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Abstract

We introduce a new algebraic framework based on a modification (called exotic)
of aromatic Butcher-series for the systematic study of the accuracy of numerical inte-
grators for the invariant measure of a class of ergodic stochastic differential equations
(SDEs) with additive noise. The proposed analysis covers Runge-Kutta type schemes
including the cases of partitioned methods and postprocessed methods. We also show
that the introduced exotic aromatic B-series satisfy an isometric equivariance property.
Keywords: stochastic differential equations, invariant measure, ergodicity, exotic aro-
matic trees, order conditions.
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1 Introduction
We consider a class of stochastic systems of differential equations of the form

dXptq � fpXptqqdt� σdW ptq, (1.1)

where Xptq P Rd is the solution with initial condition X0 assumed deterministic for sim-
plicity, the vector field f : Rd Ñ Rd is assumed smooth and globally Lipschitz, σ ¡ 0
is a constant, and W ptq is a standard d-dimensional Wiener process fulfilling the usual
assumptions.

We say that problem (1.1) is ergodic if it has a unique invariant measure µ satisfying
for all deterministic initial conditions X0 and all smooth test functions φ,

lim
TÑ8

1
T

» T
0
φpXpsqqds �

»
Rd
φpxqdµpxq, almost surely. (1.2)

Under appropriate smoothness and growth assumptions on the vector field f , the above er-
godicity property is automatically satisfied, and in addition one has in general the following
exponential convergence for all initial conditions X0 and all appropriate test functions φ,����ErφpXptqqs � »

Rd
φpxqdµpxq

���� ¤ Ce�λt (1.3)
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for all t ¡ 0 where C � Cpφ,X0q and λ ¡ 0 are independent of time t ¡ 0. We refer to
[7, 34, 21, 28, 29] for details. A special case of the class of problems (1.1) is the well-studied
overdamped Langevin equation, also called Brownian dynamics,1

dXptq � �∇V pXptqqdt� σdW ptq (1.4)

where V : Rd Ñ R is a smooth potential, f � �∇V and σ ¡ 0. Under appropriate growth
conditions on the potential V (growing at least quadratically), (1.4) is ergodic and (1.2) and
(1.3) hold with the invariant measure dµpxq � ρ8pxqdx where its density ρ8 with respect
to the Lebesgue measure is given by the Gibbs distribution

ρ8pxq � Ze�
2
σ2 V pxq (1.5)

where Z is a normalization constant such that
³
Rd ρ8pxqdx � 1. Computing integrals with

respect to the invariant measure µ in high dimensions is in general very costly using a
deterministic quadrature rule, and one can take advantage of the above ergodicity property
to compute such integrals using numerical approximations of (1.1), the exact solution of
(1.1) not being available in general. Let us mention that a natural way to sample without
any bias from the invariant measure with the Gibbs density (1.5) is to apply Markov Chain
Monte-Carlo methods, in particular Metropolis–Hastings algorithms, see for instance the
survey [44]. However, as highlighted in [38], “the Metropolis–Hastings algorithm is rather
expensive due to the need of accept/reject steps and does not admit the use of powerful
weak methods”, which can be combined with the methodology of “rejecting exploding
trajectories” [38]. We thus focus in this paper on classes of weak methods and consider a
one step numerical integrator for the approximation of (1.1) at time tn � nh of the form

Xn�1 � ΨpXn, h, ξnq, (1.6)

where h is a fixed time step size and ξn are independent random vectors. We say that the
numerical scheme has local weak order r if the weak error after one step satisfies

|ErφpX1q|X0 � xs � ErφpXphqq|Xp0q � xs| ¤ Chr�1, (1.7)

where C � Cpφ, xq is independent of h assumed small enough and φ is a test function.
Note that under appropriate assumptions on the numerical scheme (to achieve in particular
bounded numerical moments along time), one can in general deduce a global weak order
r, |EpφpXnqq � EpφpXptnqqq| ¤ Chr, as shown in [36] (see [37, Chap. 2.2]). The numerical
method is called ergodic if it has a unique invariant probability law µh with finite moments
of any order and

lim
NÑ8

1
N � 1

Ņ

n�0
φpXnq �

»
Rd
φpxqdµhpxq, almost surely,

for all deterministic initial conditions X0 � x and all test functions φ. We say that the
numerical method has order p with respect to the invariant measure of (1.1) if����»

Rd
φpxqdµhpxq �

»
Rd
φpxqdµpxq

���� ¤ Chp, (1.8)

1Up to a time transformation, one could for simplicity fix the value of σ (e.g. σ � 1 or
?

2), however we
choose not to fix it to better distinguish the various order conditions.
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where C is independent of h assumed small enough. Under appropriate assumptions on the
numerical scheme (see for instance [21]), one also obtains the following exponential estimate
similar to (1.3) (possibly with a different constant λ ¡ 0),����ErφpXnqs �

»
Rd
φpxqdµpxq

���� ¤ Ke�λtn � Chp, (1.9)

where K � Kpφ, xq, C � Cpφq are independent of n and h assumed small enough. A simple
way to achieve high order p for the invariant measure is to consider a numerical scheme
with high standard weak order r, and it is known for large classes of SDEs that p ¥ r,
see in particular [33] in the context of locally Lipschitz vector fields with multiplicative
noise. Note analogously that the strong order q of convergence, which corresponds to the
numerical approximation of individual trajectories of (1.1), is in general lower than or
equal to the weak order r of convergence. There are interestingly many schemes in the
literature for which p ¡ r and a high order p for the invariant measure is obtained, while
the standard weak order of accuracy remains low, typically of order r � 1, i.e. the scheme
is consistent in the weak convergence sense. This is the case in particular for the Langevin
equation [9, 30, 31, 4]. In [3, 4], a methodology for the analysis and design of high order
integrators for the invariant measure is introduced and serves as a crucial ingredient in
this paper. The approach combines the usual Talay-Tubaro methodology [46] and recent
developments of the theory of backward error analysis and modified differential equations
in the stochastic context [48, 2, 21, 28, 29], a major tool in the area of deterministic
geometric numerical integration [23]. In [47] for finite dimensions and in [10] in the context
of parabolic stochastic partial differential equations, this approach is combined with the
idea of processing from Butcher [13], to design efficient postprocessed integrators with high
order for the invariant measure at a negligible overcost compared to standard low order
schemes. The postprocessor methodology is extended in [1] for a class of explicit stabilized
schemes of order two for the invariant measure and with optimally large stability domains.

The aim of this paper is to provide a unified algebraic framework based on aromatic
trees and B-series, with a set of trees independent of the dimension d of the problem, for the
systematic study of the order conditions for the invariant measure of a class of numerical
integrators that includes Runge-Kutta type schemes for problems of the form (1.1). We
show that the new framework permits to recover some schemes and simplify the calculations
in [3] and for postprocessed integrators in [47, 10, 1]. Analogously to [41] (we study here
the additive noise case), we consider in this paper Runge-Kutta methods of the form2

Yi � Xn � h
s°
j�1

aijfpYjq �
l°

k�1
d
pkq
i σ

?
hξ

pkq
n , i � 1, . . . , s,

Xn�1 � Xn � h
s°
i�1

bifpYiq � σ
?
hξ

p1q
n ,

(1.10)

where aij , bi, dpkqi are the coefficients defining the Runge-Kutta scheme, and ξpkqn � N p0, Idq
are independent Gaussian random vectors. We highlight once again that we focus in this
paper on the high order p of accuracy for the invariant measure, while the order r of
accuracy in the weak sense can remain low (typically r � 1). The analysis in this paper
applies to the class of methods (1.10) for any number l of random vectors in the internal

2Note that the internal stages Yi depend on n, but this dependence is omitted for brevity of the notation.
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stages. However we shall often consider l � 1 random vector per internal stage3, which
is sufficient to achieve order p � 2 or 3 for the invariant measure. In particular, we shall
consider the θ-method as an illustrative example in Sections 4 and 5 and recover known
results on its accuracy. It is defined for θ fixed as

Xn�1 � Xn � hp1� θqfpXnq � hθfpXn�1q � σ
?
hξn, (1.11)

For θ � 0, we get the explicit Euler-Maruyama method while the scheme is implicit for
θ � 0. It can be put in Runge-Kutta form (1.10) for l � 1 with the following coefficients.

c A d

b
�

0 0 0 0
1 1� θ θ 1

1� θ θ

The usage of trees and B-series4 is known as a powerful standard tool for the numerical
analysis of differential equations. B-series where introduced by Hairer and Wanner in [24]
based on the work of Butcher [14], and are now exposed in many articles and books [23, 15],
see also the presentation in [16, 45]. In the last decades, several works extended trees and
B-series to the stochastic context, we mention in particular Burrage and Burrage [11] and
Komori, Mitsui and Sugiura [27] who first introduced stochastic trees and B-series for
studying the order conditions of strong convergence of SDEs, and [12, 40, 42, 41, 19, 43, 20]
for the design and analysis of high order weak and strong integrators on a finite time
interval. Tree series were also used to describe schemes preserving quadratic invariants
[6]. The recent work [5] also studies algebraically strong and weak errors, but instead of
using tree series, it uses word series because these are well suited in the context of splitting
stochastic integrators.

