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Abstract

The aromatic bicomplex is an algebraic tool based on aromatic Butcher trees and used
in particular for the explicit description of volume-preserving affine-equivariant numerical
integrators. The present work defines new tools inspired from variational calculus such as
the Lie derivative, different concepts of symmetries, and Noether’s theory in the context of
aromatic forests. The approach allows to draw a correspondence between aromatic volume-
preserving methods and symmetries on the Euler-Lagrange complex, to write Noether’s
theorem in the aromatic context, and to describe the aromatic B-series of volume-preserving
methods explicitly with the Lie derivative.
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1 Introduction
The search for an affine-equivariant volume-preserving method is a central open problem of
geometric numerical integration. Such an integrator takes the form of an aromatic Butcher-
series method [38]. While Butcher-series describe the Taylor expansion of the flow of ordinary
differential equations and of a large class of their numerical approximations [10, 21] (see also
the textbooks [20, 11, 12] and the review [37]), aromatic B-series were introduced in [24, 16]
specifically for the study of volume preservation (see also [26, 36, 38, 6, 18, 7, 33]) as B-series
methods cannot preserve volume in general. We mention that finding a volume-preserving
aromatic B-series method is the first step toward the creation of an exotic aromatic S-series
method [30, 31, 27, 8, 29] that exactly preserves the invariant measure of ergodic stochastic
differential equations as the algebraic conditions are similar (see, for instance, [1]).

The recent work [28] introduces new tools from the calculus of variations, such as the aromatic
bicomplex (see also [2, 3, 41, 35] and references therein), and these tools yield valuable insight of
the form of the Taylor expansion of a volume-preserving methods. In particular, it shows that
aromatic Runge-Kutta methods do not preserve volume in general, while aromatic exponential
methods are promising starting points. To further understand the form of a volume-preserving

1Univ Rennes, INRIA (Research team MINGuS), IRMAR (CNRS UMR 6625) and ENS Rennes, France.
Adrien.Laurent@INRIA.fr.

1



method, the present work defines new tools on the aromatic bicomplex such as the Lie derivative,
different concepts of symmetries, and Noether’s theory in the aromatic context.

Let τ , γ be linear combinations of trees, the Lie derivative of γ in the direction of τ is

Lτ γ �
d

dε

���
ε�0

rp � ετq � γs, (1.1)

where � is the substitution law of B-series [20, 15, 13] (see also [6, 9] for the substitution
of aromatic and exotic aromatic series). The Lie derivative is also the pre-Lie version of the
substitution law on B-series. It appears under the name pre-Lie insertion product in [44, 34, 45]
for the study of the freeness of the pre-Lie insertion algebra. In the calculus of variations, the
Lie-derivative defines symmetries, that are perturbations that leave the input unchanged at first
order. This leads to the Noether theorem, that draws links between symmetries and conservation
laws.

This paper gives a general definition of the Lie derivative on aromatic forms by using the
framework given by the aromatic bicomplex. This allows us to define symmetries, to write an
aromatic version of the Noether theorem, and to draw further links between variational calculus
and numerical volume-preservation. We give a concise introduction in Section 2 of the aromatic
bicomplex and its properties, while Section 3 is devoted to the general definition of the Lie
derivative, of the different symmetries, and the statement of the aromatic Noether theorem. We
then adapt the new approach and results to the study of volume preserving methods.

2 Preliminaries on the aromatic bicomplex
In this section, we give a concise definition of the necessary tools and concepts required for the
definition of the aromatic Euler-Lagrange complex. The notations and vocabulary are chosen
to match with the literature of variational calculus, as we shall draw bridges between numerical
analysis and variational calculus in Section 3. We skip the technical details on the Euler and
homotopy operators and refer the reader to [28] for more details.

2.1 Aromatic forms and their derivatives

While aromatic trees represent vector fields, we use aromatic forests to represent specific classes
of homogeneous tensors and forms. This allows in particular to translate the technicalities of
the infinite jet bundle J8pRdq into straightforward combinatorics.

