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Abstract. In this paper, we introduce the notion of post-Hopf algebroids, generalizing the pre-
Hopf algebroids introduced in [8] in the study of exotic aromatic S-series. We construct action
post-Hopf algebroids through actions of post-Hopf algebras. We show that the universal en-
veloping algebra of a post-Lie-Rinehart algebra (post-Lie algebroid) is naturally a post-Hopf
algebroid. As a byproduct, we construct the free post-Lie-Rinehart algebra using a magma
algebra with a linear map to the derivation Lie algebra of a commutative associative algebra.
Applications in geometric numerical integration on manifolds are given.
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1. Introduction

The first purpose of this paper is to study the universal enveloping of a post-Lie algebroid
by introducing the notion of post-Hopf algebroids. The second purpose is to give applications
of post-Hopf algebroids in braiding operators on Hopf algebroids and numerical analysis on
manifolds.
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1.1. Post-Lie algebras, post-Hopf algebras and post-Lie algebroids. The notion of a post-
Lie algebra was introduced by Vallette from his study of Koszul duality of operads in [49],
and can be applied to the study of generalized Lax pairs [3] and regularity structures [10].
Munthe-Kaas and Lundervold found that post-Lie algebras also naturally appear in differential
geometry and play important roles in the study of numerical integration on manifolds [41]. As
the integration of post-Lie algebras, the notion of post-Lie groups was introduced in [4], which
can be used to construct set-theoretical solutions of the Yang-Baxter equation. See [1] for good
examples of post-groups.

In [35], the notion of post-Hopf algebras was introduced as an abstraction from two basic
examples, namely the group algebra of a post-group and the universal enveloping algebra of a
post-Lie algebra. A novel property is that any cocommutative post-Hopf algebra gives rise to
a sub-adjacent Hopf algebra with a generalized Grossman-Larson product. There is naturally a
post-Lie algebra structure on the space of primitive elements, and a post-group structure on the
set of group-like elements in an arbitrary post-Hopf algebra. Also, cocommutative post-Hopf
algebras are essentially equivalent to cocommutative Hopf braces, and thus naturally provide
Yang-Baxter operators [35, 50]. See [17, 48] for two different kinds of generalizations of post-
Hopf algebras along this connection.

The notion of Lie algebroids was introduced by Pradines in 1967, which are generalizations
of Lie algebras and tangent bundles. Just as Lie algebras are the infinitesimal objects of Lie
groups, Lie algebroids are the infinitesimal objects of Lie groupoids. Lie algebroids and Lie
groupoids play important roles in differential geometry, foliation theory, Poisson geometry and
mathematical physics. See [38] for general theories about Lie algebroids and Lie groupoids. As
the geometric generalization of a post-Lie algebra, the notion of a post-Lie algebroid was also
introduced by Munthe-Kaas and Lundervold in their study of numerical integration [41]. See
also [42] for further applications.

1.2. Hopf algebroids and pre-Hopf algebroids. Roughly speaking, bialgebroids, resp. Hopf
algebroids, are the appropriate generalization of bialgebras, resp. Hopf algebras over a com-
mutative ring (often a field) to algebraic structures over a noncommutative base algebra. Bial-
gebroids appeared independently at different times and places, in algebra, algebraic topology
and Poisson geometry, in various versions of generality. The notion of a bialgebroid in its full
generality was given by Takeuchi in 1970s, under the name ×R-bialgebras. Later his ideas were
rediscovered independently by J.-H. Lu [36]. Similarly to the relation between Hopf algebras
and groups, Hopf algebroids can be viewed as a quantization of groupoids. The term of Hopf
algebroids was first introduced by Haynes R. Miller in his 1975 doctoral dissertation for the
purpose to describe the E2-term of the Adams-Novikov spectral sequence, and also with other
applications in algebraic topology. In [39], Maltsiniotis gave a definition of Hopf algebroids
with commutative base algebras and their images under the source and target maps lie in the
centers of total algebras. In [36], Lu generalized the notion of Hopf algebroids, in which neither
the total algebras nor the base algebras are required to be commutative. After that there appear
several other different definitions of Hopf algebroids for various purposes; see [7, 47, 24].

In this paper, we adopt Lu’s definition of Hopf algebroids in [36], fit for our fundamental
example: the universal enveloping algebra of a Lie algebroid (Lie-Rinehart algebra). So far the
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bialgebroid structure on the universal enveloping algebra of a Lie algebroid has been extensively
studied with fruitful results; see e.g. [40, 5]. On the other hand, a natural construction of
cocommutative Hopf algebroids from a finite groupoid was given in [20], generalizing the group
algebra of a group.

Recently, Bronasco and the first author uncovered in [8] that the pre-Hopf algebroid and
the Grossman-Larson Hopf algebroid are the underlying algebraic structures associated to the
laws of composition and substitution of exotic aromatic S-series, and used them to provide
the algebraic foundations of stochastic numerical analysis (see also [34]). They later extended
these structures with planar rooted trees and naturally obtained post-Hopf algebras in [9]. This
allowed for the creation of high-order intrinsic numerical methods for stochastic differential
equations on manifolds.

1.3. Main results and outline of the paper. The purpose of this paper is twofold. On the
one hand, we study the universal enveloping algebra of a post-Lie-Rinehart algebra (post-Lie
algebroid). On the other hand, we generalize the pre-Hopf algebroid introduced in [8] to the
post-algebraic structure context, and give applications in geometric numerical integration.

For these purposes, first we introduce the notion of post-Hopf algebroids, and show that a
post-Hopf algebroid gives rise to a Hopf algebroid, which is called the Grossman-Larson Hopf
algebroid. Through actions of post-Hopf algebras, we construct a class of examples, called
action post-Hopf algebroids. We show that post-Hopf algebroids give rise to braiding operators
on the associated Grossman-Larson Hopf algebroid. Then we introduce the notion of post-Lie-
Rinehart algebras as the algebraic analog of post-Lie algebroids, and construct the free object
using a magma algebra with a linear map to Der(R), where R is a commutative associative
algebra. The universal enveloping algebra of a post-Lie-Rinehart algebra is naturally a post-
Hopf algebroid. Applications of this universal enveloping post-Hopf algebroid and the action
post-Hopf algebroid in numerical analysis are provided for the study of volume-preserving Lie-
group methods.

The article is organized as follows. In Section 2, we introduce the notion of (weak) post-Hopf
algebroids and show the existence of a sub-adjacent Hopf algebroid associated with a post-Hopf
algebroid, so-called the Grossman-Larson Hopf algebroid. A useful construction called the ac-
tion post-Hopf algebroid is provided (Theorem 2.20). Also, a post-Hopf algebroid naturally
induces a braiding operator on the Grossman-Larson Hopf algebroid (Theorem 2.24). In Sec-
tion 3, first we introduce the notion of post-Lie-Rinehart algebras and give the construction of
their free objects (Theorem 3.18). Then we show that the universal enveloping algebra of a post-
Lie-Rinehart algebra is a (weak) post-Hopf algebroid (Theorem 3.20). In Section 4, we outline
applications of post-Lie-Rinehart algebras and post-Hopf algebroids in numerical analysis.
Convention. In this paper, we fix an algebraically closed ground field k of characteristic 0
and a commutative associative unital algebra R. All the objects under discussion, including
vector spaces, linear maps, algebras and tensor products, are taken over k by default if without
emphasis.
Acknowledgements. This research is supported by NSFC (Grant No. 12471060, 12071094,
W2412041) and ANR-25-CE40-2862-01 (MaStoC - Manifolds and Stochastic Computations).
We give warmest thanks to Xiao Han for helpful comments.
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2. Post-Hopf algebroids

In this section, we introduce the notion of post-Hopf algebroids, which are generalizations
of post-Hopf algebras. In particular, we give the action post-Hopf algebroids using actions of
post-Hopf algebras. We introduce the notion of braiding operators on Hopf algebroids, and
show that post-Hopf algebroids give rise to braiding operators on the Grossman-Larson Hopf
algebroids.

2.1. Bialgebroids and Hopf algebroids. First we adopt the following definition of Hopf alge-
broids with commutative base algebras as a special situation in [36]; see also [30, § 2.1].

Definition 2.1. Take the commutative unital algebra R as the base algebra, and H another unital
algebra as the total algebra. A bialgebroid structure on H over R consists of the following data:

(i) An algebra homomorphism ι : R → H as the source and also target map, giving the
following canonical left R-module structure on H,

λ : R ⊗ H → H, f ⊗ x 7→ ι( f )x,

and we write ι( f )x as f x for short.
(ii) An R-module map ∆ : H → H ⊗R H, x→ x1 ⊗ x2 as the coproduct, satisfying

(a) (∆ ⊗R idH)∆ = (idH ⊗R ∆)∆.
(b) ∆(x)(ι( f ) ⊗ 1H − 1H ⊗ ι( f )) = 0 for any f ∈ R and x ∈ H, so inducing an algebra

structure on the image ∆(H).
(c) ∆ is an algebra homomorphism from H to ∆(H). In particular, ∆(1H) = 1H ⊗R 1H.

(iii) An R-module map ε : H → R as the counit, satisfying
(a) ε(1H) = 1R.
(b) ker ε is a left ideal of H, namely ε(x(y − ιε(y))) = 0 for any x, y ∈ H.
(c) λ(ε ⊗ idH)∆ = idH and λ(ε ⊗ idH)∆op = idH, where ∆op is the opposite of ∆.

We say that H is cocommutative if ∆ = ∆op.
A Hopf algebroid is a bialgebroid H over R which admits an algebra anti-isomorphism

S : H → H as the antipode map, satisfying
(a) S ι = ι,
(b) mH(S ⊗ idH)∆ = ιεS ,
(c) mH(idH ⊗ S )∆ = ιε.

Remark 2.2. It is straightforward to see that if ι(R) lies in the center Z(H) of H, then H ⊗R H is
an R-algebra, and both the coproduct ∆ and the counit ε are R-algebra homomorphisms. In this
situation, we call H an R-bialgebra.

Definition 2.3. A Hopf algebroid H over R is called a Hopf R-algebra, if ι(R) lies in the center
Z(H) of H, the antipode map S of H is R-linear and εS = ε.

Note that all structural maps of a Hopf R-algebra are R-linear.

Example 2.4. Let (A,∆A, εA, S A) be a Hopf algebra. The tensor algebra H = R⊗A has a natural
Hopf R-algebra structure (H,∆H, εH, S H, ι), where

ι( f ) = f 1A,
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∆H( f a) = f a1 ⊗R 1Ra2,

εH( f a) = f εA(a),
S H( f a) = f S A(a)

for any f a ∈ R ⊗ A with f ∈ R and a ∈ A. We call H = R ⊗ A the tensor product Hopf
R-algebra.