In this paper, we focus on the long time accuracy of numerical integrators and derive in
a systematic manner the order conditions for sampling the invariant measure of an ergodic
system of the form (1.1). Additionally, in Section 5.5, we allow the inclusion of non-
reversible perturbation as in [32, 22]. The proposed algebraic framework relies on aromatic
B-series, a generalisation of B-series introduced in [39, 35] (see also the presentation in [8])
to characterize all the schemes that are affine equivariant, i.e. that behave transparently
with respect to an affine change of coordinates. These aromatic B-series rely on aromatic
trees, which were first introduced in [17] to represent the divergence of B-series in the
context of deterministic value or first integral preserving ordinary differential equations.

This paper is organized as follows. In Section 2, we described the general setting and
assumptions needed in our analysis. In Section 3, we introduce a new generalization of
B-series, called “exotic aromatic B-series” by considering an additional new type of edge
called “liana” compared to standard aromatic B-series. We also show that these new exotic
aromatic B-series satisfy an isometric equivariance property. In Section 4, we explain how
this new algebraic framework applies for the long time accuracy analysis of stochastic
integrators for ergodic problems. In Section 5, we derive order conditions for integrators
expandable as aromatic B-series methods, with special emphasis on Runge-Kutta type
integrators and post-processed integrators. In particular, we show that the orders 2 and
3 for the invariant measure of Brownian dynamics (1.4) yield respectively 2 and 6 order
conditions (see Table 1), compared to the 3 and 10 more restrictive conditions for the
standard weak order of convergence (see Table 2).

3In this case, we denote d � dp1q and ξn � ξ
p1q
n .

4originally named Butcher-series
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2 Preliminaries
We first state the following smoothness and growth Assumptions 2.1 and 2.2 on the vector
field of (1.1) which automatically yield that (1.1) satifies the ergodicity properties (1.2) and
(1.3) (see [25] in the more general context of SDEs with multiplicative noise).

Assumption 2.1. The vector field f : Rd Ñ Rd is globally Lipchitz and C8, and there
exist C1, C2 ¡ 0 such that for all x P Rd,

xT fpxq ¤ �C1x
Tx� C2.

The following stronger assumption yields the important special case of Brownian dy-
namics (1.4).

Assumption 2.2. The vector field f is a globally Lipschitz gradient, i.e. there exists a C8

potential V : Rd Ñ R such that fpxq � �∇V pxq is globally Lipschitz and there exist C1 ¡ 0
and C2 such that for all x P Rd, V pxq ¥ C1x

Tx� C2.

We recall that under Assumption 2.2, the density of the unique invariant measure is
given by ρ8 � Z exp

��2V
σ2

�
where Z is such that

³
Rd ρ8pxqdx � 1 but Z is not numerically

known in general. We note that ∇ρ8 � ρ8 2
σ2 f , equivalently ∇plog ρ8q � 2

σ2 f .
We denote C8P pRd,Rq the vector space of C8 functions such that all partial derivatives

φ up to all orders have a polynomial growth of the form

|φpxq| ¤ Cp1� |x|sq

for some constants s and C independent of x (but depending on the order of differentiation).
For φ P C8P pRd,Rq we define upx, tq � ErφpXptqq|Xp0q � xs. A classical tool for the study
of (1.1) is the backward Kolmogorov equation [37, Chap. 2], which states that upx, tq solves
the following deterministic parabolic PDE in Rd,

Bu
Bt � Lu, upx, 0q � φpxq, x P Rd, t ¡ 0, (2.1)

where the generator L is defined as

Lφ � f �∇φ� σ2

2 ∆φ (2.2)

where ∆φ � °d
i�1

B2φ
Bx2
i
denotes the Laplace operator. We recall that, under Assumption 2.1

or 2.2, the density of the invariant measure satisfies

L�ρ8 � 0

where L�φ � �divpfφq � σ2

2 ∆φ is the L2–adjoint of L.
We make the following natural assumptions on the numerical integrator (1.6).

Assumption 2.3. The numerical scheme (1.6) has bounded moments of any order along
time, i.e. for all integer k ¥ 0,

sup
n¥0

Er|Xn|2ks   8.
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Assumption 2.4. The numerical scheme (1.6) has a weak Taylor expansion of the form

ErφpX1q|X0 � xs � φpxq � hA0φpxq � h2A1φpxq � � � � (2.3)

for all φ P C8P pRd,Rq, where Ai, i � 0, 1, 2, . . . are linear differential operators with coeffi-
cients depending smoothly on the drift f , and its derivatives (and depending on the choice
of the integrator). In addition, we assume that A0 coincides with the generator L given in
(2.2), i.e. it is consistent and has (at least) local order one in the weak sense, A0 � L.
Remark 2.5. A convenient sufficient condition to satisfy Assumption 2.3 is given in [37,
Lemma 2.2.2]: if X0 is deterministic or has bounded moments of all order and the Markov
chain pXnqn satisfies

|ErXn�1 �Xn|Xns| ¤ Cp1� |Xn|qh, |Xn�1 �Xn| ¤Mnp1� |Xn|q
?
h,

for C a constant independent of h andMn a random variable whose moments are all bounded
uniformly with respect to h small enough, then the numerical scheme satisfies Assumption
2.3. Note that consistent Runge-Kutta type schemes such as (1.10) satisfy Assumption 2.3
(using the global Lipschitz assumption of f) and Assumption 2.4.

In the following theorem, we recall the characterisation of order p for the invariant
measure of an ergodic integrator in terms of adjoints of the linear differential operators
of Assumption 2.4. It was shown in [3] in the more general context of ergodic SDEs
with multiplicative noise based on backward error analysis results in [21] on the torus and
generalizations [28, 29] in the space Rd.

Theorem 2.6. [3] Assume Assumption 2.1 or 2.2. Consider the one step integrator (1.6)
and assume that it is ergodic when applied to (1.1). Assume further Assumptions 2.3 and
2.4. If

A�j ρ8 � 0, j � 2, . . . , p� 1, (2.4)

then the scheme has order p for the invariant measure and (1.8)-(1.9) hold.

Remark 2.7. Assuming in addition that the scheme has weak order p � 1 of accuracy,
i.e. assuming in addition the stronger assumption Aj � Lj�1{pj � 1q!, j � 2, . . . , p � 2,
then Theorem 2.6 is an immediate consequence of the Talay-Tubaro expansion of the error
[36, 46] (see also [37, Chap. 2.2, 2.3]) given by»

Rd
φpxqdµhpxq �

»
Rd
φpxqdµpxq � λph

p �Ophp�1q

with
λp �

» �8
0

»
Rd

�
Ap � 1

pp� 1q!L
p�1



upy, tqρ8pyqdydt

where upx, tq is the solution of (2.1). Indeed, considering the L2–adjoint of the operator
Ap � 1

pp�1q!L
p�1 and using L�ρ8 � 0 and A�pρ8 � 0 then yield λp � 0 and the scheme has

(at least) order p for the invariant measure.

