symplectic
form of G Ñ M becomes the canonical symplectic form ω. G is therefore a Poisson manifold
endowed with the Poisson bracket t., .uω. We also recall that the cotangent projection τ : G ↠M
is in general different from the structural maps α and β.

2.2 Hamilton-Jacobi equation for Hamiltonian Poisson integrators

In this section, we recall after [15] how a Hamilton-Jacobi equation allows to lift up Hamiltonian
dynamics on M to a birealization G by describing Hamiltonian flows in terms of generating
functions.

First, let us consider a dynamics that is a bit more general than Hamiltonian dynamics. Let
θ be a 1-form θ P Ω1pMq. Denoting by π P Γp

�2 TMq the bivector field of the Poisson brackets
t., .u, we write Xθ � πpθ, �q P XpMq for the vector field generated by θ and ϕθ

t the flow of Xθ

at time t. In the sequel, we always assume flows to be integrable. The following properties are
classical ([38], chapter III).

Proposition 2.3. 1. For any x PM and for any time t, ϕθ
t pxq belongs to the same symplectic

leaf as x.

2. Let us assume that θ is closed. Then, ϕθ
t is a Poisson automorphism that admits any

symplectic leaf as an invariant set and preserves θ. In equation, denoting Fx the symplectic
leaf of x PM,

@x PM,ϕθ
t pxq P Fx and pϕθ

t q�π � π and pϕθ
t q
�θ � θ. (2.3)

This classical result justifies the notion of Hamiltonian Poisson integrator. Indeed, following
the flow of a time-dependent Hamiltonian guarantees to stay on a symplectic leaf and to preserve
the Poisson structure.

Let us leave the case of general 1-forms on M apart and from now on, we assume θ closed.
We state now the main result of this reminder section.

Theorem 2.4 (Hamilton-Jacobi equation on a local symplectic groupoid, [15]). Let θ P Ω1
0pMq,

I be a small open interval containing 0 and pζtqtPI P Ω1pMqI . For any t P I, set

Lt � Graphpζtq (2.4)

and
φt � β � pα|Lt

q�1. (2.5)

Then, @t P I, φt � ϕθ
t if and only if

ζ0 � 0 and @t P I,
Bζt

Bt
� pζtq

�α�θ. (2.6)

2.3 Jets of Lagrangian bisections

In this article, we will develop tools to approximate solutions of the Hamilton-Jacobi equation,
e.g. (2.6), at high order with respect to the variable t. For this precise reason, we will need
an appropriate notion of jets. In this section, we thus explain some geometry of the previous
Hamilton-Jacobi equation using jets and Taylor series.
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It will be useful in the sequel to keep in mind two properties of the graph Lt of ζt for small
t P I. First, since L0 is the zero section, Lt is transverse to the fibers of α and turns the restriction
of α to Lt into a diffeomeorphism α|Lt

: Lt Ñ M. Lt is thus said to be a bisection2. The set of
bisections of a groupoid forms a group ([10], section 15.2). In our local groupoid context, let us
introduce the analog objects.

First, in our smooth setting, we need a notion of family of bisections, all being close to the
identity section. They can be understood as smooth perturbation of the identity section.
Definition 2.5 (Smooth family of bisections). We denote by smooth family of bisections of G
the following data:

• a real open interval I containing 0,

• a family L � pLtqtPI of bisections of G, where L0 � 0 is the image of the identity section
and the surjective map

²
tPI
Lt ↠ I is a submersion.

Example 2.6. Since the fibers of α are transverse to the zero section, a generic example of
smooth family of bisections of G is provided by any smooth family of 1-forms pζtqtPI P Ω1pMq
for some small interval I.

Now, we introduce a notion of 8-jets for such objects. To achieve this, let f P C8pGq be a test
function and L a smooth family of bisections. For any t P I, let us set Ψt �

�
α|Lt

��1 : M �
Ñ Lt.

We consider the Taylor series at t � 0 of f � Ψt : M Ñ R. This provides a map

J L : C8pGq Ñ C8pMq
�
rts
�

f ÞÑ f � Ψt
(2.7)

where f � Ψt P C8pMq
�
rts
�

stands for its Taylor series
8°

j�0

tj

j!
Bjf�Ψt

Btj |t�0 at t � 0.

Definition 2.7 (8-jets of bisections of G). The map J L : C8pGq Ñ C8pMq
�
rts
�

is said to be
the 8-jet of the smooth family of bisections L. In the sequel, we denote by B the space of such
maps:

B � tJ L : C8pGq Ñ C8pMq
�
rts
�
, L smooth family of bisectionsu.

Example 2.8. Following Example 2.6, if L � pGraphpζtqqtPI , the data of the 8-jet of the smooth
family of bisections L is equivalent to the one of the Taylor series of pζtqtPI with respect to t at
t � 0. With a slight abuse of terminology, we will then write that the jet of L equals the Taylor
series of pζtqtPI at t � 0.