Lemma 2.5. If H is a cocommutative Hopf algebroid over R such that ι(R) ⊆ Z(H), then H is a
Hopf R-algebra.

Proof. We only need to show that S is R-linear and εS = ε. First for any f ∈ R, x ∈ H, we have

S ( f x) = S (x)S (ι( f )) = S (x)ι( f ) = f S (x),

which implies that S is R-linear. Also, since the counit ε becomes an algebra homomorphism,
we have

ε(S (x)) = ε(ι(ε(S (x)))) = ε(S (x1)x2) = ε(S (x1))ε(x2)
= ε(x1)ε(S (x2)) = ε(x1S (x2)) = ε(ι(ε(x)))
= ε(x),

which implies that εS = ε. Hence, H is a Hopf R-algebra by definition. □

Definition 2.6. Given a bialgebroid H over R, an R-algebra A is called a module algebra over
H via an action ⇀: H ⊗ A→ A, if

xy ⇀ a = x ⇀ (y ⇀ a),(1)
1H ⇀ a = a,(2)
f x ⇀ a = f (x ⇀ a),(3)
x ⇀ ab = (x1 ⇀ a)(x2 ⇀ b),(4)
x ⇀ 1A = ε(x)1A(5)

for any f ∈ R, x ∈ H and a, b ∈ A. When R = k, it recovers the notion of a module algebra over
a bialgebra.

For later use, we need the following construction of Hopf algebroids from smash product
algebras. Let (A,∆A, εA, S A) be a cocommutative Hopf algebra such that R is an A-module
algebra via an action ⇀. Then there is an algebra structure on R ⊗ A given by

f a · gb = f (a1 ⇀ g)a2b,

for all f a, gb ∈ R ⊗ A. This algebra is called the smash product algebra and denoted by R#A.

Theorem 2.7. With the above notations, the smash product algebra H = R#A has a natural
Hopf algebroid structure (H,∆H, εH, S H, ι) over R, where the comultiplication ∆H, the counit
εH and the antipode S H are defined as follows:

∆H( f a) = f a1 ⊗R 1Ra2,

εH( f a) = f εA(a),
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S H( f a) = (S A(a1) ⇀ f )S A(a2)

for any f , g ∈ R and a, b ∈ A, and ι : R → H is the canonical inclusion of algebras. We call H
an action Hopf algebroid over R.

Proof. According to [11, Theorem 4.1], given a braided commutative algebra A in the Yetter-
Drinfeld module category HYDH over a Hopf algebra H, the smash product algebra A#H
naturally possesses a Hopf algebroid structure over A in the sense of Lu. Such a result is a
generalization of [36, Theorem 5.1].

Now under our notations, we take the commutative algebra R as a module algebra over a
given cocommutative Hopf algebra A and choose the trivial coaction of A on R, then R is clearly
a braided commutative algebra in AYDA, and so [11, Theorem 4.1] can be applied to give the
desired statement. Note that in this special situation, both the source map and the target map
are the canonical inclusion, and we just denote it by ι as previously. □

2.2. Post-Hopf algebroids. In order to introduce the key notion of post-Hopf algebroids, we
first recall post-Hopf algebras introduced in [35]. The group algebra of a post-group and the
universal enveloping algebra of a post-Lie algebra are two fundamental examples.

Definition 2.8 ([35, Definition 2.1]). A post-Hopf algebra is a pair (H,▷), where H is a Hopf
algebra and ▷ : H ⊗ H → H is a coalgebra homomorphism satisfying the following equalities:

x ▷ (y · z) = (x1 ▷ y) · (x2 ▷ z),(6)
x ▷ (y ▷ z) =

(
x1 · (x2 ▷ y)

)
▷ z,(7)

for any x, y, z ∈ H, and the left multiplication α▷ : H → End(H) defined by α▷,xy = x ▷ y
for all x, y ∈ H, is convolution invertible in Hom(H,End(H)). Namely, there exists unique
β▷ : H → End(H) such that

(8) α▷,x1 ◦ β▷,x2 = β▷,x1 ◦ α▷,x2 = ε(x)idH, ∀x ∈ H.

Moreover, we have the following properties.

Lemma 2.9 ([35, Lemma 2.4]). Let (H,▷) be a post-Hopf algebra. For any x, y ∈ H, we have

x ▷ 1H = ε(x)1H,(9)
1H ▷ x = x,(10)

S (x ▷ y) = x ▷ S (y).(11)

Theorem 2.10 ([35, Theorem 2.5]). Let (H,▷) be a cocommutative post-Hopf algebra. Then

H▷ B (H, ∗▷, 1H,∆, ε, S ▷)

is a Hopf algebra, which is called the sub-adjacent Hopf algebra, where for all x, y ∈ H,

x ∗▷ y B x1 · (x2 ▷ y),(12)
S ▷(x) B β▷,x1(S (x2)),(13)

and ∗▷ is called the Grossman-Larson product.
Furthermore, H is a left H▷-module bialgebra via the action ▷, so β▷,x = α▷,S ▷(x).
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Now we are in position to define post-Hopf algebroids generalizing cocommutative post-
Hopf algebras. First we introduce a weaken version, whose counterpart in the original Hopf
algebra case was given by getting rid of the restrictive condition that the left multiplication α▷
is convolution invertible.

Definition 2.11. A weak post-Hopf algebroid over R consists of a cocommutative Hopf R-
algebra (H, ι), and a k-linear map ▷ : H ⊗ H → H such that

∆(x ▷ y) = (x1 ▷ y1) ⊗R (x2 ▷ y2),(14)
x ▷ 1H = ι(ε(x)),(15)
1H ▷ x = x,(16)

ι(ε(x ▷ y)) = x ▷ ι(ε(y)),(17)
f x ▷ y = f (x ▷ y),(18)
x ▷ yz = (x1 ▷ y)(x2 ▷ z),(19)

x ▷ (y ▷ z) = x1(x2 ▷ y) ▷ z(20)

for any f ∈ R and x, y, z ∈ H.

Lemma 2.12. Let (H, ι,▷) be a weak post-Hopf algebroid over R. For any f ∈ R and x ∈ H,
we have

x ▷ ι( f ) = ι(ε(x ▷ ι( f ))),(21)
ι( f ) ▷ x = f x.(22)

Proof. First we see that

x ▷ ι( f ) = x ▷ ι(ε(ι( f )))
(17)
= ι(ε(x ▷ ι( f ))).

Namely, the image of ι is stable under the left multiplication of ▷. Also, we have

ι( f ) ▷ x
(18)
= f (1H ▷ x)

(16)
= f x,

which finishes the proof. □

Theorem 2.13. Given a weak post-Hopf algebroid (H, ι,▷) over R, there exists an associative
product ∗▷, called the Grossman-Larson product, on H defined by

x ∗▷ y B x1(x2 ▷ y), ∀x, y ∈ H,(23)

such that the tuple H▷ = (H, ∗▷,∆, ε, ι) forms a bialgebroid over R, which is called the Grossman-
Larson bialgebroid over R.

Moreover, H is a module algebra over H▷ with respect to the product ▷ in the sense of
Definition 2.6.

Proof. For any f ∈ R and x, y ∈ H, since ∆ is R-linear and ι(R) ⊆ Z(H), we have

f x1(x2 ▷ y) = x1( f (x2 ▷ y))
(18)
= x1( f x2 ▷ y),

which implies that the product ∗▷ is well-defined.
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By Eqs. (15) and (16), it is clear that 1H ∗▷ x = x ∗▷ 1H = x. Also, Eq. (14) and the
cocommutativity of H implies that

(24) ∆(x ∗▷ y) = (x1 ∗▷ y1) ⊗R (x2 ∗▷ y2).

Hence, we have

(x ∗▷ y) ∗▷ z
(23)
= (x1 ∗▷ y1)((x2 ∗▷ y2) ▷ z)

(20),(23)
= x1(x2 ▷ y1)(x3 ▷ (y2 ▷ z))

(19)
= x1(x2 ▷ y1(y2 ▷ z))

(23)
= x ∗▷ (y ∗▷ z).

Thus, (H, ∗▷) is an associative algebra also with the unit 1H.
By Eq. (16), ι is an algebra homomorphism from R to the associative algebra (H, ∗▷):

ι( f g) = ι( f )ι(g) = ι( f ) ∗▷ ι(g), ∀ f , g ∈ R.

Thus H▷ has the same R-module structure as H:

ι( f ) ∗▷ x = ι( f )(1H ▷ x)
(16)
= ι( f )x = f x.

Also, we have

(x1 ∗▷ ι( f )) ⊗R x2 − x1 ⊗R (x2 ∗▷ ι( f ))
(23)
= x1(x2 ▷ ι( f )) ⊗R x3 − x1 ⊗R x2(x3 ▷ ι( f ))
= (x1 ▷ ι( f ))x2 ⊗R x3 − x1 ⊗R (x2 ▷ ι( f ))x3

= 0.

Combined with (24), we see that (ii) in Definition 2.1 holds for the tuple (H, ∗▷,∆, ι).
Finally, we have ι(ε(x1)) ∗▷ x2

(23)
= ι(ε(x1))(1 ▷ x2)

(16)
= ι(ε(x1))x2 = x, and

ε(x ∗▷ ι(ε(y)))
(23)
= ε(x1(x2 ▷ ι(ε(y))))

(17)
= ε(x1ι(ε(x2 ▷ y))) = ε(x1)ε(ι(ε(x2 ▷ y)))

= ε(x1)ε(x2 ▷ y) = ε(x1(x2 ▷ y))
(23)
= ε(x ∗▷ y),

which imply that (iii) in Definition 2.1 holds. Hence, we have confirmed the desired bialgebroid
structure H▷ over R.

It is straightforward to see that H is clearly a module algebra over H▷ with respect to the
product ▷ by Definition 2.6. □

Corollary 2.14. For a weak post-Hopf algebroid (H, ι,▷) over R, there is a left H▷-module
algebra action on R given by:

x( f ) B ε(x ▷ ι( f )), ∀ f ∈ R, x ∈ H.(25)

Proof. By Theorem 2.13 and Eq. (21), ι(R) is a module subalgebra of H over H▷. Since ει = idR,
there is an induced module algebra structure on R given as desired. □
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Remark 2.15. The H▷-module algebra action on R given in Corollary 2.14 is consistent with
the one given by Lu in [36, Definition 2.3] for any bialgebroid over R. Thus, for the Grossman-
Larson bialgebroid H▷, the H▷-module algebra action on H given in Theorem 2.13 can be
viewed as an expansion of Lu’s result.