The following extension of Theorem 2.6 permits to combine an integrator (1.6) with
a postprocessor to achieve high order for the invariant measure at a negligible overcost
compared to a standard scheme.
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Theorem 2.8. [47] Assume the hypotheses of Theorem 2.6 and consider a postprocessor

Xn � GnpXnq
that admits the following weak Taylor expansion for all φ P C8

P pRd,Rq,

ErφpGnpxqqs � φpxq �
p�1̧

i�1
αih

iLiφpxq � hpApφpxq � � � � , (2.5)

for some constants αi and a linear differential operator Ap. Assume further that

pAp � rL,Apsq�ρ8 � 0 (2.6)

where rL,Aps � LAp �ApL is the Lie bracket. Then Xn yields an approximation of order
p� 1 for the invariant measure and it satisfies (1.8) and (1.9) with p replaced by p� 1 and
Xn replaced by Xn.

Theorem 2.8 is stated and proved in [47] in the special case αi � 0, i � 1, . . . , p � 1 in
(2.5). However, the proof for non zero αi’s is nearly identical and thus is omitted. Notice
that the order conditions (2.4) and (2.6) are respectively equivalent to the identities»

Rd
pAjφqρ8dx � 0, j � 2, . . . , p� 1,»

Rd
pApφ� rL,Apsφqρ8dx � 0,

for all test function φ P C8
P pRd,Rq. In the following section, we introduce the suitable

algebraic framework based on exotic aromatic trees and B-series for the systematic study
of these order conditions of accuracy for the invariant measure.

3 Exotic aromatic trees and forests
We first recall the known framework of aromatic B-series before introducing a modification
well suited for invariant measure order conditions and called exotic aromatic B-series. We
rely on the aromatic trees and forests introduced in [17] and rely on the presentation in [8].

3.1 Aromatic trees and forests

We first consider directed graphs γ � pV,Eq with V a finite set of nodes and E � V � V
the set of directed edges. If pv, wq P E, we say that the edge is going from v to w, and
v is called a predecessor of w. Two directed graphs pV1, E1q and pV2, E2q are equivalent if
there exists a bijection ϕ : V1 Ñ V2 with pϕ � ϕqpE1q � E2. For brevity of notation, to
avoid drawing arrows on the forests, an edge linking two nodes goes from the top node to
the bottom one. If there is an eventual cycle, the arrows on it are going in the clockwise
direction. For example,

� .

We call aromatic forests the equivalence classes of directed graphs where each node
has at most one outgoing edge. The connected components making an aromatic forest are
called aromatic trees. According to the above definition, there are two types of trees:
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• aromas are aromatic trees5 with exactly one cycle: , , , , . . .

• rooted trees do not have a cycle ; they have a unique node that has no outgoing edge

and that is called the root, graphically represented at the bottom: , , , , . . .

Thus, an aromatic forest is a collection of aromas and rooted trees. We call AT �
t , , . . . u the set of aromatic forests containing exactly one rooted tree, and we name
its elements the aromatic rooted forests.

Definition 3.1 (Elementary differentials). Let γ � pV,Eq P AT , and let f : Rd Ñ Rd be
a smooth function. We denote πpvq � tw P V, pw, vq P Eu the set of all predecessors of the
node v P V and r the root of γ. We also call V 0 � V rtru � tv1, . . . , vmu the other nodes of
γ. Finally we introduce the notation Iπpvq � piq1 , . . . , iqsq where the qk are the predecessors
of v, and

BIπpvqf �
Bsf

Bxiq1 . . . Bxiqs
.

Then F pγq is defined as

F pγqpfq �
ḑ

iv1 ,...,ivm�1

�¹
vPV 0

BIπpvqfiv
�
BIπprqf.

Example. Let γ �
k

l
j

i

m

and rγ � j
i

m

l
k

in AT where we added indices to apply the for-
mula of Definition 3.1. Note that there is no index for the root. Then the associated differ-
entials are respectively F pγqpfq � °d

i,j,k,l,m�1 BmfmfiBifjfkBj,kflBlf � divpfq � f 1f2pf 1f, fq
and F prγqpfq � °d

i,j,k,l,m�1 BlfmBm,kflfkfiBifjBjf �
°d
m�1 f

1
mppBmfq1pfqq � f 1f 1f .

3.2 Exotic aromatic trees and forests

We now introduce a new kind of edge, called a liana, for the aromatic forests. The corre-
sponding generalization is called exotic aromatic forests. Let pV,Eq be an aromatic forest
and L be a finite list of pairs of elements of V (possibly with duplicates), then γ � pV,E,Lq
is an exotic aromatic forest. The elements of L are called lianas and correspond to non-
oriented edges between any two nodes of the forest. We graphically represent them with a
dashed edge linking the two given nodes. As we authorize duplicates, there can be several
lianas between two given nodes. Also lianas can link a node to itself. For a node v, Γpvq
denotes the list of the lianas (also with possible duplicates) linked to v. The predecessors of
v only take in account the edges of E. An exotic aromatic tree of an exotic aromatic forest
γ � pV,E,Lq is a connected component of the associated aromatic forest pV,Eq. We call
EAT the set of exotic aromatic forests with exactly one rooted tree, and name its elements
exotic aromatic rooted forests.

Example. The lianas can link different trees of an aromatic forest and thus yield an exotic

aromatic forest. For instance, linking the aroma and the rooted tree gives .
5Such graphs with one cycle are not strictly speaking “trees”, they are however called aromatic trees in

the literature as an analogy with carbon chemistry.
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The definition of elementary differentials is extended as follows.
Definition 3.2. Let γ � pV,E, Lq P EAT , and let f : Rd Ñ Rd be a smooth function.
We name r the root of γ and V 0 � V r tru � tv1, . . . , vmu the other nodes of γ. We
denote l1,. . . ,ls the elements of L and for v P V , JΓpvq the multiindex pjlx1

, . . . , jlxt q where
Γpvq � tlx1 , . . . , lxtu. Then F pγq is defined as

F pγqpfq �
ḑ

iv1 ,...,ivm�1

ḑ

jl1 ,...,jls�1

�¹
vPV 0

BIπpvqBJΓpvqfiv

�
BIπprqBJΓprqf.

Examples. The differential that corresponds to the rooted tree with a single node and
a single liana is F p qpfq � ∆f . We can also represent as exotic aromatic forest more

complicated derivatives. For instance, let γ �
i

j

k l

, then

F pγqpfq �
ḑ

i,j,k�1
divpBifq � f 1ppBklfq1pf2pBijjf, Bklfqqq.

3.3 Grafted exotic aromatic trees

For the study of the order for the invariant measure of numerical integrators, we introduce
an extension of exotic aromatic forests. The root now symbolizes a test function φ, and it
has leafs (nodes without predecessors) that represent a random standard normal vector ξ.
Note that these new trees can be seen as bi-coloured trees in the context of P-series (see
[23, Chap. 3]), where the nodes represented with crosses cannot have predecessors.
Definition 3.3. A grafted node is a new type of node graphically represented by a cross.
Let V be a set of nodes whose subset of grafted nodes is Vg, let E be a set of edges such that
each node in Vg has exactly one outgoing edge and no ingoing edge, and let L be a set of
lianas that link nodes in V r Vg, then γ � pV,E, Lq is a grafted exotic aromatic forest. We
define as before the grafted exotic aromatic trees and grafted exotic aromatic rooted forests,
that we denote EATg.

If γ � pV,E, Lq is a grafted exotic aromatic rooted forest, φ : Rd Ñ R a smooth function,
and ξ a random vector of Rd whose components are independent and follow a standard nor-
mal law, the associated elementary differential of γ is, with the same notation as Definition
3.2 and V 0 � V r pVg Y truq,

F pγqpf, φ, ξq �
ḑ

iv1 ,...,ivm�1

ḑ

jl1 ,...,jls�1

�¹
vPV 0

BIπpvqBJΓpvqfiv

���¹
vPVg

ξiv

�
BIπprqBJΓprqφ.