Definition 2.1. Let V be a finite set of nodes, that we split into vertices V 
 and covertices V �,
and E � V � V a set of oriented edges. The covertices are numbered from 1 to p, while the
vertices are indistinguishable. Each node in V is the source of exactly one edge, except the roots
that have no outgoing edges, that we order and number from 1 to n. Any connected component
of such a graph either has exactly one root, and is called a tree, or does not have a root, and is
called an aroma. We call aromatic forests such graphs, up to equivalence of graphs that preserve
the numbering of the covertices and the roots. We write Fn,p the set of aromatic forests with n
roots and p covertices and Fn � Fn,0. The number of nodes |γ| of an aromatic forest γ is called
the order of γ.

In the spirit of differential geometry, we alternatize aromatic forests to obtain aromatic forms
using the wedge projection operator.
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Definition 2.2. For γ P Fn,p, let S

n (resp. S�

p) be the set of permutations of the roots of γ
(resp. the covertices of γ). The root and covertex wedges of γ are

^
γ �
1
n!

¸
σPS


n

εpσqσγ, ^�γ �
1
p!
¸

σPS�
p

εpσqσγ,

where εpσq is the signature of the permutation σ. The wedge is ^ � ^
^� � ^�^
. We extend
the wedge on SpanpFn,pq by linearity and we gather aromatic forms in Ωn,p � ^SpanpFn,pq
and Ωn � Ωn,0.

Example. Let γ1 � P F2, γ2 � 1

2

P F0,2, γ3 � 1 2 P F2,2, then

^γ1 �
1
2p � q P Ω2, ^γ2 � 0, ^γ3 �

1
2p

1 2 � 2 1 q.

The operations on the variational bicomplex make use of differentiations in the infinite jet
bundle. In the aromatic context, we replace the differentiations by the operations of grafting
and replacing nodes. The horizontal derivative is defined using grafting operations, while the
vertical derivative uses the replacing operation. The sign change in the definition of the total
derivative is explained in [28, Rk. 2.8]. We mention that the horizontal and vertical derivatives
were used in a different context on Ω1 � SpanpF1q respectively in [16, 24] for dH and in [18]
for dV .

Definition 2.3. Let γ P Fn,p, r a root of γ, and u P V (possibly equal to r), then DrÑuγ returns
a copy of γ where the node r is now a predecessor of u. The operator Drγ �

°
uPV DrÑuγ grafts r

to all possible nodes. Let γ P Fn,p and v P V 
, then γvÑ k is the forest obtained by replacing the
node v by a new covertex k . Similarly, γ k Ñτ is the linear combination of forests obtained by
replacing the covertex k by the tree τ and grafting the predecessors of k to the nodes of τ in
all possible ways. The horizontal, vertical, and total derivatives of γ P Fn,p are

dHγ � Drnγ, dV γ � ^
¸

vPV 


γvÑ p�1 , dγ � p�1qn�pdHγ � dV γ.

We extend dH and dV by linearity into dH : Ωn,p Ñ Ωn�1,p and dV : Ωn,p Ñ Ωn,p�1, with the
convention dHγ � 0 if γ P Ω0,p.

Example. Consider γ1 � P Ω1, γ2 � ^ P Ω2, and γ3 � ^ 1 P Ω2,1, then, we find

dHγ1 � , dV γ1 � 1 ,

dHγ2 �
1
2

�
� � �

	
, dV γ2 � ^ 1 �^

1
�^ 1 ,

dHγ3 �
1
2

�
1

�
1
� 1 � 1

	
, dV γ3 � ^ 2 1 �

1
2p

2 1 � 1 2 q.

The derivatives on aromatic forms naturally form complexes as justified by the following
result. Note that the horizontal and vertical derivatives commute, while their equivalents in
variational calculus anticommute [3].

Proposition 2.4 ([28]). The derivatives satisfy

d2
H � 0, d2

V � 0, dV dH � dHdV , d2 � 0.
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2.2 The aromatic bicomplex and the Euler-Lagrange complex

The object of ultimate interest in variational calculus is the Euler-Lagrange complex, which
requires defining the augmented bicomplex first. The interior Euler operator I is given for an
aromatic form γ P Ω0,1 by the combination of forms obtained by unplugging all the predecessors
of the covertex of γ, plugging back the predecessors on all the vertices in all possible ways, and
multiplying by �1 if the number of predecessors is odd. For instance, we have

I
1
� 0, I

1

�
1

, I
1
�

1

, I
1
� �

1

, I
1
� �

1

.