Definition 2.16. A weak post-Hopf algebroid (H, ι,▷) over R is called a post-Hopf algebroid,
if there exists an algebra anti-automorphism θ of the Grossman-Larson bialgebroid H▷ such that

∆(θ(x)) = θ(x1) ⊗R θ(x2),(26)
x1 ∗▷ θ(x2) = ι(ε(x)),(27)
θ(x1) ∗▷ x2 = ι(ε(θ(x)))(28)

for any f ∈ R and x ∈ H.

Remark 2.17. The uniqueness of such linear map θ is an interesting problem. In particular,
when R = k, a post-Hopf algebroid over R reduces to a cocommutative post-Hopf algebra, and
in this case θ = S ▷ is unique, where S ▷ is given by (13).

Lemma 2.18. Let (H, ι,▷, θ) be a post-Hopf algebroid over R. For any f ∈ R and x, y ∈ H, we
have

θ( f x) = (θ(x1) ▷ ι( f ))θ(x2),(29)
S (x) = x1 ▷ θ(x2),(30)
θ(x) = θ(x1) ▷ S (x2),(31)

ι(ε(θ(x))) = θ(x1) ▷ ι(ε(x2)),(32)
xy = x1 ∗▷ (θ(x2) ▷ y),(33)
x = x1 ∗▷ ι(ε(θ(x2))).(34)

Proof. First according to Eq. (27), we have

θ(ι( f )) = 1H ∗▷ θ(ι( f )) = ι( f ) ∗▷ θ(1H) = ι(ε(ι( f ))) = ι( f ),

as ∆(ι( f )) = ι( f ) ⊗R 1H = 1H ⊗R ι( f ). Then

θ( f x) = θ(ι( f ) ∗▷ x) = θ(x) ∗▷ θ(ι( f ))
(26),(23)
= θ(x1)(θ(x2) ▷ ι( f )) = (θ(x1) ▷ ι( f ))θ(x2).

Next since H is a Hopf R-algebra, we know that the antipode S is R-linear and εS = ε, so

S (x) = S (ε(x1)x2) = S (x1)ι(ε(x2))
(27)
= S (x1)(x2 ∗▷ θ(x3))

(23)
= S (x1)x2(x3 ▷ θ(x4))

= ι(ε(S (x1)))(x2 ▷ θ(x3))ι(ε(x1))(x2 ▷ θ(x3))
(18)
= x1 ▷ θ(x2),

and then

θ(x1) ▷ S (x2)
(30)
= θ(x1) ▷ (x2 ▷ θ(x3))

(20),(23)
= (θ(x1) ∗▷ x2) ▷ θ(x3)

(28)
= ι(ε(θ(x1))) ▷ θ(x2)

(22)
= ε(θ(x1))θ(x2)

(26)
= θ(x).

Also, we have

θ(x1) ▷ ι(ε(x2)) = θ(x1) ▷ ι(ε(S (x2))) = θ(x1) ▷ S (x3)x2
(19)
= (θ(x1) ▷ S (x2))(θ(x3) ▷ x4)
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(31)
= θ(x1)(θ(x2) ▷ x3)

(26),(23)
= θ(x1) ∗▷ x2

(28)
= ι(ε(θ(x))),

x1 ∗▷ (θ(x2) ▷ y)
(23)
= x1(x2 ▷ (θ(x3) ▷ y))

(20),(27)
= x1(ι(ε(x2)) ▷ y)

(22)
= x1ι(ε(x2)y = xy.

Then taking y = 1H in Eq. (33) and applying Eq. (15), we see that x1 ∗▷ ι(ε(θ(x2))) = x. Hence,
we have shown all the desired equalities. □

Corollary 2.19. Given a post-Hopf algebroid (H, ι,▷, θ) over R, the Grossman-Larson bialge-
broid H▷ = (H, ∗▷,∆, ε, ι) equipped with θ forms a Hopf algebroid over R, which we call the
Grossman-Larson Hopf algebroid over R.

Proof. Now it is clear that θι = ι. So H▷ is a Hopf algebroid over R by Eqs. (27) and (28). □

Theorem 2.20. Let (A,▷) be a cocommutative post-Hopf algebra and R be an A▷-module al-
gebra via an action ⇀, where A▷ = (A, ∗▷, 1A,∆, ε, S ▷) is the sub-adjacent Hopf algebra of
(A,▷). Then the tensor product Hopf R-algebra H = R ⊗ A given in Example 2.4 has a natural
post-Hopf algebroid structure (H,∆H, εH, S H, ι,▷, θ) over R, where

f a▷ gb = f (a1 ⇀ g)(a2 ▷ b),(35)
θ( f a) = (S ▷(a1) ⇀ f )S ▷(a2)(36)

for any f , g ∈ R and a, b ∈ A. We call (H, ι,▷, θ) an action post-Hopf algebroid over R. In
particular, the corresponding Grossman-Larson Hopf algebroid H▷ = (H, ∗▷,∆H, εH, θ, ι) is the
action Hopf algebroid R#A▷ defined as in Theorem 2.7.

Proof. First Eqs. (14)–(16) and (18) are easy to see. For any f , g, h ∈ R and a, b, c ∈ A, we have

ι(εH( f a▷ gb))
(35)
= ι(εH( f (a1 ⇀ g)(a2 ▷ b))) = ι( f (a1 ⇀ g)ε(a2 ▷ b))

= ι( f (a1 ⇀ g)ε(a2)ε(b)) = ι( f (a ⇀ εH(gb)))
(35)
= f a▷ ι(εH(gb)),

which implies that Eq. (17) holds.
Eq. (19) follows from

f a▷ (gb)(hc) = f a▷ (gh)(bc)
(35)
= f (a1 ⇀ gh)(a2 ▷ bc)
(6)
= f (a1 ⇀ g)(a2 ⇀ h)(a3 ▷ b)(a4 ▷ c)
= ( f (a1 ⇀ g)(a2 ▷ b))((a3 ⇀ h)(a4 ▷ c))

(35)
= ( f a1 ▷ gb)(a2 ▷ hc).

Eq. (20) follows from

f a▷ (gb▷ hc)
(35)
= f a▷ g(b1 ⇀ h)(b2 ▷ c)

(35)
= f (a1 ⇀ g(b1 ⇀ h))(a2 ▷ (b2 ▷ c))

(7),(12)
= f (a1 ⇀ g)(a2 ⇀ (b1 ⇀ h))((a3 ∗▷ b2) ▷ c)
= f (a1 ⇀ g)((a2 ∗▷ b1) ⇀ h)((a3 ∗▷ b2) ▷ c),
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f a1(a2 ▷ gb)▷ hc
(35)
= f (a1 ⇀ g)a2(a3 ▷ b)▷ hc

(12)
= f (a1 ⇀ g)(a2 ∗▷ b)▷ hc

(35)
= f (a1 ⇀ g)((a2 ∗▷ b1) ⇀ h)((a3 ∗▷ b2) ▷ c).

Hence, the tuple (H, ι,▷) is a weak post-Hopf algebroid over R.
Now we compute the Grossman-Larson product ∗▷ on H as follows.

f a ∗▷ gb
(23)
= f a1(a2 ▷ gb)

(35)
= f (a1 ⇀ g)a2(a3 ▷ b)

(12)
= f (a1 ⇀ g)(a2 ∗▷ b).

Next we check that the linear operator θ defined by (36) is an algebra anti-involution of H▷.

θ( f a) ∗▷ θ(gb)
(36)
= (S ▷(a1) ⇀ f )S ▷(a2) ∗▷ (S ▷(b1) ⇀ g)S ▷(b2)
= (S ▷(a1) ⇀ f )(S ▷(a2) ⇀ (S ▷(b1) ⇀ g))(S ▷(a3) ∗▷ S ▷(b2))
= (S ▷(a1) ⇀ f )((S ▷(a2) ∗▷ S ▷(b1)) ⇀ g)(S ▷(a3) ∗▷ S ▷(b2))
= (S ▷(a1) ⇀ f )(S ▷(b1 ∗▷ a2) ⇀ g)S ▷(b2 ∗▷ a3),

θ(gb ∗▷ f a) = θ((b1 ⇀ f )g(b2 ∗▷ a))
(36)
= (S ▷(b1 ∗▷ a1) ⇀ (b2 ⇀ f )g)S ▷(b3 ∗▷ a2)
= (S ▷(b1 ∗▷ a1) ⇀ (b2 ⇀ f ))(S ▷(b3 ∗▷ a2) ⇀ g)S ▷(b4 ∗▷ a3)
= ((S ▷(a1) ∗▷ S ▷(b1) ∗▷ b2) ⇀ f )(S ▷(b3 ∗▷ a2) ⇀ g)S ▷(b4 ∗▷ a3)
= (S ▷(a1) ⇀ f )(S ▷(b1 ∗▷ a2) ⇀ g)S ▷(b2 ∗▷ a3),

θ2( f a)
(36)
= θ((S ▷(a1) ⇀ f )S ▷(a2))

(36)
= (S 2

▷(a1) ⇀ (S ▷(a2) ⇀ f ))S 2
▷(a3)

= ((a1 ∗▷ S ▷(a2)) ⇀ f )a3

= f ε(a1)a2 = f a.

Meanwhile, we have

∆(θ( f a))
(36)
= ∆((S ▷(a1) ⇀ f )S ▷(a2))
= (S ▷(a1) ⇀ f )S ▷(a2) ⊗R S ▷(a3)

(36)
= θ( f a1) ⊗R θ(a2).

f a1 ∗▷ θ(ga2)
(36)
= f a1 ∗▷ (S ▷(a2) ⇀ g)S ▷(a3)
= f (a1 ⇀ (S ▷(a2) ⇀ g))(a3 ∗▷ S ▷(a4))
= f ((a1 ∗▷ S ▷(a2)) ⇀ g)(a3 ∗▷ S ▷(a4))
= f gε(a) = εH( f ga).

θ( f a1) ∗▷ ga2
(36)
= (S ▷(a1) ⇀ f )S ▷(a2) ∗▷ ga3

= (S ▷(a1) ⇀ f )(S ▷(a2) ⇀ g)(S ▷(a3) ∗▷ a4)
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= (S ▷(a1) ⇀ f g)ε(S ▷(a2)) = εH(θ( f ga)).

Therefore, θ also satisfies all conditions (26)–(28). The tensor product Hopf R-algebra H = R⊗A
has the desired post-Hopf algebroid structure over R. □

2.3. Braiding operators on Hopf algebroids. Guccione, Guccione and Vendramin introduced
the notion of a braiding operator on a cocommutative Hopf algebra in [21, Definition 5.9]. Here
we further generalize this notion to Hopf algebroids. We interpret any Hopf algebroid H over
R as an R-bimodule via the source map ι : R → H, and we use the notation ⊗b

R to denote the
tensor product of R-bimodules, different from the former tensor product ⊗R of left R-modules.