Example. The differential associated to the forest is F p qpf, φ, ξq � φ1pf2pξ, ξqq.
If γ is such that Vg is empty, we recover the exotic aromatic forests of Definition 3.2,

where φ is replaced by f . For the rest of the paper (except Section 3.5), we update the
definition of the elementary differential of an exotic aromatic forests so that the root is
associated to the function φ. This definition can be straightforwardly extended on non-
rooted exotic aromatic forests. For brevity of notation, we also write F pγqpφq instead of
F pγqpf, φ, ξq. We note that φ Ñ F pγqpφq is a linear differential operator (dependent on f
and ξ).
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3.4 Grafted exotic aromatic B-series

In this section, we adapt the formalism of aromatic B-series of [39] to grafted exotic aromatic
forests, in order to use it as a numerical tool for weak Taylor expansions in the next sections.
We define the order |γ| of a tree γ P EATg. We denote Npγq the number of nodes, Nlpγq
the number of lianas, Ncpγq the number of grafted nodes and Nvpγq � Npγq � Ncpγq � 1
the number of nodes that are non grafted and different from the root, then

|γ| � Nvpγq �Nlpγq � Ncpγq
2 .

Definition 3.4. Let a : EATg Ñ R a map, and let f : Rd Ñ Rd and φ : Rd Ñ R be
two smooth functions, then the grafted exotic aromatic B-series Bpaqpφq is a formal series
indexed over EATg defined by

Bpaqpφq �
¸

γPEATg
h|γ|apγqF pγqpφq.

We extend the definition of F on VectpEATgq by writing

F

� ¸
γPEATg

h|γ|apγqγ


pφq � Bpaqpφq.

The variable h is formal and thus can be chosen to be equal to 1. If the series is indexed
only on (exotic) aromatic rooted forests, then it is called an (exotic) aromatic B-series. In
Section 3.5, we shall focus on exotic aromatic B-series.

Remark 3.5. The coefficients apγq of standard B-series are sometimes renormalized as
apγq
ρpγq where ρ is a function determined by the symmetries of the associated forest. If ρ is
appropriately chosen, it greatly simplifies the composition laws of (aromatic) B-series (see
[23, 16, 8]). Finding the best definition of ρ for this exotic extension of B-series is out of
the scope of this paper.

3.5 Isometric equivariance of exotic aromatic rooted forests

In this subsection, we show that the exotic aromatic B-series satisfy an isometric equiv-
ariance property in the spirit of [39, 35]. We consider exotic aromatic rooted forests γ
where the differential associated to the root is f . As the function f is no longer fixed, we
denote the associated differential F pγqpfq. Also we adapt the definition of exotic aromatic
B-series to this change. First we add a new tree: the empty tree ∅. The function F is then
extended on EATg Y t∅u by F p∅qpfq � IdRd . Then, for a function a : EAT Y t∅u Ñ R,
the associated exotic aromatic B-series is

Bpaqpfq �
¸

γPEAT Yt∅u
apγqF pγqpfq.

We study (exotic) aromatic B-series Bpaq with ap∅q � 1. We call these (exotic) aromatic
B-series methods. Let G be a subgroup of GLdpRq 
 Rd, let the action of an element
pA, bq P G on Rd be x ÞÑ Ax� b, and let the action on a vector field f : Rd Ñ Rd be

ppA, bq � fqpxq :� AfpA�1px� bqq.

10



We simplify the notation by writing A � f :� pA, 0q � f . We recall the definition of equivari-
ance from [39]. The property of equivariance means the method is unchanged by an affine
coordinate transformation. Let Φ be a differential operator and let G be a subgroup of
GLdpRq 
 Rd, then Φ is called G-equivariant if

@pA, bq P G,@f P C8pRd,Rdq,ΦppA, bq � fq � pA, bq � Φpfq � pA, bq�1.

In particular, Φ is said to be affine equivariant if G � GLdpRq
Rd and isometric equivariant
if G � OdpRq 
 Rd.

Theorem 3.6. Consider an exotic aromatic B-series method Bpaq (with ap∅q � 1), then
Bpaq is isometric equivariant.

Remark 3.7. It is proved in [39] that standard B-series methods are exactly the affine
equivariant methods. Analogously, it would be interesting to characterize the isometric
equivariant maps.

For the sake of brevity, we omit the proof of Theorem 3.6. The proof can be made in
the spirit of the result [39, Prop. 2.1] for affine equivariant B-series.

4 Analysis of invariant measure order conditions using exotic
aromatic forests

In this section, we show how the framework of Section 3 applies for the study of order
conditions for the invariant measure of numerical integrators.

4.1 Weak Taylor expansion using exotic aromatic forests

Let us begin this section with the example of the θ-method (1.11). We apply the usual
methodology to expand in Taylor series ErφpX1q|X0 � xs as hÑ 0. We refer to [48, 2] for
other examples of analogous calculations performed without exotic aromatic forests. Under
X0 � x, we have

X1 � x�
?
hσξ � hf � h

?
hθσf 1ξ � h2θf 1f � h2 θσ

2

2 f2pξ, ξq � � � �

Then we deduce ErφpX1q|X0 � xs � φpxq � hLφpxq � h2A1φpxq � � � � , where

A1φ � Erθφ1f 1f � 1
2φ

2pf, fq � θσ2

2 φ1f2pξ, ξq � θσ2φ2pf 1ξ, ξq

� σ2

2 φ
p3qpf, ξ, ξq � σ4

24φ
p4qpξ, ξ, ξ, ξqs

� ErF pθ � 1
2 � θσ2

2 � θσ2 � σ2

2 � σ4

24 qpφqs. (4.1)

All the forests with an odd number of grafted nodes vanished because odd moments of a
centred Gaussian random variable are zero. The expectation of the differential of a forest
with exactly two grafted nodes comes straightforwardly.

ErF p qpφqs � Erφ1pf2pξ, ξqqs �
¸
i,j,k

BiφBjkfiErξjξks �
¸
i,j

BiφBjjfi � F p qpφq,
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where Erξjξks � 0 for j � k because of the independence of the ξi’s. We see that taking the
expectation of the differential associated to a grafted tree amounts to linking the grafted
nodes with lianas in all possible manners. For instance, for the following example with four
grafted nodes:

ErF p qpφqs � Erφp4qpξ, ξ, ξ, ξqs �
¸
i,j,k,l

Bi,j,k,lφErξiξjξkξls

�
¸
i

Bi,i,i,iφErξ4
i s � 3

¸
i,j
i�j

Bi,i,j,jφErξ2
i sErξ2

j s � 3
¸
i,j

Bi,i,j,jφ

� 3F p qpφq.

Let us now comment this computation. The interesting fact is that Erξ4
i s � 3 corresponds

exactly to the number of ways to gather the indices i, j, k and l in pairs. This observation
makes an exotic aromatic tree naturally appear. However, here we took only four grafted
nodes and the differential form was symmetric in the arguments ξ. We need to study the
expectation of general exotic aromatic forest elementary differentials. This is the aim of
the following theorem.

Theorem 4.1. Let γ P EATg be a grafted exotic aromatic rooted forest with an even number
of grafted nodes 2n, let φ : Rd Ñ R be a smooth function, and let V � � tc1, . . . , c2nu be the
set of grafted nodes of γ. We call P2p2nq the set of partitions by pair of t1, . . . , 2nu, i.e. the
set of surjections p : t1, . . . , 2nu Ñ t1, . . . , nu such that the preimage of each singleton
has exactly two elements and the minima of those preimages follow an ascending order
(minpp�1ptiuqq   minpp�1ptjuqq for i   j). Finally we define ϕγ : P2p2nq Ñ EAT the
application that maps the partition p of γ to the aromatic forest where the grafted nodes are
linked by lianas according to p. Then, the expectation of F pγqpφq is given by

ErF pγqpφqs �
¸

pPP2p2nq
F pϕγppqqpφq.

This theorem states that taking the expectation of the differential associated to a forest
amounts to sum the forests obtained by linking the grafted nodes together pairwise using
lianas in all possible manners and take the associated differential.