For the sake of simplicity, we refer to [28, Sect. 4.1] for the precise definition of I : Ω0,p Ñ Ω0,p.
The variational derivative δV � I � dV and the interior Euler operator I satisfy

I2 � I, IdH � 0, δ2
V � 0.

In particular, I is a projection on Ip � IpΩ0,pq, the aromatic equivalent of the space of source
forms.

The augmented aromatic bicomplex is the diagram drawn in Figure 1 that displays the
interactions between the different spaces of aromatic forms. The aromatic bicomplex can be
seen as a generalised subcomplex of the variational bicomplex [2, 3] that focuses on specific
classes of homogeneous forms and is fully independent of the dimension of the problem (see [28,
Rk. 2.8]).

...
...

...
...

. . . Ω2,2 Ω1,2 Ω0,2 I2 0

. . . Ω2,1 Ω1,1 Ω0,1 I1 0

. . . Ω2 Ω1 Ω0

0 0 0

dH dH

dV

dH

dV dV

I

δV

dH dH

dV

dH

dV dV

I

δV

dH dH

dV

dH

dV dV

δV

Figure 1: The augmented aromatic bicomplex.

The bottom row of the aromatic bicomplex is similar to the De Rham complex. It extends
into the edge complex (2.1), called the aromatic Euler-Lagrange complex.

. . . Ω2 Ω1 Ω0 I1 I2 . . .
dH dH dH δV δV δV (2.1)

We introduce some vocabulary to further motivate the importance of the aromatic Euler-
Lagrange complex. While we call aromatic forms the elements of Ωn,p, the space Ω1 spanned
by aromatic trees represent both vector fields and differential forms in variational calculus, so
that we shall call the elements of Ω1 aromatic vector fields or aromatic forms depending on
the context. The elements of Ω0 spanned by multi-aromas represent Lagrangians in variational
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calculus and volume forms in the context of volume-preservation, so that we call its elements aro-
matic Lagrangians. The source forms in I1 represent differential equations. The Euler-Lagrange
complex (2.1) is the rigorous implementation of the following diagram (see [3]).

. . . vector fields Lagrangians diff. eq. . . .curl div Euler-Lagrange Helmholtz

The crucial property of the aromatic bicomplex is its exactness, that is, the kernel of a map
in the complex coincides with the image of the preceding map. For instance in the context
of variational calculus [3], a vector field is a curl if and only if it is divergence-free, and some
differential equations are the Euler-Lagrange equations associated to a Lagrangian if and only
if they are in the kernel of the Helmholtz operator1. We refer the reader to [28] for the detailed
proof of the exactness of the augmented aromatic bicomplex and for the explicit expressions of
the associated homotopy operators.

Theorem 2.5 ([28]). The horizontal and vertical sequences of the aromatic Euler-Lagrange
complex (2.1) and the augmented aromatic bicomplex are exact, that is, there exist homotopy
operators

hH : Ωn,p Ñ Ωn�1,p, hV : Ωn,p Ñ Ωn,p�1, hH : Ω0,p Ñ Ω1,p, hV : Ip Ñ Ip�1,

such that the following identities hold:

γ � pdHhH � hHdHqγ, γ P Ωn,p, n ¥ 1, p ¥ 0, (2.2)
γ � pdV hV � hV dV qγ, γ P Ωn,p, n ¥ 0, p ¥ 1, (2.3)
γ � pdHhH � hV δV qγ, γ P Ω0,

γ � pI � dHhHqγ, γ P Ω0,p, p ¥ 1, (2.4)
γ � pδV hV � hV δV qγ, γ P Ip, p ¥ 1.

In particular, if one is interested in the description of all of the aromatic vector fields γ P Ω1
of vanishing divergence dHγ � 0, then Theorem 2.5 states that there exists an aromatic form η
such that γ � dHη P ImpdHq. The problem of finding a volume-preserving numerical method
translates via backward error analysis [20] into the precise description of KerpdH |Ω1q, so that the
Euler-Lagrange complex becomes a strong tool in this context. We further describe KerpdH |Ω1q
using symmetries and Noether’s theorem.

3 Noether’s theory on the aromatic bicomplex
In this section, we define the Lie derivative of aromatic forms, study its properties, and use it
to rewrite the Noether theorem in the context of the aromatic bicomplex. We then apply these
new tools in the context of volume-preservation.