Definition 2.21. Given a Hopf algebroid H over R, an R-bimodule homomorphism r : H⊗b
RH →

H ⊗b
R H is called a braiding operator on H if it satisfies
(a) (idH ⊗ τ⊗ idH)(∆⊗∆)r = (r ⊗ r)(idH ⊗ τ⊗ idH)(∆⊗∆) as R-bimodule homomorphisms

from H ⊗b
R H to (H ⊗b

R H) ⊗R (H ⊗b
R H),

(b) mr = m,
(c) r(m ⊗b

R idH) = (idH ⊗
b
R m)(r ⊗b

R idH)(idH ⊗
b
R r),

(d) r(idH ⊗
b
R m) = (m ⊗b

R idH)(idH ⊗
b
R r)(r ⊗b

R idH),
(e) r(1H ⊗

b
R x) = x ⊗b

R 1H, ∀x ∈ H,
(f) r(x ⊗b

R 1H) = 1H ⊗
b
R x, ∀x ∈ H,

where τ is the flip map and m is the multiplication of H, and we can take the tensor product ⊗R

since the R-bimodule H ⊗b
R H is a left R-module.

Lemma 2.22. Given a braiding operator r on a Hopf algebroid H over R, we have

ε(m(r(x ⊗b
R y))) = ε(xι(ε(y))), ∀x, y ∈ H.(37)

Proof. Indeed, we have

ε(m(r(x ⊗b
R y)))

(b)
= ε(xy) = ε(xι(ε(y)))

for any x, y ∈ H. □

Remark 2.23. When R = k, the counit ε : H → k becomes an algebra map, and condition (a)
and Eq. (37) imply that r is a coalgebra homomorphism, and thus a braiding operator on a Hopf
algebra in the sense of [21].

Theorem 2.24. Let (H, ι,▷, θ) be a post-Hopf algebroid over R. There exists an R-bimodule
homomorphism r = rH▷ : H▷ ⊗b

R H▷ → H▷ ⊗b
R H▷ defined by

r(x ⊗b
R y) B x1 ▷ y1 ⊗

b
R θ(x2 ▷ y2) ∗▷ x3 ∗▷ y3,(38)

which is a braiding operator on the Grossman-Larson Hopf algebroid H▷ over R.

Proof. First, note that the map r is well-defined, since the RHS of Eq. (38) is independent with
any expression of the coproduct ∆ according to Eqs. (29) and (33) when x or y is of the form
ι( f ) ∗▷ z or z ∗▷ ι( f ). Moreover, r is an R-bimodule homomorphism. That is,

r(ι( f ) ∗▷ x ⊗b
R y) = ι( f ) ∗▷ (x1 ▷ y1) ⊗b

R θ(x2 ▷ y2) ∗▷ x3 ∗▷ y3 = ι( f ) ∗▷ r(x ⊗b
R y),

r(x ⊗b
R y ∗▷ ι( f )) = x1 ▷ y1 ⊗

b
R θ(x2 ▷ y2) ∗▷ x3 ∗▷ y3 ∗▷ ι( f ) = r(x ⊗b

R y) ∗▷ ι( f ).
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We then check that r is a braiding operator on H▷. First note that both hand-sides of the
equality in condition (a) are well-defined R-bimodule homomorphisms, and then such an equal-
ity is due to Eqs. (14) and (26). Condition (b) is clear by Eqs. (38), (14) and (27). Conditions (c)
and (d) follows from

(id ⊗b
R ∗▷)(r ⊗

b
R id)(id ⊗b

R r)(x ⊗b
R y ⊗b

R z)
(14),(38)
= x1 ▷ (y1 ▷ z1) ⊗b

R θ(x2 ▷ (y2 ▷ z2)) ∗▷ x3 ∗▷ (y3 ▷ z3) ∗▷ θ(y4 ▷ z4) ∗▷ y5 ∗▷ z5

(14),(27)
= x1 ▷ (y1 ▷ z1) ⊗b

R θ(x2 ▷ (y2 ▷ z2)) ∗▷ x3 ∗▷ y3 ∗▷ z3

(20),(23)
= (x1 ∗▷ y1) ▷ z1 ⊗

b
R θ((x2 ∗▷ y2) ▷ z2) ∗▷ x3 ∗▷ y3 ∗▷ z3

(38)
= r(x ∗▷ y ⊗b

R z),

(∗▷ ⊗b
R id)(id ⊗b

R r)(r ⊗b
R id)(x ⊗b

R y ⊗b
R z)

(14),(38)
= (x1 ▷ y1) ∗▷ ((θ(x2 ▷ y2) ∗▷ x3 ∗▷ y3) ▷ z1) ⊗b

R

θ((θ(x4 ▷ y4) ∗▷ x5 ∗▷ y5) ▷ z2) ∗▷ θ(x6 ▷ y6) ∗▷ x7 ∗▷ y7 ∗▷ z3
(20),(23)
= (x1 ▷ y1) ∗▷ (θ(x2 ▷ y2) ▷ ((x3 ∗▷ y3) ▷ z1)) ⊗b

R

θ((x4 ▷ y4) ∗▷ (θ(x5 ▷ y5) ▷ ((x6 ∗▷ y6) ▷ z2))) ∗▷ x7 ∗▷ y7 ∗▷ z3
(14),(33)
= (x1 ▷ y1)((x2 ∗▷ y2) ▷ z1) ⊗b

R θ((x3 ▷ y3)((x4 ∗▷ y4) ▷ z2)) ∗▷ x5 ∗▷ y5 ∗▷ z3

(20),(23)
= (x1 ▷ y1)(x2 ▷ (y2 ▷ z1)) ⊗b

R θ((x3 ▷ y3)(x4 ▷ (y4 ▷ z2))) ∗▷ x5 ∗▷ y5 ∗▷ z3

(19),(23)
= x1 ▷ (y1 ∗▷ z1) ⊗b

R θ(x2 ▷ (y2 ∗▷ z2)) ∗▷ x3 ∗▷ y3 ∗▷ z3

(38)
= r(x ⊗b

R y ∗▷ z).

Conditions (e) and (f) follows from

r(1H ⊗
b
R x)

(16),(38)
= x1 ⊗

b
R θ(x2) ∗▷ x3

(28)
= x1 ⊗

b
R ι(ε(θ(x2)))

= x1 ∗▷ ι(ε(θ(x2))) ⊗b
R 1H

(34)
= x ⊗b

R 1H,

r(x ⊗b
R 1H)

(38)
= x1 ▷ 1H ⊗

b
R θ(x2 ▷ 1H) ∗▷ x3

(15)
= ι(ε(x1)) ⊗b

R ι(ε(x2)) ∗▷ x3

= 1H ⊗
b
R ι(ε(x1)) ∗▷ x2 = 1H ⊗

b
R x.

All the braiding conditions have been checked. The proof is finished. □

3. The universal enveloping algebras of post-Lie-Rinehart algebras

In this section, first we recall the universal enveloping algebra of a Lie-Rinehart algebra.
Then we introduce the notion of post-Lie-Rinehart algebras as the algebraic analog of post-
Lie algebroids. We construct the free post-Lie-Rinehart algebra generated by a magma algebra
with a fixed linear map to Der(R), which turns out to be an action post-Lie-Rinehart algebra.
Finally we show that the universal enveloping algebra of a post-Lie-Rinehart algebra is a weak
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post-Hopf algebroid. In the particular case of action post-Lie-Rinehart algebras, the universal
enveloping algebras are post-Hopf algebroids.

3.1. Lie-Rinehart algebras and their universal enveloping algebras. The structure of a Lie-
Rinehart algebra appeared in Rinehart’s work [46] under the terminology of (R, A)-Lie algebra.
Then, Huebschmann referred to such a structure a Lie-Rinehart algebra [25, 26]. Lie-Rinehart
algebras are the algebraic counterpart of Lie algebroids, and have various important applications
in Poisson geometry, symplectic geometry and quantization.

Definition 3.1. [46] Let L be an R-module. A tuple R = (R, L, [−,−]L, ρ) is called a Lie-
Rinehart algebra, if

(i) L is a Lie algebra with its bracket [−,−]L.
(ii) ρ : L → Der(R) is an R-module homomorphism and a Lie algebra homomorphism,

called the anchor.
(iii) the following compatibility condition holds:

[x, f y]L = f [x, y]L + ρ(x)( f )y, ∀ f ∈ R, x, y ∈ L.(39)

By convenience, we will write ρ(x)( f ) as x( f ) for short.

Example 3.2. Recall that a Lie algebroid structure on a vector bundle A −→ M is a pair
consisting of a Lie algebra structure [−,−]A on the section space Γ(A) and a vector bundle
morphism aA : A −→ T M from A to the tangent bundle T M, called the anchor, satisfying

(40) [x, f y]A = f [x, y]A + aA(x)( f )y, ∀ f ∈ C∞(M), x, y ∈ Γ(A),

where C∞(M) is the commutative associative algebra of smooth functions on the manifold M.
Let (A −→ M, [−,−]A, aA) be a Lie algebroid. Then the quadruple (C∞(M), Γ(A), [−,−]A, aA) is
a Lie-Rinehart algebra.

Example 3.3. For the Lie algebra Der(R) of derivations on R, the triple (R,Der(R), id) is a
Lie-Rinehart algebra.

Example 3.4. Let g be a Lie algebra with a Lie algebra homomorphism ρ : g → Der(R). Let
L = R ⊗ g as a free R-module. Define

[ f x, gy]L = f g[x, y]g + fρ(x)(g)y − gρ(y)( f )x, ∀ f , g ∈ R, x, y ∈ g,

and extend ρ to be an R-module homomorphism ρ : L → Der(R). Then the quadruple
(R, L, [−,−]L, ρ) is a Lie-Rinehart algebra, and we call it an action Lie-Rinehart algebra.

Definition 3.5. A Lie algebra L is called a Lie R-algebra if L is an R-module and its Lie bracket
[−,−]L is R-linear. In other words, a Lie R-algebra is a Lie-Rinehart algebra with trivial anchor.

Note that the authors in [40] defined the universal enveloping algebra of a Lie algebroid
(A −→ M, [−,−]A, aA) as the universal enveloping algebra of its underlying Lie-Rinehart algebra
(C∞(M), Γ(A), [−,−]A, aA). Now we recall the definition of the universal enveloping algebra of
a Lie-Rinehart algebra.
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Definition 3.6 ([40]). For a Lie-Rinehart algebra R = (R, L, [−,−]L, ρ), the universal envelop-
ing algebra of R is a triple (UR(L), ιR, ιL), where UR(L) is a unital algebra, ιR : R→ UR(L) is a
homomorphism of unital algebras and ιL : L→ UR(L) is a homomorphism of Lie algebras such
that

ιR( f )ιL(x) = ιL( f x), ιL(x)ιR( f ) − ιR( f )ιL(x) = ιR(x( f )), ∀ f ∈ R, x ∈ L,
and satisfying the following universal property: if A is a unital algebra, κR : R → A is a
homomorphism of unital algebras and κL : L→ A is a homomorphism of Lie algebras such that

κR( f )κL(x) = κL( f x), κL(x)κR( f ) − κR( f )κL(x) = κR(x( f )), ∀ f ∈ R, x ∈ L,

then there exists a unique homomorphism of unital algebras κ̄ : UR(L) → A such that κ̄ιR = κR

and κ̄ιL = κL.