Example. Let us take γ P t , , , . . . u the tree with only a root, 2n grafted nodes
and no liana, then

ErF pγqpφqs � p2nq!
2nn! ∆nφ

The integer p2nq!
2nn! is exactly the number of ways to gather the grafted nodes by pairs. An

other example is

ErF p qpφqs � 3F p q,
where the coefficient 3 accounts for the number of choices for linking the grafted nodes
pairwise.

Application. Using Theorem 4.1, we immediately obtain that Runge-Kutta methods (1.10)
can be developed in exotic aromatic forests. As a special Runge-Kutta method, we get back
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to the θ-method (1.11). The operator A1 is now convenient to write with exotic aromatic
trees. Applying Theorem 4.1 to (4.1), we deduce A1 � F pγq with

γ � θ � 1
2 � θσ2

2 � θσ2 � σ2

2 � σ4

8 . (4.2)

Theorem 4.1 follows from the following lemma, which is an extension of the Isserlis
theorem [26] to the case of multilinear mappings. The Isserlis theorem states that if χ is a
2n-dimensional Gaussian random vector with mean zero and arbitrary covariance, then

E

�
2n¹
i�1

χi

�
�

¸
pPP2p2nq

¹
i j

ppiq�ppjq

Erχiχjs.

For n � 2, it gives Erχ1χ2χ3χ4s � Erχ1χ2sErχ3χ4s � Erχ1χ3sErχ2χ4s � Erχ1χ4sErχ2χ3s.
Lemma 4.2. Let B : Rd � � � � � Rd � R2nd Ñ R be a 2n-multilinear form, and let ξ be a
Gaussian vector N p0, Idq, then

ErBpξ, . . . , ξqs �
¸

pPP2p2nq

ḑ

i1,...,in�1
Bpeipq, (4.3)

with eip � peipp1q , . . . , eipp2nqq, and we recall that e1, . . . , ed denotes the canonical basis of Rd.

Proof. For the particular case of an elementary multilinear form Bσ : px1, . . . , x2nq ÞÑ±2n
j�1pxjqσpjq where σ : t1, . . . , 2nu Ñ t1, . . . , du is a given mapping and pxjqσpjq denotes

the σpjq’s component of xj P Rd, the identity (4.3) reduces to the Isserlis theorem. As any
multilinear form can be decomposed as a linear combination of such elementary multilinear
forms, the result (4.3) is proved by linearity with respect to B. �

Proof of Theorem 4.1. We consider F pγqpφq as a 2n-multilinear form Bγ,φ evaluated in
pξ, . . . , ξq (see Definition 3.3). Lemma 4.2 gives

ErBγ,φpξ, . . . , ξqs �
¸

pPP2p2nq

ḑ

i1,...,in�1
Bγ,φpeipq �

¸
pPP2p2nq

F pϕγppqqpφq,

because Bγ,φpeipq is the differential F pγq where we differentiate the non-grafted nodes linked
to grafted nodes in the directions given by eip , and F pϕγppqqpφq is obtained by summing
Bγ,φpeipq over all the indices. �

4.2 Integration by parts of the exotic aromatic forests

The goal of this section is to integrate by parts
³
Rd F pγqpφqρ8dx, for γ an exotic aromatic

rooted forest, in order to write it in the form
³
Rd φ

1 rfρ8dx for a certain sum of elementary
differentials rf . The idea is to transform a high order differential operator A : φÑ F pγqpφq
into a differential operator φ Ñ φ1 rf of order 1 such that A�ρ8 � �divp rfρ8q. The tree
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formalism previously defined makes this task systematic and very convenient. This also
serves as a crucial ingredient in the next section. Let us first begin with an example.»

Rd
F p qpφqρ8dx �

¸
i,j

»
Rd

B2φ

BxiBxj fifjρ8dx

� �
¸
i,j

� »
Rd

Bφ
Bxj

Bfi
Bxi fjρ8dx�

»
Rd

Bφ
Bxj fi

Bfj
Bxi ρ8dx

�
»
Rd

Bφ
Bxj fifj

Bρ8
Bxi dx

�
,

(4.4)

where we integrated by parts; note that the boundary term vanishes using the growth
assumptions on φ.

Notation. We denote g � logpρ8q, then ∇ρ8 � p∇gqρ8.
We have»

Rd
F p qpφqρ8dx � �

»
Rd

divpfqφ1fρ8dx�
»
Rd
φ1f 1fρ8dx�

»
Rd
g1fφ1fρ8dx.

By writing rf � �pdivpfqf � f 1f � g1ffq, we deduce»
Rd
F p qpφqρ8dx �

»
Rd
φ1 rfρ8dx.

We see that even for a simple forest, the integration by parts requires some calculations
and a new term appears: the function g � logpρ8q, and its derivatives. We use below the
exotic aromatic forests to make this task easier.

Definition 4.3 (Aromatic root and elementary differential). An aromatic root is a new
type of node represented by a square that has no outgoing edge. An exotic aromatic tree
that has an aromatic root is considered as an aroma. The definition of the sets EAT is
extended to include these new aromas.

If γ � pV,E, Lq P EAT is an exotic aromatic rooted forest whose set of aromatic roots
is V 1 � V , if V 0 � V r pV 1 Y truq and V � tr, v1, . . . , vmu where r is the root of γ, if
l1,. . . ,ls are the elements of L, then F pγq is defined as

F pγqpφq �
ḑ

iv1 ,...,ivm�1

ḑ

jl1 ,...,jls�1

�¹
vPV 1

BIπpvqBJΓpvqg

��¹
vPV 0

BIπpvqBJΓpvqfiv

�
BIπprqBJΓprqφ.

One can also extend the definition of EATg in the same way so that it includes aromatic
roots.

Examples. F p qpφq � g1fφ1f and F p qpφq � °
i,jpBjgq2BigBiφ.

Then the equality (4.4) can be rewritten using forests:»
Rd
F p qpφqρ8dx � �

»
Rd
F p qpφqρ8dx�

»
Rd
F p qpφqρ8dx�

»
Rd
F p qpφqρ8dx.

We notice that integrating by parts F p qpφq amounts to unplugging an edge from the
root and to replug it either to all the other nodes of the forests or to an aromatic root and
then to sum over all possibilities. This intuition is made rigorous in the following theorem.
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Theorem 4.4. Let γ P EAT , we choose a direction to integrate by parts, i.e. an edge or a
liana e connected to the root r. Then»

Rd
F pγqpφqρ8dx � �

¸
rγPUpγ,eq

»
Rd
F prγqpφqρ8dx,

where Upγ, eq is the set of exotic aromatic rooted forests obtained by unplugging the chosen
edge/liana e and by linking it either to a node different from r or to a new aromatic root.

Remark 4.5. Theorem 4.4 can be extended in the following way: if n is a node of γ and
e an edge ingoing to n or a liana connected to n, then the same result holds if we replace
Upγ, eq by Upγ, n, eq, the set of exotic aromatic rooted forests obtained by unplugging the
chosen edge/liana e and by linking it either to a node different from n or to a new aromatic
root.

Proof of Theorem 4.4. We call r the root and V 0 � tv1, . . . , vmu the other nodes of γ. We
suppose for simplicity that γ does not have any aromatic root, otherwise the proof can
be adapted straightforwardly. We denote l1,. . . ,ls the elements of L and vk1 ,. . . ,vkp the
elements of πprq. We choose to integrate by parts in the direction of the edge xivk1

.

»
Rd
F pγqpφqρ8dx �

ḑ

iv1 ,...,ivm�1

ḑ

jl1 ,...,jls�1

»
Rd

�¹
vPV 0

BIπpvqBJΓpvqfiv

�
Bivk1

...ivkp
BJΓprqφρ8dx

� �
ḑ

iv1 ,...,ivm�1

ḑ

jl1 ,...,jls�1

�
¸
uPV 0

»
Rd

�� ¹
vPV 0rtuu

BIπpvqBJΓpvqfiv

�
Bivk1
BIπpuqBJΓpuqfiuBivk2

...ivkp
BJΓprqφρ8dx

�
»
Rd

�¹
vPV 0

BIπpvqBJΓpvqfiv

�
Bivk2

...ivkp
BJΓprqφBivk1

gρ8dx
�

Each term of the sum on u P V 0 is the differential associated to the forest γu. This forest is
obtained by unplugging the root of its edge linking it to vk1 , and sticking it to u. The last
term of the computation is the differential of the forest obtained by linking the unplugged
edge to an aromatic root. These terms are exactly what we expected, thus the theorem
is proved for the case of edges. For the case of integrating in the direction of a liana, the
proof is nearly identical. We just need to develop JΓprq instead of Iπprq. �

Definition 4.6. Let γ1 and γ2 be two exotic aromatic B-series, we define the equivalence
relation � and write γ1 � γ2 if we can transform γ1 into γ2 by integrating by parts the
associated differentials according to the procedure presented in the previous theorem.