3.1 The aromatic Lie derivative

In the spirit of the differential geometry literature [32], we use a Cartan formula to define the
aromatic Lie derivative on aromatic forms. We then present the different properties of the Lie
derivative.

1This characterization is often called the inverse problem for Lagrangian mechanics in the literature.
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Definition 3.1. For γ P Fn,p, the contraction of γ in direction of τ P F1 is

iτ γ � pγ p Ñτ ,

where iτ γ � 0 if p � 0. We extend the contraction in iτ : Ωn,p Ñ Ωn,p�1 for τ P Ω1 by linearity.
For an aromatic form γ P Ωn,p and an aromatic vector field τ P Ω1, the aromatic Lie derivative
of γ in the direction of τ is given by the Cartan formula:

Lτ γ � pdiτ � iτ dqγ. (3.1)

Thanks to the homotopy identities of Theorem 2.5, the Lie derivative satisfies the following
identities.

Proposition 3.2. For τ P Ω1, the Lie derivative Lτ γ : Ωn,p Ñ Ωn,p satisfies

Lτ γ � pdV iτ � iτ dV qγ, γ P Ωn,p, (3.2)
Lτ γ � pdHHτ �Hτ dHqγ, γ P Ωn, n ¡ 0,

Lτ γ � pdHHτ � iτ δV qγ, γ P Ω0,

where Hτ � Lτ hH and Hτ � LτhH are the Lie homotopy operators.

Proof. As dH and iτ commute, replacing d � p�1qn�pdH � dV in (3.1) gives (3.2). We then
deduce from the expression (3.2) that Lτ γ : Ωn,p Ñ Ωn,p. For n ¡ 0 and p � 0, the horizontal
homotopy identity (2.2) yields

Lτ γ � iτ dV γ � iτ dV dHhHγ � iτ dV hHdHγ � dHHτ γ �Hτ dHγ,

where we used that dH commutes with iτ and dV and that dV commutes with hH . Similarly,
the augmented horizontal homotopy identity (2.4) yields the expression of Lτ on Ω0.

Remark 3.3. The vertical homotopy operator is linked to the contraction operation by the
identity i γ � |γ|hV γ. Thus, equations (2.3) and (3.2) yield

L γ � |γ| γ.

The equivalent of this property is used in [39] with planar forests to obtain the expansion of the
Grossman-Larson exponential.

The Lie derivative naturally realises a Lie algebra structure.

Proposition 3.4. For τ1, τ2 P Ω1, define the commutator on aromatic vector fields by

Jτ1, τ2K :� Lτ1τ2 � Lτ2τ1.

Then, pΩ1, J., .Kq is a Lie algebra and L is a Lie algebra representation, that is, for γ P Ωn,

rLτ1 , Lτ2sγ :� Lτ1Lτ2γ � Lτ2Lτ1γ � LJτ1,τ2Kγ.

Proof. The Jacobi identity for the bracket J., .K is a consequence of the pre-Lie property of the
Lie derivative [44, 34, 45], extended straightforwardly to aromatic trees. Define for v P V a node
of γ, Lv

τ γ � iτ pγvÑ 1 q. Then, we observe

Lτ1Lτ2γ �
¸

v,wPV
v�w

Lw
τ1Lv

τ2γ � LLτ1 τ2γ.

As Lw
τ1 and Lv

τ2 commute, a similar expression for Lτ2Lτ1γ yields the result.
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Thanks to equation (3.2), the classical geometric properties of the Lie derivative extend to
aromatic forms.

Proposition 3.5. For τ P Ω1, the Lie derivative Lτ commutes with the horizontal and vertical
derivatives dH and dV . In particular, we have rLτ , ds � 0. Moreover, for µ P Ω0, τ P Ω1,
and γ P Ωn, the following product rule holds,

Lτ pµγq � µpLτ γq � pLτ µqγ.

Proof. The Lie derivative commutes with dH as dH commutes with dV and iτ . Proposition (2.4)
yields

Lτ dV � dV iτ dV � dV Lτ .

The product rule is a consequence of the product rule for dV , that is,

dV pµγq � µpdV γq � pdV µqγ.

Hence the result.