We have the following construction of the universal enveloping algebra of a Lie-Rinehart
algebra.

Proposition 3.7 ([16, § 3.2]). For a Lie-Rinehart algebra R = (R, L, [−,−]L, ρ), let TR(L⊗R) =
R⊕

⊕
n≥1(L⊗R)⊗Rn be the tensor R-algebra over the R-bimodule L⊗R, and let jR : R→ TR(L⊗R)

and jL : L→ TR(L ⊗ R) be the canonical embedding, i.e.

jR( f ) = f , jL(x) 7→ x ⊗ 1R.

Define

(41) UR(L) = TR(L ⊗ R)
/ ( jL(x) jL(y) − jL(y) jL(x) − jL([x, y]L),

jL(x) jR( f ) − jR( f ) jL(x) − jR(x( f ))

∣∣∣∣∣ x, y ∈ L,
f ∈ R

)
,

and jR (resp. jL) induces the map ιR : R → UR(L) (resp. ιL : L → UR(L)). Then (UR(L), ιR, ιL)
is the universal enveloping algebra of R.

Remark 3.8. The structural map ιR : R → UR(L) is injective, while ιL : L → UR(L) is also
injective if L is R-projective, by the PBW theorem proven in [46, Theorem 3.1].

For the universal enveloping algebra UR(L) of a Lie-Rinehart algebra R = (R, L, [−,−]L, ρ),
using its left R-module structure to define the tensor product ⊗R, then we have the comultipli-
cation as a left R-module map and a k-algebra homomorphism

∆ : UR(L)→ UR(L) ⊗̄R UR(L), f 7→ f ⊗R 1R, x 7→ x ⊗R 1R + 1R ⊗R x, ∀ f ∈ R, x ∈ L,

where UR(L) ⊗̄R UR(L) is the kernel of the map

ϑ : UR(L) ⊗R UR(L)→ Hom(R,UR(L) ⊗R UR(L)), X ⊗R Y 7→ ( f 7→ X f ⊗R Y − X ⊗R Y f ).

The counit ε : UR(L)→ R is the left R-module map such that

ε( f ) = f , ε(x) = 0, ε(XY) = ε(Xε(Y)), ∀ f ∈ R, x ∈ L, X, Y ∈ UR(L).

Then (UR(L), ·,∆, ε, ιR) is a bialgebroid over R, also called an R/k-bialgebra in [40] or a left
bialgebroid over R in [5].

Proposition 3.9. Let L be a Lie R-algebra with Lie bracket [−,−]L. Then the universal envelop-
ing algebra UR(L) of L is a Hopf R-algebra.
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Proof. Note that a Lie R-algebra is a Lie-Rinehart algebra with trivial anchor. So ιR(R) lies in
the center of UR(L) according to Eq. (41). Let TR(L) = R ⊕

⊕
n≥1 L⊗Rn be the tensor R-algebra

over the R-module L and let jL : L→ TR(L) be the canonical embedding. We have the following
R-algebra isomorphism

UR(L) � TR(L)/ ( jL(x) jL(y) − jL(y) jL(x) − jL([x, y]L) | x, y ∈ L) .

Hence, we can define the antipode map

S : UR(L)→ UR(L), f 7→ f , x 7→ −x, ∀ f ∈ R, x ∈ L

as an R-algebra anti-isomorphism, and UR(L) becomes a Hopf R-algebra. □

As a special example of action Hopf algebroids defined in Theorem 2.7, we have

Example 3.10. Let R be the action Lie-Rinehart algebra (R, L = R⊗g, ρ) given in Example 3.4.
Since ρ naturally defines a module algebra action ⇀ of U (g) over R, the universal enveloping
algebra (UR(L), ιR, ιL) of R is a cocommutative Hopf algebroid over R isomorphic to the action
Hopf algebroid R#U (g) over R.

3.2. Post-Lie-Rinehart algebras and free objects. In this subsection, we introduce the notion
of a post-Lie-Rinehart algebra as the algebraic counterpart of a post-Lie algebroid introduced
in [41], and study its free object.

The notion of a post-Lie algebra was introduced by Vallette from his study of Koszul duality
of operads in [49].

Definition 3.11. [49] A post-Lie algebra (L, [−,−]L,▷) consists of a Lie algebra (L, [−,−]L)
and a binary product ▷ : L ⊗ L→ L such that

x ▷ [y, z]L = [x ▷ y, z]L + [y, x ▷ z]L,(42)
([x, y]L + x ▷ y − y ▷ x) ▷ z = x ▷ (y ▷ z) − y ▷ (x ▷ z).(43)

A post-Lie algebra homomorphism between two post-Lie algebras is a Lie algebra homo-
morphism compatible with post-Lie products.

Any post-Lie algebra (L, [−,−]L,▷) has a sub-adjacent Lie algebra L▷ := (L, [−,−]▷) de-
fined by

[x, y]▷ B x ▷ y − y ▷ x + [x, y]L, ∀x, y ∈ L.

The notion of a post-Lie algebroid was introduced by Munthe-Kaas and Lundervold in their
study of numerical integration [41]. Now we introduce the notion of a post-Lie-Rinehart alge-
bra. The relationship between post-Lie-Rinehart algebras and post-Lie algebroids is similar to
the relationship between Lie-Rinehart algebras and Lie algebroids.

Definition 3.12. Let L be a Lie R-algebra with Lie bracket [−,−]L and ▷ : L ⊗ L → L be a
bilinear map. A tuple R = (R, L, [−,−]L, ρ,▷) is called a post-Lie-Rinehart algebra, if

(i) (L, [−,−]L,▷) is a post-Lie algebra,
(ii) ρ : L▷ → Der(R) is an R-module homomorphism and a Lie algebra homomorphism for

the sub-adjacent Lie algebra L▷ of (L, [−,−]L,▷),
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(iii) the following compatibility conditions hold:

f x ▷ y = f (x ▷ y),(44)
x ▷ f y = f (x ▷ y) + x( f )y(45)

for any f ∈ R, x, y ∈ L, where x( f ) = ρ(x)( f ) as before.

A post-Lie-Rinehart algebra homomorphism between two post-Lie-Rinehart algebras is an
R-module homomorphism and a post-Lie algebra homomorphism compatible with anchors.

Proposition 3.13. Given a post-Lie-Rinehart algebra R = (R, L, [−,−]L, ρ,▷), the tuple R▷ =
(R, L, [−,−]▷, ρ) is a Lie-Rinehart algebra, which is called the sub-adjacent Lie-Rinehart al-
gebra of R.

Proof. By definition, we only need to check the compatibility condition (39) as follows:

[x, f y]▷ = x ▷ f y − f y ▷ x + [x, f y]L
(44),(45)
= f (x ▷ y) + x( f )y − f (y ▷ x) + f [x, y]L

= f [x, y]▷ + x( f )y

for any f ∈ R and x, y ∈ L. □

Example 3.14. Recall from [41] that a post-Lie algebroid structure on a vector bundle A −→
M is a triple that consists of a C∞(M)-linear Lie algebra structure [−,−]A on Γ(A), a bilinear
operation ▷A : Γ(A) ⊗ Γ(A) −→ Γ(A) and a vector bundle morphism aA : A −→ T M, called
the anchor, such that (Γ(A), [−,−]A, ▷A) is a post-Lie algebra, and for all f ∈ C∞(M) and
u, v ∈ Γ(A), the following relations are satisfied:

(i) u ▷A ( f v) = f (u ▷A v) + aA(u)( f )v,
(ii) ( f u) ▷A v = f (u ▷A v).

It is straightforward to check that (C∞(M), Γ(A), [−,−]A, aA, ▷A) is a post-Lie-Rinehart algebra.

As a generalization of [35, Theorem 2.7], there is a post-Lie-Rinehart algebra structure on
the space of primitive elements of a weak post-Hopf algebroid.

Given a weak post-Hopf algebroid (H, ι,▷) over R, let

P(H) B {x ∈ H |∆(x) = x ⊗R 1H + 1H ⊗R x}.

Since H is a Hopf R-algebra, it is straightforward to see that (P(H), [−,−]) is a Lie R-algebra
with the commutator as its Lie bracket. By the same argument as [35, Theorem 2.7], the product
▷ can be restricted to P(H) such that (P(H), [−,−],▷) is a post-Lie algebra. Moreover, we have
the following result.

Proposition 3.15. Let (H, ι,▷) be a weak post-Hopf algebroid over R. Then (R, P(H), [−,−], ρ,▷)
is a post-Lie-Rinehart algebra, where the anchor ρ is given by Eq. (25), i.e.

ρ(x)( f ) = ε(x ▷ ι( f )), f ∈ R, x ∈ P(H).
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Proof. First note ρ(x) ∈ Der(R) for any x ∈ P(H) by conditions (16) and (19). It remains to
show that ρ is an R-module homomorphism and a Lie algebra homomorphism, and Eqs. (44)
and (45) hold. The fact that ρ is an R-module homomorphism follows from

ρ( f x)(g) = ε( f x ▷ ι(g))
(18)
= f ε(x ▷ ι(g)) = fρ(x)(g), ∀ f , g ∈ R, x ∈ P(H).

For all f ∈ R and x, y ∈ P(H), we have

[ρ(x), ρ(y)]( f ) = ρ(x)(ρ(y)( f )) − ρ(y)(ρ(x)( f ))
= ε(x ▷ ι(ε(y ▷ ι( f )))) − ε(y ▷ ι(ε(x ▷ ι( f ))))

(17)
= ε(x ▷ (y ▷ ι( f ))) − ε(y ▷ (x ▷ ι( f )))

(16), (20)
= ε((xy + x ▷ y) ▷ ι( f )) − ε((yx + y ▷ x) ▷ ι( f ))
= ε(([x, y] + x ▷ y − y ▷ x) ▷ ι( f ))
= ε([x, y]▷ ▷ ι( f ))
= ρ([x, y]▷)( f ),

which implies that ρ is a Lie algebra homomorphism.
On the other hand, Eq. (18) clearly implies Eq. (44). Also, we have

x ▷ f y
(19)
= (x ▷ ι( f ))y + ι( f )(x ▷ y)

(21)
= f (x ▷ y) + ε(x ▷ ι( f ))y = f (x ▷ y) + ρ(x)( f )y.