B is a space of equivalence classes of smooth family of Lagrangian bisections. In the following,
one defines naturally a product on B. Let L1 � pL1

t qtPI and L2 � pL2
t qtPJ two smooth families

of Lagrangian bisections. Locally on G, there exists t0 ¡ 0 such that for |t|   t0, the product
L1

t �L
2
t is defined in the local symplectic groupoid G. Then, we set the product to be the pointwise

product with respect to the real infinitesimal parameter t :

J L1
t � J L2

t :
C8pGq Ñ C8pMq

�
rts
�

f ÞÑ f �
�
α|L1

t �L2
t

	�1 . (2.8)

The following property is a straightforward consequence of Definition 2.7 and is left to the
reader.

2In general, the target map β is also required to be invertible on the submanifold L � G for L to be a bisection.
Here, since t is assumed sufficiently small, this condition is automatically fulfilled.
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Proposition 2.9. B is a group, with the neutral element being the jet constantly equal to the
identity section:

J Id : C8pGq Ñ C8pMq
�
rts
�

f ÞÑ f � 0 . (2.9)

Let us now remark a second property of the bisection Lt by adding the symplectic geometry
up. Since ζt is closed, its graph Lt is Lagrangian in G. This leads us to consider the space of
jets of Lagrangian bisections. We denote it by L. Again, this set carries a natural structure.

Proposition 2.10. L is a subgroup of the group B of 8-jets of bisections.

Now, we recall from [18] that for any two L1 and L2 bisections of a groupoid, denoting L1 �L2
the bisection being the product of L1 and L2, the induced diffeomorphisms on the base verify�

β � pα|L1q
�1� � �β � pα|L2q

�1� � β � pα|L1�L2q
�1. (2.10)

In our context, the correspondence spelled by the Hamilton-Jacobi equation in Theorem 2.4
interprets as the direct relation inbetween the group L and the dynamics generated by closed
1-forms on the base. Let us be more precise. Since the bisections pLtqt are Lagrangian and
close to the zero section of T �M, the induced Poisson diffeomorphisms on the base manifold M
β �

�
α|Lt

��1 are flows of time-dependent closed forms. It follows from Proposition 2.3 that these
Poisson diffeomorphisms stay on a leaf of the symplectic foliation. Furthermore, as explained in
the following remark, these closed forms are exact if and only if the Lagrangian bisections are
graphs of exact one-forms.

Remark 2.11 (Generating functions). The closedness of θ is equivalent to the one of ζt for
all t P I. The same equivalence holds of course about exactedness and leads us to Hamiltonian
dynamics. Let us assume θ to be exact and H P C8pMq a Hamiltonian being a primitive of θ.
As a consequence, there exists S P C8pM � Iq such that dSt � ζt. Equation (2.6) becomes#

BSt
Bt � pdStq

�α�H � χptq

dS0 � 0
(2.11)

where χ P C8pIq is an arbitrary time-dependent constant. In the following, we chose χ to be 0
and S0 � 0. Using equation (2.5), the graph of dS recovers the Hamiltonian dynamics generated
by H. S is thus said to be a generating function for H.

After a classical terminology for generating functions, let us call these Lagrangian bisections
exact. Their jets form a group again.

Proposition 2.12. We set

L � tBL : C8pGq Ñ C8pMq
�
rts
�
, L smooth family of exact Lagrangian bisectionsu. (2.12)

Then, L is a subgroup of L.

Proof. Let J L1
,J L2 : C8pGq Ñ C8pMq

�
rts
�

two jets of exact Lagrangian bisections. We show
that J L1�L2 is a jet of exact Lagrangian bisections. Using Remark 2.11 and the Hamilton-Jacobi
correspondence of Theorem 2.4, there exists two time-dependent Hamiltonians H̃1, H̃2 P C8pM � Iq

such that for any test function f P C8pGq, J L1
pfq � f � ϕ

α�H̃1
t

t � 0 and J L2
pfq � f � ϕ

α�H̃2
t

t � 0.
Now, the composition of two time-dependent Hamiltonian flows is a Hamiltonian flow.

J L1�L2
pfq � f � ϕ

α�H̃2
t

t � ϕ
α�H̃1

t
t � 0 (2.13)
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� f � ϕα�H̃t
t � 0, (2.14)

where H̃t � H̃2
t �H̃

1
t �ϕ

H̃2
t

t . The same computation proves the existence of an inverse. Its neutral
element is clearly the jet coming from the smooth family being constantly equal to the identity
section.

As already mentioned, the importance of Lagrangian bisections in mechanics is due to their
relation with Hamiltonian dynamics. We define the analog in our context of the Hamiltonian
group of, e.g., [19, Def. 1.11.], and of the group of diffeomorphisms generated by closed 1-forms.

Definition 2.13 (8-jets Hamiltonian group). We call H the group of 8-jets of pull-backs of
time-dependent Hamiltonian flows:

H �
 
F :

C8pMq Ñ C8pMq
�
rts
�

f ÞÑ f � ϕH̃t
t

, H̃ P C8pM � Iq
(
. (2.15)

and H the group of 8-jets of pull-backs of flows generated by time-dependent closed 1-forms:

H �
 
F :

C8pMq Ñ C8pMq
�
rts
�

f ÞÑ f � ϕθ̃t
t

, θ̃ P Ω1
0pMqI

(
. (2.16)

where, as before, f � ϕH̃t
t and f � ϕθ̃t

t stand for their Taylor series with respect to t.