Examples. The integration by parts (4.4) can now be simply rewritten as

� � � � .
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One can also iterate the process of integration by parts to fully simplify the trees. For
example, we have

� � � � � � �
and summing up yields

� � � � � 2 � � .

Finally here is a last example that will be used in Section 5.1. We apply the procedure of
integration by parts to the forest .

� � � � � � � � 2 �

Using analytic formulas,
³
Rd F p qpφqρ8dx �

³
Rd φ

1 rfρ8dx, where
rfi � �Bip∆gq �∆gBig � 2

ḑ

j�1
BjgBi,jg �

ḑ

j�1
pBjgq2Big.

4.3 Order conditions using exotic aromatic forests

In this section, we adapt Theorem 2.6 in the context of exotic aromatic forests. In the spirit
of traditional B-series, we give, under Assumption 2.2, the general simplification for orders
up to three of a general numerical method expandable in exotic aromatic B-series. With
these, one can improve a method order as presented in Section 5.1, or derive conditions
on the method to achieve high order for the invariant measure as we do in Sections 5.2,
5.3, 5.4 and 5.5. It is worth noting that with only integration by parts, we can formally
derive numerical methods (see Section 5.1 for an example), but under Assumption 2.2, the
methods can be simplified.

Proposition 4.7 (Simplification rules). Under Assumption 2.2, the two forest patterns
gathered in each of the following pairs represent the same differential:

A

B

C and A

B

C,
A B

and
A

B, A B and 2
σ2

A

B, and 2
σ2 .

In the first and second cases, one can replace the nodes A, B, C with aromatic roots and
the result remains. For the third case, the node B can also be replaced.

Proof. For the first pair of patterns, the associated differentials have the respective forms°d
i�1 BjfkBifjBifl and

°d
j�1 BjfkBjfiBifl. As f is a gradient, f 1 is a symmetric matrix and

Bifj � Bjfi. The two differentials are then equal.
The second point is proved in the same way. For the third and fourth points, we just use
that ∇g � 2

σ2 f . �

Example. We have F p q � 2
σ2F p q and F p q � 2

σ2F p q.
The equivalence relation � of Definition 4.6 is extended to include the simplification

rules of Proposition 4.7.
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Remark 4.8. If f is a general vector field not assumed to be a gradient, we can prove
that the elementary differentials of exotic aromatic forests are independent. The proof is
an extension of the result in [23, Chap. 3, Exercise 3]. Indeed, for a given exotic aromatic
forest γ � pV,E,Lq, we take a bijective numbering nV : V r tru Ñ t1, 2, . . . , |V | � 1u of the
nodes and another one for the lianas nL : LÑ t|V | , . . . , |γ|u, then we define

φpxq �
¹
vPπprq

xnV pvq
¹
lPΓprq

xnLplq,

fipxq �
¹

vPπpn�1
v piqq

xnV pvq
¹

lPΓpn�1
v piqq

xnLplq, i � 1, . . . , |V | � 1,

and fi � 0, i � |V | , . . . , |γ|. With this choice, F prγqpf, φqp0q � 0 if and only if rγ � γ, thus
giving the independence of elementary differentials. Note that this result does not hold if f
is assumed gradient due to simplification rules (see Proposition 4.7).

We now adapt Theorem 2.6 to the context of exotic aromatic forests.

Theorem 4.9. We assume Assumptions 2.1 and 2.3. We consider an ergodic numerical
scheme that can be developed in exotic aromatic B-series (and thus has a development of
the form (2.3))

ErφpX1q|X0 � xs � F p qpφq �
¸

γPEAT
1¤|γ|¤p

h|γ|apγqF pγqpφq � � � � , (4.5)

for p P N. We denote Ai � F pγiq. If γi � rγi and F prγiq � 0 for all 1 ¤ i   p, then the
method is of order (at least) p for the invariant measure. In particular, under Assumption
2.2, we obtain for order 1 rγ0 �

�
a
� 	

� 2
σ2a

� 	

,

and in addition we have for order 2,

rγ1 �
�
ap q � 2

σ2ap q � 2
σ2ap q � 4

σ4ap q



�
�
ap q � ap q � ap q � 2

σ2ap q



�
�
ap q � 2

σ2ap q � 4
σ4ap q



.

For order 3, the expression of rγ2 can be found in the appendix.

Remark 4.10. In contrast to Section 4.2, we choose in Theorem 4.9 not to reduce the

tree for γ1 and the three trees , and for γ2 in forests with exactly one
edge linked to the root. The reason is these trees do not simplify well, and the coefficient
multiplying them vanishes for most methods (for all consistent Runge-Kutta methods for
example). If one wants to compute the fi of Section 5.1, one should integrate by parts these
trees first.
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5 Construction of high order integrators

5.1 Improvement of a method order via a modified equation

In [3], a recursive method to obtain integrators of any order for the convergence to the
invariant measure is presented. Let us suppose we have an integrator of order exactly p ¥ 1
for the invariant measure, then, using Theorem 2.6, for all j   p, A�j ρ8 � 0 and A�pρ8 � 0.
By integrating by parts, we can write

³
Rd Apφρ8dx as

³
Rd φ

1fpρ8dx. We then consider the
same numerical integrator but for the modified equation where we replaced f by f � hpfp.
Applying Theorem 2.6 to the new context, we see that this integrator is at least of order
p� 1 for the original equation.

In this section, we give tools to simplify the computation of those modified integrators,
in particular to calculate simply the operators Aj , and to find the function fp.

Example. For the θ-method (1.11), we have A1 � F pγq where γ is given by (4.2). Applying
integration by parts as described in Section 4.2, we obtain

γ �
�
θ � 1

2



� 1

2 � 1
2 � σ2

2 p1� θq � σ2p1� θq � σ2

2

� σ2

2 � σ4

8 � σ4

8 � σ4

4 � σ4

8 .

Then f1 is given by

pf1qi �
�
θ � 1

2



f 1if �

1
2g

1ffi � 1
2 divpfqfi � σ2

2 p1� θq∆fi � σ2p1� θq
ḑ

j�1
BjfiBjg

� σ2

2 ∆gfi � σ2

2

ḑ

j�1
pBjgq2fi � σ4

8 Bi∆g � σ4

8 ∆gBig � σ4

4

ḑ

j�1
BjgBi,jg

� σ4

8

ḑ

j�1
pBjgq2Big.

Remark 5.1. Note that the above computation does not suppose Assumption 2.2 to be
satisfied. But as the function g is not explicitly known in the general case in practice, we
cannot implement easily the corresponding scheme. Under Assumption 2.2, we can directly
apply Theorem 4.9 and find a simple expression of f1:

f1 �
�

1
2 � θ



pf 1f � σ2

2 ∆fq.

Application. Let us calculate the modified integrator f2, where f follows Assumption 2.2.
First we rewrite the differential operator A2 for the modified equation where we replaced f
by f � hf1. We call it Ap1q2 . We find Ap1q2 � F pγq where

γ � θp3θ � 1q � θp3θ � 1qσ
2

2 � θp4θ � 1qσ
2

2 � θ2 � θ2σ
4

4

� θ2σ2 � θp4θ � 1qσ
2

2 � θp2θ � 1qσ
2

2 � θp2θ � 1qσ
4

4 � 4θ � 1
2
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� p4θ � 1qσ
2

4 � θ2σ
2

2 � p4θ � 1qσ
2

4 � p4θ � 1qσ
4

8 � θ
σ4

2

� θσ2 � 1
6 � θ

σ4

2 � σ2

4 � σ4

8 � σ6

48 .