Namely, Eq. (45) holds. Hence, (R, P(H), [−,−], ρ,▷) is a post-Lie-Rinehart algebra. □

Next we introduce a useful construction of post-Lie-Rinehart algebras, originally given in
[22] via a geometric terminology, namely action post-Lie algebroids.

Proposition 3.16. Let (g, [−,−]g,▷) be a post-Lie algebra with its sub-adjacent Lie algebra g▷.
Let ρ : g▷ → Der(R) be a Lie algebra homomorphism. Then we have an extended post-Lie
algebra structure on L = R ⊗ g defined as follows,

[ f1x1, f2x2]L = f1 f2[x1, x2]g,(46)
f1x1 ▷ f2x2 = f1x1( f2)x2 + f1 f2(x1 ▷ x2)(47)

for any f1, f2 ∈ R and x1, x2 ∈ g, where we write ρ(x)( f ) simply as x( f ).
Extend ρ : g→ Der(R) to be a linear map ρ : L→ Der(R) defined by

ρ( f x)( f ′) = f x( f ′), f , f ′ ∈ R, x ∈ g.

Then, the tuple (R, L, [−,−]L, ρ,▷) is a post-Lie-Rinehart algebra, and we call it an action
post-Lie-Rinehart algebra.

The corresponding sub-adjacent Lie-Rinehart algebra L▷ B (R, L, [−,−]▷, ρ) is given by

[ f1x1, f2x2]▷ = f1x1 ▷ f2x2 − f2x2 ▷ f1x1 + [ f1x1, f2x2]L

= f1x1( f2)x2 − f2x2( f1)x1 + f1 f2[x1, x2]▷.

Remark 3.17. The special case of Proposition 3.16 for a Lie algebra g with zero post-Lie
product generalizes the post-Lie algebras of derivations in [29, Theorem 3.1].
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At the end of this subsection, we construct the free post-Lie-Rinehart algebra generated by a
magma algebra with a fixed linear map to Der(R).

Let (V,↷) be a magma algebra. It is well-known that the free post-Lie algebra PostLie(V)
generated by (V,↷) is the free Lie algebra (Lie(V), [−,−]Lie(V)) equipped with the extended
post-Lie product ▷V from↷ [19]. Namely, for any post-Lie algebra (g, [−,−]g,▷) with a magma
algebra homomorphism ϕ : (V,↷) → (g,▷), there exists a unique post-Lie algebra homomor-
phism ϕ̃ : (Lie(V), [−,−]Lie(V),▷V) → (g, [−,−]g,▷) such that ϕ = ϕ̃iV , where iV : V → Lie(V)
is the natural inclusion.

In order to define a free post-Lie-Rinehart algebra generated by (V,↷), a linear map fV :
V → Der(R) need to be given first. Now we extend it to be a Lie algebra homomorphism
ρV : PostLie(V)▷V → Der(R) by the following recursion,

ρV(x) = fV(x),
ρV([x, y]Lie(V)) = [ fV(x), fV(y)] − fV(x↷ y) + fV(y↷ x),
ρV([x, X]Lie(V)) = [ fV(x), ρV(X)] − ρV(x ▷V X) + fV(X ▷V x),

for any x, y ∈ V and X ∈ Lie(V).
By Proposition 3.16, we have the action post-Lie-Rinehart algebra

PostLR(V) B (R,R ⊗ Lie(V), [−,−]R⊗Lie(V), ρV ,▷V).

Theorem 3.18. The action post-Lie-Rinehart algebra PostLR(V) has the following universal
property:

For any post-Lie-Rinehart algebra R = (R, L, [−,−]L, ρ,▷), and a magma algebra homomor-
phism φ : (V,↷) → (L,▷) such that ρφ = fV , there exists a unique post-Lie-Rinehart algebra
homomorphism φ̃ : PostLR(V) → L such that φ = φ̃(1R ⊗ iV), where iV : V → Lie(V) is the
natural embedding. That is, we have the following commutative diagram:

Der(R) V
φ

��

1R⊗iV
//

fV
oo R ⊗ Lie(V)

∃! φ̃
yy

L
ρ

cc

Thus, the post-Lie-Rinehart algebra PostLR(V) is the free post-Lie-Rinehart algebra gener-
ated by (V,↷, fV).

Proof. First by the universal property of PostLie(V), there exists a unique post-Lie algebra
homomorphism ψ : PostLie(V) → (L, [−,−]L,▷) such that φ = ψiV . It induces a Lie algebra
homomorphism ρψ : PostLie(V)▷V → Der(R) satisfying ρψiV = ρφ = fV , so we have ρψ = ρV ,
since Lie(V) is generated by V .

Now define a linear map φ̃ : R ⊗ Lie(V)→ L by

φ̃( f X) = fψ(X), ∀ f ∈ R, X ∈ Lie(V).

It is clear that φ̃ is R-linear and φ̃(1R ⊗ iV) = ψiV = φ. Also, we have

φ̃([ f X, gY]R⊗Lie(V)) = φ̃( f g[X,Y]Lie(V)) = f gψ([X,Y]Lie(V))
= [ fψ(X), gψ(Y)]L = [φ̃( f X), φ̃(gY)]L,
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φ̃( f X ▷VgY) = φ̃( fρV(X)(g)Y + f g(X ▷V Y))
= fρV(X)(g)ψ(Y) + f gψ(X ▷V Y)
= fρ(ψ(X))(g)ψ(Y) + f g(ψ(X) ▷ ψ(Y))
= fψ(X) ▷ gψ(Y) = φ̃( f X) ▷ φ̃(gY),

which implies that φ̃ is a post-Lie algebra homomorphism. Moreover, we have

ρ(φ̃( f X)) = ρ( fψ(X)) = fρ(ψ(X)) = fρV(X) = ρV( f X),

which implies that φ̃ : PostLR(V) → L is a post-Lie-Rinehart algebra homomorphism. Mean-
while, a post-Lie-Rinehart algebra homomorphism from PostLR(V) to L is determined by its
restriction on V , so the desired homomorphism φ̃ is unique. □

Example 3.19. The free post-Lie algebra on one generator is realized as PostLie(kOT ), where
kOT is the magma algebra of planar rooted trees with the left grafting operation↷ [41].

According to Theorem 3.18, given any linear map fkOT : kOT → Der(R), the action post-
Lie-Rinehart algebra PostLR(kOT ) = (R,R⊗Lie(kOT ), [−,−]R⊗Lie(kOT ), ρkOT ,▷kOT ) is the free
post-Lie-Rinehart algebra generated by (kOT ,↷, fkOT ).

We mention that the free object in the category of pre-Lie-Rinehart algebras with trace has
been constructed via aromatic non-planar trees in [18], and such algebraic structures can also
be characterised by universal geometric properties [43, 33].

3.3. The universal enveloping algebra of a post-Lie-Rinehart algebra. Given a post-Lie-
Rinehart algebra R = (R, L, [−,−]L, ρ,▷), since L is a Lie R-algebra, we have a Hopf R-algebra
(UR(L),∆, ε, S , ιR) by Proposition 3.9. Now we provide our main theorem in this section, which
generalizes [35, Theorem 2.8].

Theorem 3.20. For a post-Lie-Rinehart algebra R = (R, L, [−,−]L, ρ,▷), the Hopf R-algebra
(UR(L),∆, ε, S , ιR) has a k-linear product ▷ recursively defined by

f ▷ X = f X,(48)
x ▷ f = x( f ),(49)

x ▷ yX = (x ▷ y)X + y(x ▷ X),(50)
xX ▷ Y = x ▷ (X ▷ Y) − (x ▷ X) ▷ Y,(51)

for any f , g ∈ R, x, y ∈ L and X, Y ∈ UR(L). Then the tuple (UR(L),∆, ε, S , ιR,▷) is a weak
post-Hopf algebroid over R, which is called the universal enveloping algebra of R.

Proof. According to the Oudom-Guin construction in [14], the post-Lie product ▷ can be ex-
tended to the universal enveloping algebra U (L) of the Lie algebra L via Eqs. (48)–(49) with
f = 1R, and also (50) and (51) with X, Y ∈ U (L). As the first part, we show that such a con-
struction can be generalized for the post-Lie-Rinehart algebra R, namely the post-Lie product
▷ of L can be extended further to the R-algebra UR(L) via formulas (48)–(51).

Let U (L) = T (L)/(xy − xy − [x, y]L | x, y ∈ L) = k ⊕ Ū (L), where Ū (L) = LU (L). Corre-
spondingly, we have a direct sum of k-linear subspaces UR(L) = R ⊕ Ū (L)/J , where J is
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the ideal of U (L) given by

J = (( f x)y − x( f y) ∈ Ū (L) | f ∈ R, x, y ∈ L).

First note that the action ▷ of R on UR(L) via Eq. (48) is well-defined, since UR(L) is an R-
module by the left multiplication of R. So we still need to verify that UR(L) acts on R properly
by Eqs. (49) and (51), and then the linear map

▷ : Ū (L)/J ⊗ Ū (L)/J → Ū (L)/J

is also well-defined by Eqs. (50) and (51). In order to do so, we just check that

(52) X(xy − yx − [x, y]L)Y ▷ f = 0, ∀ f ∈ R, x, y ∈ L, X,Y ∈ T (L),

and then Ū (L) ▷J ⊆J , J ▷ R = {0} and J ▷ Ū (L) ⊆J successively.
For the proof of Eq. (52), we apply Eqs. (42), (50) and (51) to see that

wX(xy − yx − [x, y]L)Y ▷ f
= w ▷ (X(xy − yx − [x, y]L)Y ▷ f ) − (w ▷ X)(xy − yx − [x, y]L)Y ▷ f
−X((w ▷ x)y − y(w ▷ x) − [w ▷ x, y]L)Y ▷ f − X(x(w ▷ y) − (w ▷ y)x − [x,w ▷ y]L)Y ▷ f
−X(xy − yx − [x, y]L)(w ▷ Y) ▷ f

for any f ∈ R, w, x, y ∈ L and X, Y ∈ T (L). So by induction on the degree of polynomials it
reduces to check that

(xy − yx − [x, y]L)X ▷ f = 0, ∀ f ∈ R, x, y ∈ L, X ∈ T (L).

By Eqs. (49)–(51), we find that

(xy − yx − [x, y]L)X ▷ f = x(y(X ▷ f )) − y(x(X ▷ f )) − [x, y]▷(X ▷ f )
−
(
x ▷ (y ▷ X) − y ▷ (x ▷ X) − [x, y]▷ ▷ X

)
▷ f ,

which vanishes by Eqs. (43), (50) and the anchor ρ : L▷ → Der(R) as a Lie homomorphism.
Hence, Eq. (52) holds.