The two Hopf algebra structures on standard B-series are associated to the composition and
substitution laws [17, 15, 13] (see also [6, 8, 43]). The associated pre-Lie laws on Ω1 are the
grafting product, given for τ , γ P Ω1, rτ the root of τ , and Vγ the vertices of γ by

τ ñ γ �
¸

vPVγ

DrτÑvpτγq,

and the insertion product [44, 34, 45], that coincides with the Lie derivative Lτ γ. We mention
that the dual of the grafting product is also called Lie derivative (though it differs from Lτ γ)
in [19] (see also [20, Sec. IX.9.1]) and is used for computing the modified equation of a B-series
method in terms of trees. The two pre-Lie structures interact according to the following identity,
which is the pre-Lie version of the compatibility relation between the laws of composition and
substitution of aromatic B-series. For τ1, τ2 P Ω1 and γ P Ωn, we have

Lτ1pτ2 ñ γq � pLτ1τ2qñ γ � τ2 ñ pLτ1γq. (3.3)

Remark 3.6. Thanks to [18], it is known that Ω1 is not freely generated by the operationsñ and
dH . For the elements of Ωn that can be described by the operations ñ, dH , and concatenation,
an alternative expression of the Lie derivative is obtained by replacing in each term one node
by τ in all possible ways. For example, the aromatic Lagrangian satisfies

� dHp ñ q � ñ dH , Lτ � dHpτ ñ q � dHp ñ τq � τ ñ dH � ñ dHτ.

The substitution law � of aromatic vector fields can be rewritten in terms of the Lie derivative
in the spirit of [42] by using the pre-Lie structure of the Lie derivative [44, 34, 45]. We first
extend L on UpΩ1q, the universal enveloping algebra (that is, the symmetric tensor algebra)
of Ω1 over the base field R equipped with the symmetric product � and the shuffle coproduct ∆.
Monomials in UpΩ1q are also called clumped forests in [9] (see also [6]), and in particular we
have in UpΩ1q:

p q � p q �
1
2p q b p q �

1
2p q b p q � p q � .
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We extend the Lie derivative for τ1, . . . , τn, γ P Ω1 by

Lτnb���bτ1γ �
¸

v1,...,vnPV
vi�vj

Lvn
τn

. . . Lv1
τ1 γ,

where Lv
τ � iτ pγvÑ 1 q and V is the set of vertices of γ. We then extend the Lie derivative Lτ γ

for τ , γ P UpΩ1q using the Guin-Oudom process from [42, Prop. 2.7]: there exists a unique
extension of the Lie derivative satisfying

L1γ1 � γ1, Lτbγ2γ1 � Lτ Lγ2γ1 � LLτ γ2γ1, Lγ3pγ1 � γ2q � pL
γ
p1q
3

γ1q � pLγ
p2q
3

γ2q,

where τ P Ω1, γ1, γ2, γ3 P UpΩ1q and we use Sweedler’s notation. This allows us to rewrite
the substitution in terms of the Lie derivative and the concatenation exponential. Note that
equation (1.1) is straightforwardly derived from the following result.

Proposition 3.7. Let τ , γ P Ω1 and ε ¡ 0, then the perturbation of γ by ετ is

p � ετq � γ � Lexppετqγ, exppετq � 1� ετ �
ε2

2 τ � τ �
ε3

3! τ � τ � τ � . . .

Proof. Let τ P Ω1, γ P F1, then the substitution rewrites by definition as

τ � γ �
1

N !LτN γ �
1

N !Lτ �N γ,

where N is the number of vertices of γ. As is the neutral element for substitution, we find

p � ετq � γ �
1

N !Lp �ετq�N γ �
1

N !

Ņ

k�0

�
N

k



εkL �N�k�τ �kγ. �

1
k!

Ņ

k�0
εkLτ �kγ.

As Lτ �M γ � 0 if M ¡ N , we obtain the result by linearity.

3.2 Symmetries and divergence symmetries

The Lie derivative allows us to define the concepts of symmetries and divergence symmetries.

Definition 3.8. The aromatic vector field τ P Ω1 is a symmetry for the aromatic form γ
if Lτ γ � 0. If there exists an aromatic form η such that Lτ γ � dHη, we say that τ is a
divergence symmetry for γ.

The simplest symmetries are also called solenoidal [28]. They are the object of ultimate
interest in numerical volume-preservation.

Definition 3.9. An aromatic vector field τ P Ω1 is solenoidal if it is a symmetry for the aromatic
Lagrangian .