Using Theorem 4.9, we find

γ �
�
�2θ2 � 2θ � 1

2



�
�
�θ2 � θ � 1

4



σ2 �

�
�3θ2

2 � 3θ
2 � 1

3



σ2

�
�
�θ2 � θ � 1

6



�
�
�θ

2

4 � θ

4 �
1
24



σ4 �

�
�θ2 � θ � 1

6



σ2 .

Thus we define

f2 �
�
�2θ2 � 2θ � 1

2



f 1f 1f �

�
�θ2 � θ � 1

4



σ2f 1∆f

�
�
�3θ2

2 � 3θ
2 � 1

3



σ2
¸
i

f2pei, f 1peiqq �
�
�θ2 � θ � 1

6



f2pf, fq

�
�
�θ

2

4 � θ

4 �
1
24



σ4∆2f �

�
�θ2 � θ � 1

6



σ2p∆fq1pfq,

and, if the θ-scheme applied to dX � pf �hf1�h2f2qdt�σdW is ergodic, then it has order
3 for the invariant measure.

For f1, we recover the formula of [3, Prop. 5.1]. The computation of f2 was first done
for θ � 0 in [3, Prop. 5.2], which reveals a typographical error.

This method can give numerical integrators of any order, but it comes with a high
computing price if the partial derivatives of f are difficult to compute. In the following
sections, we present order conditions for certain classes of numerical schemes, in order to
obtain high order methods avoiding derivatives and unnecessary evaluations of f .

5.2 Order conditions for stochastic Runge-Kutta schemes

We consider stochastic Runge-Kutta schemes (1.10) for the overdamped Langevin equation
(1.1). We set ci �

s°
j�1

aij . In this section, we also assume Assumption 2.2 to simplify the

computation. Using the proposed framework, our goal is to find algebraic conditions on
the coefficients A � paijq, b � pbiq and d � pdiq to achieve a given order condition for the
invariant measure.

First, we suppose
°
bi � 1 in order for A0 � L in Assumption 2.4 to be satisfied. Then

A1φ � F pγ1qpφq where

γ1 �
¸
bici � σ2

2
¸
bid

2
i � σ2

¸
bidi � 1

2 � σ2

2 � σ4

8 .

Theorem 4.9 yields

γ1 �
�¸

bici � 1
2 � 2

¸
bidi



� σ2

2

�¸
bid

2
i �

1
2 � 2

¸
bidi



.
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Thus if we suppose¸
bi � 1,

¸
bici � 1

2 � 2
¸
bidi � 0,

¸
bid

2
i �

1
2 � 2

¸
bidi � 0,

then A1φ � 0. We have a Runge-Kutta scheme of order 2.
By continuing this methodology, we obtain the order conditions of order 3, and our

analysis allows us to obtain the conditions for any order. The following theorem states the
order conditions for Runge-Kutta methods.

Theorem 5.2. Assume Assumption 2.2 and consider an ergodic Runge-Kutta method (1.10)
with

°
bi � 1. Using the same notation as in Theorem 4.9, if A, b and d are chosen such

that F prγiq � 0 for all 1 ¤ i   p, then the method has at least order p for the invariant
measure. In particular, Table 1 gives sufficient conditions to have consistency and order 2
or 3 for the invariant measure for Runge-Kutta schemes.

Order Tree τ F pτqpφq Order condition

1 φ1f
°
bi � 1

2 φ1f 1f
°
bici � 2

°
bidi � �1

2

φ1∆f
°
bid

2
i � 2

°
bidi � �1

2

3 φ1f 1f 1f
°
biaijcj � 2

°
biaijdj �

°
bici � p° bidiq2 � 0

φ1f 1∆f
°
biaijd

2
j � 2

°
biaijdj �

°
bici � p° bidiq2 � 0

1
2
°
bic

2
i � 2

°
bidici

φ1f2pf, fq �2
°
bidi � 2

°
bid

2
i �

°
bici � �1

3°
bidiaijdj �

°
bicidi �

°
bidi �

°
bid

2
i°

φ1f2pf 1peiq, eiq �° bici �
°
biaijdj � 1

2 p
°
bidiq2 � �1

6
1
2
°
bicid

2
i �

°
bid

3
i � 2

°
bidi

φ1pp∆fq1pfqq �5
2
°
bid

2
i �

°
bicidi � 1

2
°
bici � �1

3
1
8
°
bid

4
i � 1

2
°
bid

3
i

φ1∆2f �1
2
°
bidi � 3

4
°
bid

2
i � � 1

12

Table 1: Runge-Kutta order conditions for the invariant measure (See Theorem 5.2). The sums are
over all involved indices.

Remark 5.3. To check if a scheme has weak order p, one can develop Liφ, i ¤ p, in exotic
aromatic B-series (a simple method for this computation is proposed in Section 5.3) and
prove that the forest coefficients of 1

i!L
iφ and Ai�1φ are equal, yielding the order p estimate

(1.7). In Table 2, we collect the corresponding order conditions up to order p ¤ 3. We
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recover exactly the same order conditions as first derived in [18, Thm. 4] using different
types of trees and B-series. We recall that the conditions for weak order 3 have no solution
for a method of the form (1.10) with only l � 1 noise. Indeed, fixing dp2q � 0 in Table
2, we obtain the incompatible order conditions

°
bi
�
d
p1q
i

�2 � 1
2 (third line of Table 2) and°

bi
�
d
p1q
i

�2 � 1
3 (last line of Table 2). Taking l � 2 noises in the method (1.10) is sufficient

for reaching weak order 3 for general f satisfying Assumption 2.2.

Remark 5.4. Notice that Assumption 2.2 permits us to identify the differentials F p q �
F p q and the corresponding order conditions, using Proposition 4.7. Thus, under As-
sumption 2.2, we can replace the two conditions

°
biaijdj � 1

6 and
�°

bi rdi	2
� 1

12 by one

new condition
°
biaijd

p1q
j � 1

2

�°
bid

p2q
i

	2
� 5

24 .

Remark 5.5. As explained in the introduction, the study of weak order conditions using
rooted trees is already well documented in the literature, but the framework of exotic aromatic
B-series has the advantage to involve rooted forests that do not depend on the dimension d,
which permits us to compute integration by parts and hence derive the order conditions
for the invariant measure. Since weak convergence implies convergence with at least the
same order for the invariant measure, the weak order conditions (Table 2) imply the order
conditions for the invariant measure (Table 1). In particular, comparing Table 1 and Table
2, we observe that there is a lower number of order conditions for the convergence to the
invariant measure compared to the standard weak convergence.

5.3 Order conditions for postprocessed integrators

In this section, we extend our analysis to the case of integrators combined with postpro-
cessors [47]. As stated in Theorem 2.8, it permits us to increase the order for the invariant
measure of a given method while maintaining a low number of function evaluations per time
step. We show that exotic aromatic B-series simplify this approach, but one issue remains:
the computation of the Lie bracket rL,Apsφ. This is done by the following theorem for the
composition of exotic aromatic forests and based on the Leibniz rule.
Theorem 5.6. Let γ1 and γ2 be two exotic aromatic rooted forests, and let φ : Rd Ñ R
be a smooth function. For ϕ : πpr2q Ñ V1 and ψ : Γpr2q Ñ V1, we build γϕ,ψ by plugging
all the edges connected to r2 to the nodes of γ1 according to ϕ, and all the lianas (counting
multiplicity) according to ψ. Then the composition of forests is given by

F pγ2qpF pγ1qpφqq �
¸

ϕ:πpr2qÑV1
ψ:Γpr2qÑV1

F pγϕ,ψqpφq.

Various composition rules for B-series and aromatic B-series have been studied in the
literature (see [23, 16, 8] and the references therein). The main difference from these
previous works is that we compose only the roots of exotic aromatic rooted forests, because
this corresponds to composing linear differential operators.