By adding these definitions to the remark 2.11 on exact Lagrangian bisections, we obtain
the following corollary of Theorem 2.4. The proof relies on the same interpolation technique as
the one of the proposition 2.12 and is left as an exercise.

Corollary 2.14. There is a surjective group morphism from the group L of 8-jets of exact
Lagrangian bisections of G to the group H of 8-jets of Hamiltonian flows of pM, t., .uq.

This morphism restricts to a surjective group morphism from the group L of 8-jets of exact
Lagrangian bisections of G to the group H of 8-jets of Hamiltonian flows of pM, t., .uq.

2.4 Approximations in the group of jets of Lagrangian bisections

One other consequence of Theorem 2.4 is the following corollary, yielding the existence of ap-
proximations of ϕθ

t at arbitrary order that preserve the Poisson geometry in the sense of 2.3.

Corollary 2.15. Let k P N and pζk
t qtPI P Ω1pMqI . Set pLk

t qtPI �
�
Graphpζk

t q
�

tPI
and

φk
t � β � pα|Lk

t
q�1, t P I. (2.17)

If for all t P I, #
Bζk

t
Bt � pζk

t q
�α�θ � opkq

ζ0 � 0
, (2.18)

then pφk
t qtPI is the flow of a time-dependent closed 1-form pθk

t qtPI P Ω1
0pMq such that θk

t �
θ � opkq . In particular, pφk

t qtPI is an approximation of pϕθ
t qtPI at order at least k such that

• for any x PM,φk
t pxq and x belong to the same symplectic leaf of pM, t., .uq,

• φk
t is a Poisson diffeomorphism for all t P I.
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The family of Lagrangian bisections Lk � pLk
t qtPI is an approximation at order k of the

family of Lagrangian bisections L � pLtqtPI given by the equation (2.4). The jet formalism of
Section 2.3 provides a rigorous framework.

Proposition 2.16. With the notations of Corollary 2.15, we have:

@f P C8pGq, J Lpfq � J Lk
pfq � o

�
tk
	
. (2.19)

Using Corollary 2.15, this Hamilton-Jacobi equation has been applied to computational
mechanics in [17]: the purpose was there to truncate solutions of this equation to approximate
Hamiltonian dynamics on the base. Indeed, if Sk

t is a solution of equation (2.11) at order k,
then the map

ϕk
∆t � β �

�
α|GraphpdSk

∆t
q
	�1

(2.20)

is a Hamiltonian Poisson integrator for H at order k and time-step ∆t. This article is devoted
to explain an algebraic formalism for the construction of high order Hamiltonian dynamics
approximations. We also hope this to be of interest for a better understanding of the group
of Lagrangian bisections of a symplectic groupoid and, in turn, a better understanding of the
group of Poisson diffeomorphisms of a Poisson manifold. For that reason, let us consider an
equation being a bit more general that (2.6). Namely, we consider the same one with a generic
initial condition ζ0 P Ω1

0pMq such that its graph belongs to G :#
Bζt

Bt � pζtq
�α�θ

ζ0 P Ω1
0pMq

(2.21)

Regarding equation (2.10), equation (2.21) is of interest while one looks at composition of
Hamiltonian flows on M. We will come back to that in Section 4.

Since we aim at understanding high order approximations of Hamiltonian dynamics on M,
let us study truncated solutions of (2.21). For this, we introduce the Lie-algebroid bracket r., .s
on Ω1pT �Mq defined by

rζ1, ζ2s � LXζ1
ζ2 � LXζ2

ζ1 � dωpXζ1 , Xζ2q (2.22)

where Xζi
, i � 1, 2, are the vector fields on T �M generated by the canonical symplectic form

out of the 1-forms ζi. Out of the following lemma, this Lie bracket allows us to compute approx-
imations at arbitrary order of Hamilton-Jacobi equation.

Lemma 2.17. Let pζtqtPI and pθtqtPI P Ω1pMqI such that the graph of ζt is in G for all t P I.
Then,

B

Bt
ppζtq

�α�θtq � pζtq
�
�
rα�θt, τ

� Bζt

Bt
s � α�

Bθt

Bt



. (2.23)

Similarly, for any pStqtPI P C8pM � Iq and any pftqtPI P C8pT �Mq,

B

Bt
ppdStq

�ftq � pdStq
�
�
tft, τ

� BSt

Bt
uω �

Bft

Bt



. (2.24)

Proof. We start by proving equation (2.24). Let x P M. It follows from classical symplectic
geometry of the cotangent bundle that the curve γ : t P I ÞÑ dxSt P T

�M is the flow of the
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time-dependent Hamiltonian vector field of τ� BSt
Bt starting at dxS0. Equation (2.24) is then a

plain consequence of the chain rule. Since

@f, g P C8pT �Mq, dtf, guω � rdf, dgs, (2.25)

equation (2.23) is obtained by usual extension from smooth functions to exact 1-forms, and then
from closed forms to generic 1-forms using the Leibniz rule.