Thanks to the exactness of the aromatic bicomplex (see Theorem 2.5), the set of solenoidal
forms is dHpΩ2q. In particular, the simplest examples of solenoidal forms are

2dH ^ � � � � ,

2dH ^ � � � � � � ,

8



2dH ^ � � 2 � � 2 � � ,

2dH ^ � � � � � � .

As the complexity of the calculation increases rapidly with the order, there is no known example
of symmetry that is not solenoidal at the present time.

Let us state the aromatic formulation of the first variational formula, a central tool in the
proof of Noether’s theorem.
Proposition 3.10 (First variational formula). Let γ P Ω0 (respectively γ P Ip), then there exists
an aromatic form η P Ω1,1 (respectively η P Ω1,p�1) such that

dV γ � δV γ � dHη. (3.4)

In particular, let τ P Ω1 and γ P Ω0, then there exists η P Ω1 such that

Lτ γ � iτ δV γ � dHη. (3.5)

Proof. Let γ P Ω0 or γ P Ip and let ω � dV γ. As ω � Iω P KerpIq, by horizontal exactness of
the aromatic bicomplex (Theorem 2.5), there exists η such that

dV γ � ω � Iω � pω � Iωq � Iω � dHη.

Applying the contraction iτ to (3.4) yields (3.5) as iτ and dH commute.

A first application of the first variational formula, in particular of equation (3.5), is that
any τ P Ω1 is a divergence symmetry for γ P KerpδV |Ω0q � dHpΩ1q. In particular, solenoidal
forms (and more generally symmetries) are divergence symmetries. The elements with up to
three nodes in dHpΩ1q are spanned by

t , � , � , � � , � 2 ,

� � , � , � 2 u

An alternative way to produce symmetries is given by the followingresult, a corollary of
Propositions 3.4 and 3.5.
Proposition 3.11. If τ1 P Ω1 is a divergence symmetry for γ P Ω0, then for any τ2 P Ω1, Jτ1, τ2K
is a divergence symmetry for γ. If τ1 is a symmetry for γ, then τ1 is a symmetry for Lτ2γ if
and only if Jτ1, τ2K is a symmetry for γ.
Remark 3.12. As the number of aromatic trees grows fast with the number of nodes, one is often
interested in finding symmetries for specific differential systems. Let f : Rd Ñ Rd be a smooth
vector field, and F be the elementary differential map (see [28]). We call f -symmetry for γ an
aromatic vector field τ P Ω1 such that F pLτ γqpfq � 0, and τ is f-solenoidal in the specific case
where γ � . In particular, if we assume that divpfq � 0, then τ � � is a f -symmetry
for . The assumption divpfq � 0 does not create new f -solenoidal vector fields [28], but it does
create new f -symmetries. In particular, a f -solenoidal aromatic vector field with divpfq � 0 is
a f-symmetry of any aroma γ P Ω0 with a 1-loop. For example, τ � � is a f -symmetry

for , , ,... The use of specific vector fields f gives rise to degeneracies, which makes it
easier to find f -symmetries. We cite in particular the work [7, Sec. 4] that uses such degeneracies
with f quadratic.
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3.3 The aromatic Noether theorem

The Noether theorem, published in the paper Invariante Variationsprobleme by Emmy Noether
in 1918 (see the english translation [40]), draws an explicit link between conservation laws and
symmetries in the context of variational calculus.

Definition 3.13. The aromatic vector field τ P Ω1 is a generator of a conservation law η P Ω1
for the source form γ P I1 if iτ γ � dHη.

We rewrite Noether’s theorem in the context of aromatic forms.

Theorem 3.14 (Noether’s theorem). Consider an aromatic Lagrangian γ P Ω0 and an aromatic
vector field τ P Ω1. Then, τ is a divergence symmetry of γ if and only if τ is the generator of a
conservation law for δV γ.

Theorem 3.14 is a direct consequence of the first variational formula (3.5). In the context
of variational calculus, a symmetry of the Lagrangian exactly corresponds to the preservation
of a quantity, which typically leads to superfluous degrees of freedom (see, for instance, the
textbooks [2, 4, 5]).

Example. Let γ P dHpΩ1q, then as dH and Lτ commute, any aromatic vector field τ is a
divergence symmetry for γ. The associated conservation law is η � 0.