Now it remains to check that Ū (L)▷J ⊆J , and then J ▷R = {0} and J ▷ Ū (L) ⊆J .
First one can use Eqs. (50) and (51) repeatedly to see that Ū (L)▷J ⊆J , since the following
initial step holds:

w ▷ (( f x)y − x( f y))
(50)
= (w ▷ f x)y + ( f x)(w ▷ y) − (w ▷ x)( f y) − x(w ▷ f y)

(45)
= (w( f )x + f (w ▷ x))y + ( f x)(w ▷ y) − (w ▷ x)( f y) − x(w( f )y + f (w ▷ y))
= (w( f )x)y − x(w( f )y) + ( f (w ▷ x))y − (w ▷ x)( f y) + ( f x)(w ▷ y) − x( f (w ▷ y)) ∈ J

for any f ∈ R and w, x, y ∈ L.
Next we check that J ▷ R = {0} and J ▷ Ū (L) ⊆J simultaneously by induction on the

degree of polynomials in J . First fix J ∈J and assume that J′ ▷ R = {0} (resp. J′ ▷ Ū (L) ⊆
J ) for any polynomial J′ ∈ J of degree not greater than J. Then for any x ∈ L and X ∈ R
(resp. X ∈ Ū (L)),

xJ ▷ X
(51)
= x ▷ (J ▷ X) − (x ▷ J) ▷ X.
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As shown previously Ū (L) ▷J ⊆ J , we have x ▷ (J ▷ X), (x ▷ J) ▷ X = 0 (resp. x ▷ (J ▷
X), (x ▷ J) ▷ X ∈J ) by the assumption, so xJ ▷ X = 0 (resp. xJ ▷ X ∈J ). As a result, it is
enough to show that (( f x)y − x( f y))U (L) ▷ R = {0} and (( f x)y − x( f y))U (L) ▷ Ū (L) ⊆J .

For any f , g ∈ R, x, y ∈ L, we have

(( f x)y − x( f y)) ▷ g
(51)
= f x ▷ (y ▷ g) − ( f x ▷ y) ▷ g − x ▷ ( f y ▷ g) + (x ▷ f y) ▷ g

(44),(45)
= f x(y(g)) − f (x ▷ y)(g) − x( f y(g)) + x( f )y(g) + f (x ▷ y)(g)
= 0,

so (( f x)y − x( f y)) ▷ R = {0}. On the other hand, if w ∈ L, then

(( f x)y − x( f y)) ▷ w
(51)
= f x ▷ (y ▷ w) − ( f x ▷ y) ▷ w − x ▷ ( f y ▷ w) + (x ▷ f y) ▷ w

(44),(45)
= f x ▷ (y ▷ w) − f (x ▷ y) ▷ w − x ▷ ( f y ▷ w) + (x( f )y + f (x ▷ y)) ▷ w

(44)
= f (x ▷ (y ▷ w)) − x ▷ f (y ▷ w) + x( f )(y ▷ w)

(45)
= 0.

Then assuming that (( f x)y − x( f y)) ▷ X ∈J for X ∈ Ū (L), we see that

(( f x)y − x( f y)) ▷ wX
(50),(51)
= ((( f x)y − x( f y)) ▷ w)X + ( f x ▷ w)(y ▷ X)

+(y ▷ w)( f x ▷ X) − (x ▷ w)( f y ▷ X)
−( f y ▷ w)(x ▷ X) + w((( f x)y − x( f y)) ▷ X)

(44)
= ( f (x ▷ w))(y ▷ X) − (x ▷ w)( f y ▷ X)

+(y ▷ w)( f x ▷ X) − ( f (y ▷ w))(x ▷ X)
+w((( f x)y − x( f y)) ▷ X) ∈J ,

as ( f x)Xy − xX( f y) ∈ J for any x, y ∈ L and X ∈ Ū (L) by the definition of J . So we also
have (( f x)y − x( f y)) ▷ Ū (L) ⊆J .

Then for any Y ∈ R (resp. Y ∈ Ū (L)), we obtain that

(( f x)y − x( f y))X ▷ Y
(51)
= (( f x)y − x( f y)) ▷ (X ▷ Y) − ((( f x)y − x( f y)) ▷ X) ▷ Y

+(x( f y ▷ X) − ( f x)(y ▷ X)) ▷ Y

+(( f y)(x ▷ X) − y( f x ▷ X)) ▷ Y = 0 (resp. ∈J )

by induction on the degree of polynomials in J , since the above elements underlined all belong
to J . Hence, the proof that J ▷ R = {0} and J ▷ Ū (L) ⊆J has completed.

For the second part, we show that the Hopf R-algebra (UR(L),∆, ε, S , ιR) with the k-linear
product ▷ satisfies conditions (14)–(20), so (UR(L), ιR,▷) is a weak post-Hopf algebroid.

Recall that UR(L) = R ⊕ Ū (L)/J , where U (L) = k ⊕ Ū (L) is the universal enveloping
algebra of the post-Lie algebra (L,▷). First we see that conditions (15)–(17) clearly hold for
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UR(L) by definitions of the product ▷ and the counit ε of UR(L). For instance, Eqs. (48), (49)
and (51) tell us that

X ▷ 1R =

0, X ∈ Ū (L)/J ,

X, X ∈ R,

so Eq. (15) holds. By the recursion formulas (50) and (51), the compatibility condition (44) for
the post-Lie-Rinehart algebra R is extended to condition (18) for UR(L).

In order to verify conditions (14), (19) and (20) for UR(L), we only need to check the situa-
tions involving elements in the base algebra R, since they already hold for the original post-Hopf
algebra U (L). For any f , g ∈ R, X, Y ∈ UR(L),

∆( f ▷ X) = ∆( f X) = f X1 ⊗R X2 = ( f ▷ X1) ⊗R (1R ▷ X2),

∆(X ▷ f ) = (X ▷ f ) ⊗R 1R = (ε(X1)X2 ▷ f ) ⊗R 1R
(15), (18)
= (X1 ▷ f ) ⊗R (X2 ▷ 1R),

so Eq. (14) holds. By induction on the degree of polynomials in UR(L), we check that

f ▷ XY
(48)
= f XY

(48)
= ( f ▷ X)(1R ▷ Y),

x ▷ f Y
(50), (45)
= f (x ▷ Y) + x( f )Y

(49)
= (x ▷ f )Y + f (x ▷ Y),

xX ▷ f Y
(51)
= x ▷ (X ▷ f Y) − (x ▷ X) ▷ f Y

(14)
= x ▷ (X1 ▷ f )(X2 ▷ Y)

−((x ▷ X1) ▷ f )(X2 ▷ Y) − (X1 ▷ f )((x ▷ X2) ▷ Y)
= (x ▷ (X1 ▷ f ))(X2 ▷ Y) − ((x ▷ X1) ▷ f )(X2 ▷ Y)

+(X1 ▷ f )(x ▷ (X2 ▷ Y)) − (X1 ▷ f )((x ▷ X2) ▷ Y)
(51)
= (xX1 ▷ f )(X2 ▷ Y) + (X1 ▷ f )(xX2 ▷ Y),

so Eq. (19) holds. Also, we have

f ▷ (X ▷ Y)
(48)
= f (X ▷ Y)

(18)
= f X ▷ Y

(48)
= f (1R ▷ X) ▷ Y,

X ▷ ( f ▷ Y)
(48)
= X ▷ f Y

(19)
= (X1 ▷ f )(X2 ▷ Y)

(18)
= (X1 ▷ f )X2 ▷ Y = X1(X2 ▷ f ) ▷ Y.

Hence, Eq. (20) also holds. □

Remark 3.21. When R = k, this result recovers [35, Theorem 2.8], which shows that for a post-
Lie algebra (g, [−,−]g,▷), its universal enveloping algebra (U (g),▷) is a post-Hopf algebra.

Now we consider an action post-Lie-Rinehart algebra (R, L = R ⊗ g, [−,−]L, ρ,▷) given in
Proposition 3.16 from a post-Lie algebra (g, [−,−]g,▷) with an action ρ : g▷ → Der(R). The
action ρ can be lifted to a module algebra action of U (g▷) on R by the universal property of
U (g▷). On the other hand, for the post-Hopf algebra (U (g),▷), there is a natural Hopf algebra
isomorphism Φ : U (g▷)→ U (g)▷, called the Oudom-Guin isomorphism [14]. Pulling back by
Φ−1, we obtain a module algebra action ⇀ of U (g)▷ on R. Then by Theorem 2.20, we have an
action post-Hopf algebroid (R ⊗U (g),∆, ε, S , ι,▷, θ) over R.
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Corollary 3.22. With the above notations, the universal enveloping algebra UR(L) of the ac-
tion post-Lie-Rinehart algebra (R, L = R ⊗ g, [−,−]L, ρ,▷) is a post-Hopf algebroid, which is
isomorphic to the action post-Hopf algebroid (R ⊗U (g),∆, ε, S , ι,▷, θ) over R.

Proof. First by Proposition 3.9, (UR(L),∆, ε, S ) is a Hopf R-algebra, since L = R ⊗ g is a
Lie R-algebra. Also by Theorem 3.20, we know that (UR(L),∆, ε, S , ι,▷) is a weak post-Hopf
algebroid.

Moreover, we have a natural identification between UR(L) and the tensor product Hopf R-
algebra R ⊗ U (g). Elements in UR(L) have the form

∑
i fixi with fi ∈ R and xi ∈ U (g), and

the post-Hopf product ▷ of UR(L) extended from the post-Lie product ▷ of L is just given
by Eqs. (35). On the other hand, an algebra anti-automorphism θ of UR(L) can be given by
(36), so that UR(L) is the action post-Hopf algebroid (R ⊗ U (g),∆, ε, S , ι,▷, θ) over R as in
Theorem 2.20. □

Given a magma algebra (V,↷), there exists a unique extended product ▷ on the tensor algebra
T (V) such that the coshuffle Hopf algebra (T (V), ·,∆cosh, S ,▷V) is a post-Hopf algebra [35,
Theorem 2.9]. Now for any linear map fV : V → Der(R), it can be extended to a Lie algebra
homomorphism from Lie(V) to Der(R). Since T (V) is the universal enveloping algebra of the
Lie algebra Lie(V), it follows that R is a T (V)-module algebra. Then using the Hopf algebra
isomorphism K : T (V)▷V → T (V), which is called Gavrilov’s K-map ([2, Theorem 3] ), we
obtain the following T (V)▷V -module algebra action ⇀ on R recursively given by:

v ⇀ f = fV(v)( f ),
vv1 · · · vn ⇀ f = v ⇀ (v1 · · · vn ⇀ f ) − (v ▷V v1 · · · vn) ⇀ f

for any f ∈ R and v, v1, . . . , vn ∈ V . Then by Theorem 2.20, we obtain the action post-Hopf
algebroid over R,

TR(V) B (R ⊗ T (V), ι,▷V , θ).