Let us illustrate Lemma 2.17. The algebroid bracket r., .s allows us to obtain iterated deriva-
tions of the Hamilton-Jacobi equation (2.21). We spell out the order 2 :

B2ζt

Bt2
� pζtq

�rα�θ, τ�ζtα
�θs, (2.26)

After applying Lemma 2.17 a second time, we obtain an order 3 derivation:

B3ζt

Bt3
� pζtq

� prα�θ, τ�pζtq
�rα�θ, τ�pζtq

�α�θss � rrα�θ, τ�pζtq
�α�θs, τ�pζtq

�α�θsq . (2.27)

3 A Pre-Lie approach to Hamiltonian Poisson integrators
Since G � T �M, the Lagrangian bisections of G that are close to the identity section are described
by graphs of time-dependent closed 1-forms. We can approximate them by using the notion of
jets we developed in the previous section. In order to approximate a given Lagrangian bisection
by 1-forms, we now introduce an appropriate space J8ξ and a pre-Lie algebra structure on it. We
then explain how this pre-Lie algebra encodes expansions of solutions of the Hamilton-Jacobi
equation (2.21) through the introduction of Butcher series. In Section 3.3, we exhibit some
algebraic simplifications arising in this expansion if the initial condition is chosen to be zero.

3.1 Pre-Lie formalism for Hamilton-Jacobi flows

In full generality, for ξ P Ω1pGq, we are interested in the expansion of the general Hamilton-Jacobi
flow

Bζ

Bt
� ζ�t ξ, ζ0 P Ω1

0pMq. (3.1)

We consider the infinite dimensional real vector subspace J8ξ � Ω1pGq spanned by ξ and stable
w.r.t. the following maps: for any f, g P J8ξ ,

ηpf, gq : Ω1
0pMq Ñ Ω1

0pMq
ζ ÞÑ ζ�rf, τ�ζ�gs

. (3.2)

The space J8ξ is naturally equipped with the product �

h� ξpζq � ζ�rξ, τ�ζ�gs, h� ηpf, gq � ηph� f, gq � ηpf, h� gq. (3.3)

This yields a non-associative non-commutative magmatic structure on pJ8ξ ,�q. Note that
pJ8ξ ,�q is not a Lie algebra as � is not antisymmetric.

Remark 3.1 (J8ξ and jet spaces). The space J8ξ is analogous to the infinite jet space [1, 41, 37]
on XpMq used for the analysis of Runge-Kutta and Lie-group methods. In [31, 27], the accuracy
of numerical integrators is studied via the use of Taylor expansions of ODE flows. Given a vector
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field f P XpMq, the associated flow is expanded in terms of the partial derivatives of f at all
order. The jet space over f is the vector space spanned by f , f 1, f2, . . . . We follow here a similar
approach by fixing a one form ξ P Ω1pGq and considering the iterated derivatives appearing in
the expansion of the flow. As a result, we shall use flows whose Taylor expansion is written with
repeated compositions of the operator � on the space J8ξ . For ξ � α�θ, θ P Ω1pMq,these flows
define a subspace of the jet of bisections.

Lemma 2.17 provides an interpretation of the product � as a variational derivation in the
sense of [41]. In that framework, considering jet spaces to iterate derivatives is therefore a
natural idea. Let us notice that it is in general delicate to extend the product � on the whole
Ω1pGq, as the definition of � is tied to the choice of the form ξ P Ω1pGq. For instance, we raise
the following remark.
Remark 3.2. Given two spaces pJ8ξ1

,�1q and pJ8ξ2
,�2q and a map φ : J8ξ1

Ñ J8ξ2
satisfying

φ
�
ηpf, gq

	
� η

�
φpfq, φpgq

	
, f, g P J8ξ1 ,

One can show that φ is a morphism, that is φpf �1 gq � φpfq �2 φpgq if and only if φpξ1q � ξ2.
We then obtain the following algebraic structure on J8ξ .

Proposition 3.3. The space pJ8ξ ,�q is a pre-Lie algebra, that is, for all f, g, h P J8ξ ,

pf � gq � h� f � pg � hq � pg � fq � h� g � pf � hq. (3.4)

Proof. In the case h � ξ, equation (3.4) is a consequence of the Jacobi identity and that
tτ�ζ�f, τ�ζ�guπ � 0 for all f , g P CpGq. By induction, assume that the identity (3.4) holds for
f, g, h1 and f, g, h2. Let h � ηph1, h2q, then

pf � gq � h� f � pg � hq � ηppf � gq � h1 � f � pg � h1q, h2q � ηpf � h1, g � h2q

� ηph1, pf � gq � h2 � f � pg � h2qq � ηpg � h1, f � h2q

� pg � fq � h� g � pf � hq.

Hence the result.

Remark 3.4. Following [21, 25], the product � can be seen as a flat connection on J8ξ (see
also the previous remark 3.1). A relation is expected in between the geometric interpretation
of � and our use of a Weinstein tubular neighborhood. Indeed, the very existence of � is a
consequence of the embedding of the local symplectic groupoid consisting in a neighborhood of the
identity section of G inside T �M .