Remark 3.15. An alternate formulation of Theorem 3.14 with source forms is the following.
Define the natural Lie derivative on Ip by L6

τ � ILτ . Assume that γ P I1 satisfies δV γ � 0
(i.e. , γ is variational), then the aromatic vector field τ P Ω1 is a symmetry for γ if and only
if δV iτ γ � 0. This formulation of the Noether theorem is a consequence of the first variational
formula (3.5) and the identities

L6
τ γ � pδV iτ � Iiτ δV qγ, δV Lτ γ � L6

τ dV γ.

3.4 Application to numerical volume-preservation

The search for a volume-preserving integrator in the form of an aromatic B-series method,
or equivalently of an affine-equivariant method [36, 38, 29], is an important open question of
geometric numerical integration. It is known that there is no volume-preserving B-series method
except the exact flow [16, 24], but the question for aromatic B-series methods is still open.
We refer to the recent works [6, 7, 14, 28] for different approaches to the conjecture. In this
subsection, we apply the results on the Lie derivative, the symmetries, and the Noether theorem
in the context of volume-preservation, and we rewrite the numerical open questions in a purely
algebraic manner.

We denote Ω1 the set of formal series of elements of Ω1 graded by the number of nodes
of the aromatic trees, also called aromatic B-series. The previous results presented in this
paper extend straightforwardly to aromatic B-series. Thanks to [28, Thm. 4.17], the aromatic
B-series of a consistent volume-preserving integrator essentially2 takes the form of the following
substitution p � τq � e, where τ P Ω1 is a formal series of solenoidal forms and e P Ω1 is the
standard B-series of the exact flow of y1 � fpyq (see [20, Chap. III]). According to Proposition 3.7,

2In the numerical context, the vector field of the ordinary differential equation of interest is assumed to be
divergence-free, so that the aromas with a node linked to itself, such as , do not appear in the formal series. It
was shown in [28] that adding this degeneracy condition does not create new solenoidal forms, so that we do not
lose any generality by working on Ω1 here.
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the problem of volume-preservation then boils down to finding an aromatic B-series method (or
class of methods) that has the form (3.6). Note that choosing τ � 0 in equation (3.6) yields the
exact flow e, which is the only volume-preserving B-series method [16, 24].

p � τq � e � Lexppτqe (3.6)

� e� Lτ e�
1
2pL

2
τ � LLτ τ qe

�
1
6pL

3
τ � 2Lτ LLτ τ � LLτ τ Lτ � LLLτ τ τ � LL2

τ τ qe� . . .

Remark 3.16. One is also interested in finding numerical methods that preserve modified mea-
sures. For quadratic ODEs, the Kahan-Hirota-Kimura discretization [25, 22, 23] can preserve
some modified measures [14, 7]. In this context, one searches for aromatic Lagrangians µ P Ω0
and modified vector field represented by τ P Ω1 such that p1� µqτ is solenoidal.

Let us adapt Noether’s theory in the context of volume-preservation. While Theorem 3.14
and Remark 3.15 focus on Lagrangians in Ω0 and source forms in I1 in variational calculus, we
are also interested in symmetries and conservation laws on Ω1 and Ω2. The following result,
derived from Theorem 2.5, gives necessary conditions on the form of the modified vector field of
a volume-preserving method. We recall that as the aromatic bicomplex is exact, any solenoidal
form γ P Ω1 is the image of a form in γ̂ P Ω2, that is, γ � dH γ̂.

Theorem 3.17. Let γ � dH γ̂ P Ω1 be solenoidal, then every aromatic vector field τ P Ω1 is a
divergence symmetry for γ. Moreover, τ is a divergence symmetry of γ̂ (and thus a symmetry
of γ) if and only if there exists an aromatic form η P Ω3 such that Hτ γ � dHη.

There is no known non-trivial modified vector field of a volume-preserving method that
has symmetries to the best of our knowledge. A better understanding of the Lie derivative,
the symmetries, and especially the solenoidal vector fields could give insight on the form of a
volume-preserving method and help describe the degrees of freedom we have in the choice of the
method. There exists a vast literature on the description of symmetries in variational calculus,
which further motivates collaborations on the application of the tools of variational calculus for
the creation of volume-preserving integrators. In addition, extending the aromatic bicomplex
and the aromatic Noether’s theory for the study of volume-preservation on manifolds or for the
exact numerical preservation of the invariant measure of ergodic stochastic systems is matter
for future work.
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