By Corollary 3.22, we obtain the following characterization of the universal enveloping al-
gebra of the free post-Lie-Rinehart algebra.

Corollary 3.23. The universal enveloping algebra of the free post-Lie-Rinehart algebra gener-
ated by a magma algebra (V,↷) together with a linear map fV : V → Der(R) given in Theorem
3.18 is the action post-Hopf algebroid TR(V) = (R ⊗ T (V), ι,▷V , θ) over R.

Example 3.24. As shown in Example 3.19, the free post-Lie-Rinehart algebra generated by the
triple (kOT ,↷, fkOT ) is the action post-Lie-Rinehart algebra

PostLR(kOT ) = (R,R ⊗ Lie(kOT ), [−,−]R⊗Lie(kOT ), ρkOT ,▷kOT ).

According to Corollary 3.23, the universal enveloping algebra of PostLR(kOT ) is the action
post-Hopf algebroid TR(kOT ) = (R ⊗ T (kOT ), ι,▷kOT , θ) over R, where the post-Hopf algebra
(T (kOT ),▷kOT ) is the universal enveloping algebra of the free post-Lie algebra PostLie(kOT ),
and its sub-adjacent Hopf algebra T (kOT )▷kOT is the Grossman-Larson Hopf algebra of ordered
planar forests.
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4. Post-Lie-Rinehart algebras and post-Hopf algebroids for numerical analysis

In this section, we detail the natural post-Lie-Rinehart algebras and post-Hopf algebroid
structures appearing in numerical analysis.

LetM be a smooth manifold equipped with a frame basis (Ed), defined globally for clarity.
The smooth vector fields X(M) are naturally equipped with the Jacobi bracket ⟦−,−⟧J and the
(curvature-free) Weitzenböck connection,

Y ▷ X =
∑

i

Y[xi]Ei, X = xiEi,

where we use the Einstein summation convention. Let us further assume that the connection ▷
has constant torsion ∇T = 0, or equivalently that M is locally a Lie group. In this case, the
torsion defines the bracket:

[X, Y] = −T (X, Y) = xiy j⟦Ei, E j⟧J, X = xiEi, Y = y jE j.

The two brackets are linked by the identity

⟦X, Y⟧J = [X,Y] + X ▷ Y − Y ▷ X.

Then, the connection algebra (X(M), [−,−],▷) is a post-Lie algebra [41].
As a specific application of Theorem 3.20 and Theorem 2.13, we have the following result.

Proposition 4.1. The tuple (C∞(M),X(M), [−,−], ρ,▷) is a post-Lie-Rinehart algebra and its
universal enveloping algebra (UC∞(M)(X(M)), ·,∆cosh,▷) is a weak post-Hopf algebroid over
C∞(M), where the anchor map ρ is given by

ρ(X)(ϕ) = X[ϕ], X = xiEi, ϕ ∈ C∞(M).

Moreover, (UC∞(M)(X(M)), ∗▷,∆cosh) is the associated Grossman-Larson bialgebroid.

We rely on specific sub-structures of the universal enveloping algebra UC∞(M)(X(M)) in nu-
merical analysis. Let F ∈ X(M) be a given smooth Lipschitz vector field. Then, F generates a
post-Lie sub-algebra (XF(M), [−,−],▷):

XF(M) = SpanR(F, F ▷ F, [F, F ▷ F], (F ▷ F) ▷ F, F ▷ (F ▷ F), . . . ).

This yields the Hopf subalgebras (U (XF(M)), ·,∆cosh) and (U (XF(M)), ∗▷,∆cosh), commonly
represented with ordered planar forests [37]. Analogously, let EndF(X(M)) be the space of
endomorphisms on X(M) generated from F, ▷ and [−,−]:

EndF(X(M)) = SpanR(id, F ▷ −, − ▷ F, [−, F ▷ F], [F,− ▷ F], [F, F ▷ −], (− ▷ F) ▷ F, . . . ).

Let C∞F (M) be the subalgebra of C∞(M) generated by the following functions, with elements
called aromas in numerical analysis [12, 28, 6]:

ui1
1 (Ei2) · · · u

in−1
n−1(Ein)u

in
n (Ei1), uk ∈ EndF(X(M)), uk(X) = ui

k(X)Ei.

Following Corollaries 3.22 and 2.19, we obtain the following action Hopf algebroid structures
using the anchor map ρ.
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Theorem 4.2. The tuple (C∞F (M),C∞F (M)⊗XF(M), [−,−], ρ,▷) is an action post-Lie-Rinehart
algebra, with elements called aromatic vector fields. Its universal enveloping algebra is the
action post-Hopf algebroid (C∞F (M)⊗U (XF(M)), ·,∆cosh,▷, θ) over C∞F (M), with the associated
Grossman-Larson Hopf algebroid (C∞F (M) ⊗U (XF(M)), ∗▷,∆cosh, θ) over C∞F (M).

Remark 4.3. Let Div : X(M) → C∞(M) be the divergence operator associated to the connec-
tion ▷:

Div(X) = Ei[xi], X = xiEi ∈ X(M).
The divergence restricts to aromatic vector fields Div : XF(M) → C∞F (M), but aromas are not
in general all generated by the divergence: Div(XF(M)) ⊊ C∞F (M), as observed in [18].

Let the flow φt(y0), t ∈ R be the solution of the initial value problem onM:

(53) y′(t) = F(y(t)), y(0) = y0 ∈ M.

The Taylor expansion of the pullback by the exact flow of (53) is described by the Grossman-
Larson exponential:

φ∗t ϕ = exp∗▷(tF) ▷ ϕ, exp∗▷(X) =
∞∑

n=0

1
n!

X∗▷n, ϕ ∈ C∞(M).

Most existing numerical flows ψt for solving (53) have Taylor expansions that rewrite with
formal series over the Hopf algebra U (XtF(M)), that we denote by U (XtF(M)). This is the
case for Lie-group methods [27], and, in particular, for the Lie-Euler method, that follows the
geodesics for ▷:

(54) ψt(y0) = expy0
(tF(y0)).

The Taylor expansion of the pullback by Lie-group methods is typically expressed using the
concatenation product. For instance, the Taylor expansion of the Lie-Euler flow (54) is de-
scribed by the concatenation exponential

ψ∗t ϕ = exp·(tF) ▷ ϕ, exp·(X) =
∞∑

n=0

1
n!

X·n, ϕ ∈ C∞(M),

where the concatenation product acts on functions as the following differential operator

(Xn · · · X1)[ϕ] = xin
n . . . xi1

1 Ein[. . . Ei1[ϕ] . . . ], ϕ ∈ C∞(M).

A method ψt is of order p if the Taylor expansions of φ∗t ϕ and ψ∗t ϕ match for all terms of order
at most p. The Lie-Euler method (54) is of order one only for instance.

Remark 4.4. The Grossman-Larson product ∗▷ corresponds to the composition of flows, in the
sense that

(ψ2
t ◦ ψ

1
t )∗ϕ = (S 2

t ∗▷ S 1
t ) ▷ ϕ, ψk∗

t ϕ = S k
t ▷ ϕ, S k

t ∈ U (XtF(M)).

The description of the composition of flows in simpler cases has been extensively studied in the
numerical literature using tree structures and Butcher series for the description of the Grossman-
Larson Hopf algebra. In particular, the dual of the Grossman-Larson Hopf algebra T (kOT )▷kOT

is isomorphic to the Munthe-Kaas-Wright Hopf algebra [44, 15]. In the pre-Lie context, the
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dual of the action pre-Hopf algebroid of aromatic forests [12, 28] is isomorphic to the Butcher-
Connes-Kreimer Hopf algebroid [6, 8].

Let us now define aromatic numerical flows by relying on the post-Hopf algebroid structure
of C∞F (M) ⊗ U (XF(M)) (see also [43, 6]). Note that the differential operators defined using
functions in C∞F (M) do still act on all smooth functions in C∞(M).

Definition 4.5. A flow ψt for solving (53) is aromatic if the Taylor expansion of the pullback
ψ∗t ϕ is a formal series in C∞tF(M) ⊗U (XtF(M)):

ψ∗t ϕ = S t ▷ ϕ, S t ∈ C
∞
tF(M) ⊗U (XtF(M)), ϕ ∈ C∞(M).

Example 4.6. Aromatic methods are straightforwardly obtained from Lie-group methods by
substituting F = f iEi with an aromatic vector field tF̂t ∈ C

∞
tF(M)⊗XtF(M). For instance, apply

the Lie-Euler method (54) with the preprocessed aromatic vector field

tF̂t = tF +
t2

2
F ▷ F −

t3

3
(F ▷ F) ▷ F −

t3

12
Ei[F[ f i]]F +

t3

6
[F, F ▷ F].

Then, the resulting flow ψt is aromatic.

The application of aromatic flows in geometric numerical integration is better understood
through backward error analysis [23, 37, 45]. Under technical assumptions satisfied by large
classes of numerical methods, a numerical flow may be understood as the exact flow of a formal
modified differential equation y′ = F̃t(y) driven by a modified vector field tF̃t, that is,

ψ∗t ϕ = exp∗▷(tF̃t) ▷ ϕ, tF̃t ∈ C
∞
tF(M) ⊗U (XtF(M)), ϕ ∈ C∞(M).

The geometric properties of the numerical method ψt are read directly on F̃t. A case of im-
portance in the literature lies in divergence-free features Div(F) = Div(F̃t) = 0 and is linked
with volume-preserving flows. In this context, one is interested in the creation of consistent
divergence-free numerical methods. The design of such methods is an open problem of numeri-
cal analysis, even in the pre-Lie context. It is showed in [28, 13] that non-exact numerical flows
described by U (XtF(M)) cannot satisfy Div(F̃t) = 0, so that the use of aromatic numerical
flows is crucial to the design of divergence-free methods.

Application 4.7. While the creation of exact divergence-free methods is an open problem,
one can create pseudo-divergence-free methods by using the post-Hopf algebroid C∞F (M) ⊗
U (XF(M)). In particular, a calculation yields that the aromatic method from Example 4.6
satisfies (at least formally) third order of preservation: Div(F̃t) = O(t3). In contrast, the original
Lie-Euler method (54) satisfies only the first order estimate Div(F̃t) = O(t).

Given an aromatic flow, the computation of the associated modified vector field F̃t is not
direct and relies on the so-called substitution law. In the pre-Lie case, it is described with non-
planar aromatic trees in [6, 8] and the divergence-free modified aromatic vector fields F̃t are
fully characterised in [32, 31, 13]. The extension of these results to the post-Lie context and the
design and study of convenient algebraic structures for representing aromatic vector fields and
aromas are key to the creation of divergence-free aromatic numerical methods and are matter
for future work.
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