As stated in Theorem 2.4, the Lagrangian bisections are represented by the solution of
Hamilton-Jacobi equations of the general form provided by equation (2.21) and Hamiltonian
Poisson integrators rely on efficient discretizations of the exact Hamilton-Jacobi equation (2.11).
The present pre-Lie formalism allows to conveniently give an explicit expression of the Taylor
expansion of the solution of equation (2.21).
Proposition 3.5. For ξ P Ω1pGq, the solution of the Hamilton-Jacobi equation (3.1) satisfies

ζt � pζ0q
� exp�ptξq � pζ0q

�
8̧

n�0

tn

n!ξ
�n (3.5)

� pζ0q
�
�

id�tξ � t2

2 ξ � ξ �
t3

3!ξ � pξ � ξq �
t4

4!ξ � pξ � pξ � ξqq � . . .
	
.

Proof. The result is proven by induction, in the spirit of [39].
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3.2 Butcher series expansion of a solution of Hamilton-Jacobi equation

The expansion (3.5) is concise and simple as each order has only one Taylor term. However, the
expansion of the iterations of � is not trivially represented. In this section, we further expand
the Taylor expansion of (3.1), relying on a pre-Lie formalism of Butcher trees.

A non-planar Butcher tree in T is an oriented graph defined recursively by

P T, pτn, . . . , τ1q P T, τ1, . . . , τn P T,

where the root is graphically represented at the bottom. pτn, . . . , τ1q denotes the tree with
the root and the n trees τn, . . . , τ1 plugged to the root, T � SpanRpT q, and the order of the

branches does not matter: � . The grafting of trees ñ is defined as a product on T
returning the sum of all possibilities (counted with multiplicity) of grafting the root of one tree
on the nodes of another tree. For instance:

ñ � � , ñ � � 2 , ñ � .

This defines the pre-Lie algebra pT ,ñq of Butcher trees. A natural grading on T is given by
the number of nodes:

�� �� � 3.
The translation between the geometric structure pJ8ξ ,�q and the algebraic structure pT ,ñq

is obtained through the elementary differential map. Given ξ P Ω1pGq, define

Fξp q � ξ and for ζ P Ω1pMq, ζ�Fξppτn, . . . , τ1q q � ζ�rr. . . rξ, ζ�Fξpτ1qs, . . . s, ζ
�Fξpτnqs.

The following result is a straightforward consequence of the definition of the product �.

Proposition 3.6. The elementary differential Fξ : J8ξ Ñ T is a pre-Lie algebra morphism:

Fξpτ2 ñ τ1q � Fξpτ2q � Fξpτ1q. (3.6)

This morphism allows to transport Proposition 3.5 and to rewrite it naturally in terms of
trees. Let ζt be the solution of the Hamilton-Jacobi equation (3.1). Then, its expansion satisfies

ζt � pζ0q
�Fξpexpñpt qq � pζ0q

�
8̧

n�0

tn

n!F
ξp ñnq (3.7)

� pζ0q
�Fξ

�
id�t � t2

2 ñ �
t3

3! ñ p ñ q �
t4

4! ñ p ñ p ñ qq � . . .
	
.

Now, we use trees to encode explicitly the expansion expñ . The appropriate concept for
such formal expansions is the one of Butcher series, often called B-series.

Definition 3.7 ([6]). A B-series is a formal power series indexed by a coefficient map a P T �:

Bξpaq �
¸
τPT

apτq

σpτq
Fξpτq,

where σpτq is the number of graph automorphisms of τ , also called the symmetry coefficient.

We refer to [27, Sec. III] for an explicit formula of the symmetry coefficient. Then, the
Butcher series of the solution of an Hamilton-Jacobi equation is the following.
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Proposition 3.8. Let pζtqt P pΩ1pMqqI be the solution of the Hamilton-Jacobi equation (3.1).
Then its Taylor expansion is given by the B-series

pζ0q
�Btξpeq, epτq � γ�1pτq,

where γ is given by

γp q � 1, γpτq � |τ | γpτ1q . . . γpτnq, τ � pτn, . . . , τ1q .

Using Section 2.3, this proposition rephrases in terms of jets: the jet of the smooth family
of Lagrangian bisections pGraphpζtqtPIq is given by the Taylor series pζ0q

�Btξpeq in L.
The representation of the Hamilton-Jacobi flow with trees allows us to conveniently provide

an explicit expansion of ζt at any order. These calculations are called Farmer series in [16],
where Hamiltonian Poisson integrators were implemented. Our algebraic formalism simplifies
greatly the tedious calculations in [16] and allows to identify the degeneracies for specific choice
of forms ξ (see Section 3.3). Using our construction of the appropriate Butcher series provided
by Proposition 3.8, we find directly

ζt � ζ�0Fξ
�

id�t � t2

2 �
t3

3!
�
�

�
�
t4

4!
�
� � 3 �

�
� . . .

	
� ζ�0

�
id�tξ � t2

2 rξ, τ
�ζ�0 ξs �

t3

3!
�
rξ, τ�ζ�0 rξ, τ

�ζ�0 ξss � rrξ, τ�ζ�0 ξs, τ
�ζ�0 ξs

�
�
t4

4!
�
rξ, τ�ζ�0 rξ, τ

�ζ�0 rξ, τ
�ζ�0 ξsss � rξ, τ�ζ�0 rrξ, τ

�ζ�0 ξs, τ
�ζ�0 ξss

� 3rrξ, τ�ζ�0 rξ, τ�ζ�0 ξss, τ�ζ�0 ξs � rrrξ, τ�ζ�0 ξs, τ
�ζ�0 ξs, τ

�ζ�0 ξs
�
� . . .

	
.

Note that in particular, we recover the equations (2.26) and (2.27) straightforwardly.

3.3 Degeneracies and explicit description of Hamilton-Jacobi flows

For the Farmer series in [16], one is interested in the specific case where ξ � dα�H and ζ0 � 0.
We use the previously introduced formalism of trees to identify vanishing terms and degeneracies
corresponding to this particular case. First, let us collect useful observations in the following
lemma.

Lemma 3.9. Let f P C8pMq. The following degeneracies hold:

0�α�f � f, (3.8)
0�tα�f, τ�fuω � 0. (3.9)

Proof. The first item is trivial. Let us prove the second one. Let g P C8pMq. Since α is a Poisson
morphism, it follows from equation (3.6) of [9] and the first item of the present proposition, that
0�tα�f, τ�fuω is colinear to tf, gu in C8pMq. Equation (3.9) is deduced from anti-symmetry of
t�,�u.

As (3.9) implies 0�tα�H, τ�Huω � 0, the differential associated to some specific trees van-
ishes, in the spirit of superconvergence (see, e.g., [32]).

Lemma 3.10. Let τ P T . If τ contains a descendant of the form , then 0�Fα�dHpτq � 0.
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With the formalism of Butcher series, we are now able to compute straightforwardly the
Farmer series of [16] at high order. Let pStqt P C8pM � Iq be a generating function of a
Hamiltonian H P C8pMq provided by equation (2.11). Let us set ζt � dSt for t P I. We write
the expansion of ζ up to order 5 :

ζt � 0�Fα�dH
�

id�t � t3

3! �
t4

4!
�

�
�
�
t5

5!
�

� � 4 �
�
� . . .

	
� tdH �

t3

3!0
�rrα�dH, τ�dHs, τ�dHs

�
t4

4!
�
0�rα�dH, τ�0�rrα�dH, τ�dHs, τ�dHss � 0�rrrα�dH, τ�dHs, τ�dHs, τ�dHs

�
(3.10)

�
t5

5!
�
0�rα�dH, τ�0�rα�dH, τ�0�rrα�dH, τ�dHs, τ�dHsss

� 0�rα�dH, τ�0�rrrα�dH, τ�dHs, τ�dHs, τ�dHss

� 4 � 0�rrα�dH, τ�0�rrα�dH, τ�dHs, τ�dHss, τ�dHs

� 0�rrrrα�dH, τ�dHs, τ�dHs, τ�dHs, τ�dHs
�
� . . .

4 Composition of Lagrangian bisections and B-series
In this section, we use Butcher series theory to describe algebraically the group law of Lagrangian
bisections. More precisely, we prove that the product of Lagrangian bisections is encoded by
the composition of B-series and the Butcher-Connes-Kreimer Hopf algebra. The analysis relies
heavily on the notion of jets constructed in Section 2.3. The main result of this section is
Theorem 4.2.

Let us consider the symmetric tensor algebra pSpT q, �q over trees, that is the vector space
spanned by forests, with its unit being the empty forest 1. Let the Butcher-Connes-Kreimer
coproduct ∆BCK : T Ñ T b T be given by

∆BCKpτq �
¸
s�τ

pτzsq b s,

where the sum is indexed on all the subtrees of τ that contain the root (including the empty
tree). One finds for instance

∆BCKp q � 1 b � b � b � b 1

∆BCKp q � 1 b � b � b � b � b � b � b 1. (4.1)

The coproduct is extended on SpT q by ∆BCKpπ1 � π2q � ∆BCKpπ1q � ∆BCKpπ2q. Then, it is
well-known that pSpT q,1, �,1�,∆BCKq yields the BCK Hopf algebra [14, 23], used in particular
to represent differential operators.

We call character a form a P SpT q� that satisfies apπ1 � π2q � apπ1qapπ2q and we denote the
product µ : T bT Ñ T . Note that given a P T �, there is a unique way to extend a as a character
on SpT q.

The composition of two B-series is detailed by the BCK Hopf algebra [13]. Note that it
applies for any Taylor expansion over J8ξ , not just for the exact Hamilton-Jacobi flow.
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Proposition 4.1. Let Bξpa1q and Bξpa2q be two B-series. Their composition is the B-series

pBξpa1qq�Bξpa2q � Bξpa1 � a2q, a1 � a2 � µ � pa1 b a2q � ∆BCK ,

where a1 is extended as a character over SpT q and � is called the composition law. In addition,
the set GB � ta P T �, ap q � 1u, equipped with � forms a group, called the Butcher group, with
unit δ .

From the example (4.1), we find, for instance,

a1 � a2p q � a2p q � a1p qa2p q � a1p qa2p q � a1p q
2a2p q

� a1p qa2p q � a1p qa1p qa2p q � a1p q

Comparing Proposition 4.1 with equation (2.10), we observe that the Butcher group encodes
the product of Lagrangian bisections in a local symplectic groupoid, as stated in the following
theorem.We use the terminology introduced in the example 2.8, meaning that if pGraphpζtqtPI

is a smooth family of bisections, we identify its jet with the Taylor series of pζtqt with respect
to t.

Theorem 4.2. Let ξ P Ω1pGq and the map Ψξ : GB Ñ Ω1pMq
�
rts
�

be given by

Ψξpaq � 0�Btξpaq.

Then:

• For any θ P Ω1pMq, Ψα�θ : pGB, �q ãÑ pB, �q is an injective group morphism.

• For any θ P Ω1
0pMq, Ψα�θ : pGB, �q ãÑ pL, �q is an injective group morphism.

• For any H P C8pMq, Ψα�dH : pGB, �q ãÑ pL, �q is an injective group morphism.

Proof. The fact that these maps are well defined is a consequence of the section 2. Their
injectivity follows from the definition of a Butcher series, and the group morphism property is
provided by the proposition 4.1.

We considered for simplicity jet spaces generated by one form ξ, and it is worth mentioning
that one could straightforwardly extend the previous formalism for flows driven by several forms
ξ1,. . . , ξn by using decorated nodes. The jet space of the section 3 becomes J8ξ1,...,ξn

and is
represented by the algebra of decorated trees spanned by 1 , . . . , n . The previously described
algebra adapts straightforwardly in this setting, in the spirit of P-series for partitioned problems
[27].

For instance, let us consider J8ξ1,ξ2
and bi-coloured trees where stands for ξ1 and stands

for ξ2. Let us compose the B-series Btξ1pδ q and Btξ2pδ q. The composition is computed with
the BCK Hopf algebra as in Proposition 4.1 and we find

ζ�0 pB
tξ2pδ qq�Btξ1pδ q � ζ�0B

tξ1,tξ2pδ � δ q

� ζ�0Ftξ1,tξ2
�
� � �

1
2! �

1
3! �

1
4! � . . .

	
� ζ�0

�
tpξ1 � ξ2q � t2rξ1, τ

�ζ�0 ξ2s �
t3

2! rrξ1, τ
�ζ�0 ξ2s, τ

�ζ�0 ξ2s � . . .
	
.
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5 Numerical methods for Hamiltonian systems on Poisson man-
ifolds

Using the pre-Lie structure of Butcher trees, we present a new class of Hamiltonian Poisson
methods based on Taylor and Runge-Kutta discretisations. We emphasize that the framework
of pre-Lie algebras and Butcher series is a central tool for the numerical integration of ODEs in
Rd. The surprising effect of the birealisations is that they translate a Poisson geometry into a
simpler geometry on Ω1

0pMq, where one can apply Euclidean numerical tools.
Denote T0 the vector space spanned by trees that do not have a descendant of the form and

T N
0 the subspace containing trees of order at most N . Let eN

0 pτq � γ�1pτq1τPT N
0

the restriction
of the coefficient map of Proposition 3.8. Following Lemma 3.10, we obtain new Hamiltonian
Poisson integrators of arbitrary order N. They are based on truncations of the expansion (3.10)
of the Hamilton-Jacobi flow (3.1).

Theorem 5.1. The following Taylor-Hamiltonian-Poisson integrator is of order N for solving
equation (2.1):

yn � αp0�B∆tα�dH
xn

peN
0 qq, (5.1)

yn�1 � βp0�B∆tα�dH
xn

peN
0 qq, (5.2)

where xn P M denotes an intermediary point implicitly defined by equation (5.1) and ∆t is the
timestep of the method.

By their very constructions, these methods are Hamiltonian Poisson integrators. Therefore,
they follow the flow of some time-dependent Hamiltonian and stay on a symplectic leaf (or
preserve any Casimir) all along a trajectory. The following method has been benchmarked in
[17, Sec. 5.2.] on a Lotka-Volterra system in a neighborhood of a singularity.

Example 5.2 (Euler method). The simplest method is the Euler method, given by Theorem 5.1
for N � 1 or N � 2. It is of second order and the associated iteration is

yn � αp∆tdxnHq, yn�1 � βp∆tdxnHq. (5.3)

The number of terms in T N
0 blows up quickly as the order N gets larger, which makes the

Taylor approach computationally expensive and often unstable. As a solution, we propose the
following class of Runge-Kutta-Hamiltonian-Poisson (RKHP) approximations for the high-order
approximation of equation (2.1):

Zi � ζ0 � t
ş

j�1
aijpZjq

�ξ,

ψtξpζ0q � ζ0 � t
ş

i�1
bipZiq

�ξ,

yn � αp0�ψ∆tdα�H
xn

q (5.4)
yn�1 � βp0�ψ∆tdα�H

xn
q.

The aij and bi are the coefficients of the method and shall be chosen in order to reach high order
of accuracy with a small number of intermediate stages s. We use the notation ci �

°s
j�1 aij .

For t small enough, note that this definition gives a local diffeomorphism ψtξ on the space of
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closed 1-forms Ω1
0pMq. Similarly to the order theory of Runge-Kutta methods for ODEs, the

Taylor expansion of methods of ψtξpζ0q in (5.4) writes as a Butcher series

ψtξpζ0q � ζ0 � ζ�0B
tξpaq,

with the same coefficient map a as for standard Runge-Kutta methods [27, Chap. III]:

ap i
j k
l m

q �
ş

i,j,k,l,m�1
biaijaikaklakm �

ş

i,k�1
biciaikc

2
k.

The algebraic reformulation of Section 3 allows us to take over the classical order theory of Runge-
Kutta methods for ODEs [27] and to adapt it in the context of Hamilton-Jacobi approximations.
Theorem 5.3. Let a RKHP method (5.4), with coefficient map a. Then, if apτq � epτq for all
τ P T N

0 , the method has order N for solving (2.1). In particular, the order conditions for the
first orders are in Table 1.

Order Butcher tree τ Order condition apτq � epτq

1
°s

i�1 bi � 1
3

°s
i�1 bic

2
i �

1
3

4
°s

i,j�1 biaijc
2
j �

1
12°s

i�1 bic
3
i �

1
4

5
°s

i,j,k�1 biaijajkc
2
k �

1
60°s

i,j�1 biaijc
3
j �

1
20°s

i,j�1 biciaijc
2
j �

1
15°s

i�1 bic
4
i �

1
5

Table 1: Order conditions of RKHP integrators.

Remark 5.4. The idea of approximating birealizations at high order has been explored by [8],
where a procedure to asymptotically compute the map α : G ÑM is investigated. This relies on
a long history research of deformation theory in order to construct the local symplectic groupoid
of any Poisson manifold ([11, 7]). We expect an accurate relation inbetween the order of the
approximation of the birealization and the one of the dynamics to provide robust numerical
methods.

A collection of explicit RKHP integrators with minimal number of stages for fixed order is
the following. The superconvergence property of Lemma 3.10 allows us to reach high order p
with less than p evaluations. Note in particular that there is no need to consider discretisations
associated to symplectic methods (like the midpoint method) as the geometry has been taken
care of by the birealisations. Let us also recall that for any θ P G, βpθq � αp�θq, where the sign
comes from the vector bundle T �M.

Euler method: The Euler method given by (5.1)-(5.2) is associated to the following Runge-
Kutta discretisation.

yn � αp∆tdxnHq
yn�1 � βp∆tdxnHq

0 0
1
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Third order method:

Z � 1?
3∆tdxnH

yn � αp∆tdxnZ
�α�Hq

yn�1 � βp∆tdxnZ
�α�Hq

0 0 0
1?
3

1?
3 0

0 1

Fourth order method:

Z1 � �
?

3
4 ∆tdxnH

Z2 � 3
4∆tdxnZ

�
1α

�H
yn � α

�
∆tp11

27dxnH � 16
27dxnZ

�
2α

�Hq
�

yn�1 � β
�
∆tp11

27dxnH � 16
27dxnZ

�
2α

�Hq
�

0 0 0 0
�
?

3
4 �

?
3

4 0 0
3
4 0 3

4 0
11
27 0 16

27

Remark 5.5. If implicit implementations are computationally feasible, a one-stage third order
implicit method is

Z � 1?
3∆tdxnZ

�α�H
yn � αp∆tdxnZ

�α�Hq
yn�1 � βp∆tdxnZ

�α�Hq

1?
3

1?
3

1

Remark 5.6. The Butcher-Connes-Kreimer Hopf algebra seen in Section 4 is also relevant to
approximations of Lagrangian bisections. As a computational consequence, it allows for the study
of composition methods. For instance, let the first order approximation of the Farmer series,
analogous to the Euler method, be given by

ψtξpζ0q � ζ0 � tζ�0 ξ � ζ�0 pid�Btξpδ qq.

Then the explicit midpoint method is the composition

ψ̂tξpζ0q � ζ�0 pdψ
tξ{2q�ψtξ � ζ0 � tξpζ0 �

t

2dξpζ0q � ζ�0 pid�Btξpδ � pδ {2qqq

� tζ�0 ξ �
t2

2 ζ
�
0 rξ, τ

�ζ�0 ξs �
t3

8 ζ
�
0 rrξ, τ

�ζ�0 ξs, τ
�ζ�0 ξs �

t4

48ζ
�
0 rrrξ, τ

�ζ�0 ξs, τ
�ζ�0 ξs, τ

�ζ�0 ξs � . . .

We observe in particular that ψ̂ provides a second order approximation for a general ξ, similarly
to the context of ODEs.

6 Conclusion
The algebraic tools of geometric integration extend for the study of Poisson geometry and bring
new insights, from both geometric and computational viewpoints. Some possible extensions of
the present work could include the creation of a stability analysis in the context of Hamilto-
nian Poisson integrators. For instance, steep dynamical systems of conservative mechanics may
benefit from the formalism we introduced. We also plan to implement implicit methods and
benchmark their orders in order to provide numerical illustrations of our algebraic results. This
will deserve a more mechanics oriented article. On the algebraic side, a natural extension could
adapt the Hopf algebra of substitution for the backward error analysis in this context, and a
more general geometric context could yield post-Lie algebras. This is matter for future work.
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