Proof. Using Definition 3.2, we have

F pγ1qpφq �
¸

i
v
p1q
1
,...,i

v
p1q
m1

¸
j
l
p1q
1
,...,j

l
p1q
s1

��¹
vPV 0

1

BIπpvqBJΓpvqfiv

�
BIπpr1qBJΓpr1q
φ.
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Order Tree τ F pτqpφq Order condition

1 φ1f
°
bi � 1

2 φ1f 1f
°
bici � 1

2

φ1∆f
°
bi
�
d
p1q
i

�2 �° bi
�
d
p2q
i

�2 � 1
2°

φ2pei, f 1peiqq
°
bid

p1q
i � 1

2

3 φ1f 1f 1f
°
biaijcj � 1

6

φ1f 1∆f
°
biaij

�
d
p1q
j

�2 �° biaij
�
d
p2q
j

�2 � 1
6

φ1f2pf, fq °
bic

2
i � 1

3°
φ1f2pf 1peiq, eiq

°
bid

p1q
i aijd

p1q
j �° bid

p2q
i aijd

p2q
j � 1

6

φ1pp∆fq1pfqq °
bici

�
d
p1q
i

�2 �° bici
�
d
p2q
i

�2 � 1
3

φ1∆2f
°
bi

��
d
p1q
i

�2 � �dp2qi �2
	2

� 1
3

°
φ2pei, f 1f 1peiqq

°
biaijd

p1q
j � 1

6°
φ2pf 1peiq, f 1peiqq

�°
bid

p2q
i

	2
� 1

12

°
φ2pei, f2pei, fqq

°
bicid

p1q
i � 1

3°
φ2pei, p∆fq1peiqq

°
bi
�
d
p1q
i

�3 �° bid
p1q
i

�
d
p2q
i

�2 � 1
3°

φ3pei, ej , f2pei, ejqq
°
bi
�
d
p1q
i

�2 � 1
3

Table 2: Runge-Kutta standard weak order conditions for l � 2 noises. The sums are over all
involved indices. We recover the same conditions as in [18].

.
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Then we replace φ by F pγ1qpφq and use the Leibniz rule to distribute the partial derivatives.

F pγ2qpF pγ1qpφqq �
¸

i
v
p1q
1
,...,i

v
p1q
m1

i
v
p2q
1

,...,i
v
p2q
m2

¸
j
l
p1q
1
,...,j

l
p1q
s1

j
l
p2q
1

,...,j
l
p2q
s2

��¹
vPV 0

2

BIπpvqBJΓpvqfiv

�


� BIπpr2qBJΓpr2q

����¹
vPV 0

1

BIπpvqBJΓpvqfiv

�
BIπpr1qBJΓpr1q
φ

��
�

¸
ϕ:πpr2qÑV1
ψ:Γpr2qÑV1

¸
i
v
p1q
1
,...,i

v
p1q
m1

i
v
p2q
1

,...,i
v
p2q
m2

¸
j
l
p1q
1
,...,j

l
p1q
s1

j
l
p2q
1

,...,j
l
p2q
s2

��¹
vPV 0

2

BIπpvqBJΓpvqfiv

�


�
��¹
vPV 0

1

BIπpvqYϕ�1ptvuq
BJΓpvqYψ�1ptvuq

fiv

�
BIπpr1qYϕ�1ptr1uq
BJΓpr1qYψ�1ptr1uq

φ

�
¸

ϕ:πpr2qÑV1
ψ:Γpr2qÑV1

F pγϕ,ψqpφq.
�

Example. We recall L � F p � σ2

2 q, then we can compute L2φ. Using Theorem 5.6, we
obtain

F p qpLφq � F p � � σ2

2 qpφq
and

F p qpLφq � F p � � 2 � σ2

2 qpφq.
Combining the two previous equalities, we deduce

L2φ � F p � � σ2 � σ2

2 � σ2 � σ4

4 qpφq.

Using Theorems 2.8 and 5.6, we obtain general conditions on postprocessors to increase
by 1 the order of a given method.

Theorem 5.7. Using notation and assumptions of Theorem 2.8, if the numerical scheme
and the postprocessor can be developed in exotic aromatic B-series of the respective forms
4.5 and

ErφpGnpxqqs � F p qpφq �
¸

γPEAT
1¤|γ|¤p

h|γ|apγqF pγqpφq � . . . ,

if we denote γ the exotic aromatic B-series such that F pγq � pAp � rL,Apsq and if γ � 0,
then Xn is of order p� 1 for the invariant measure. In particular, if the order 2 conditions
in Table 3 are verified, then the method has order 2 for the invariant measure. If we suppose
the order 2 for the invariant measure of the numerical method and ap q � 2

σ2ap q � 0 (in
order to have A0 � αL), and if conditions in Table 4 are verified, then the method is of
order 3 for the invariant measure.
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Tree γ Order condition

ap q � 2
σ2ap q � 2

σ2ap q � 4
σ4ap q � 2ap q � 4

σ2ap q � 0

ap q � ap q � ap q � 2
σ2ap q � σ2

2 ap q � ap q � 0

ap q � 2
σ2ap q � 4

σ4ap q � 0

Table 3: General order 2 conditions with postprocessor (See Theorem 5.7).

Theorem 5.8. Consider an ergodic Runge-Kutta method of order p ¥ 1 for the invariant
measure of the form (1.10) and the following associated postprocessor

Yi � Xn � h
s°
j�1

aijfpYjq � diσ
?
h ξn, i � 1, . . . , s,

Xn � Xn � h
s°
i�1

bifpYiq � d0σ
?
h ξn.

Assume Assumption 2.2. If γ is the exotic aromatic B-series such that F pγq � pAp�rL,Apsq
and if A, b, d, A, b, d, d0 are chosen such that γ � 0 then the postprocessed method Xn

has at least order p� 1 for the invariant measure. In particular, if the conditions of order
2 in Table 5 are verified, then the postprocessed integrator has order 2. If the Runge-
Kutta method has order 2 for the invariant measure (see Table 1), if

°
bi � d0

2 and if the
conditions of order 3 in Table 5 are verified, then the method has order 3.

Remark 5.9. The condition of in Table 3 is not modified by the postprocessor as it
does not depend on any apγq. Thus if the scheme is a consistent Runge-Kutta method, this
condition is automatically satisfied (see also Remark 4.10). If the postprocessor satisfies the
equation

ap q � 2
σ2ap q � 4

σ4ap q � 0, (5.1)

then the conditions of , and of Table 4 are not modified by the postprocessor,
and thus are automatically satisfied for consistent Runge-Kutta methods. Equation (5.1) is
verified for the class of Runge-Kutta methods for postprocessors presented in Theorem 5.8
that satisfy A0 � αL.

Example. Under Assumption 2.2, the following Runge-Kutta method, introduced in [47],
is of order 2 for the invariant measure of (1.4) (if it is ergodic).

Xn�1 � Xn � hfpXn�1 � �1�?2
2 σ

?
hξnq � σ

?
hξn,

Xn � Xn � h
?

2
2 fpXnq �

?
4
?

2�1
2 σ

?
h ξn.

Indeed, its coefficients, placed in the following Butcher tableau, fulfil the conditions of order
2 of Theorem 5.8 (See Table 5).

c A d c A d

b b d0
� 1 1 1�?2

2

?
2

2

?
2

2

?
4
?

2�1
2

1
?

2
2

?
4
?

2�1
2
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Tree τ Order condition

ap q � 2
σ2ap q � 2

σ2ap q � 2
σ2ap q � 2

σ2ap q � 4
σ2ap q � 4

σ4ap q

� 12
σ4ap q � 24

σ6ap q � 2ap q � 4
σ2ap q � 2ap q � 8

σ2ap q � 16
σ4ap q � 0

ap q � ap q � ap q � ap q � ap q � 2ap q � 2
σ2ap q � 6

σ2ap q

� 12
σ4ap q � σ2

2 ap q � ap q � 2ap q � σ2ap q � 4ap q � 8
σ2ap q � 0

ap q � 2
σ2ap q � 4

σ4ap q � 2
σ2ap q � 4

σ4ap q

� 4
σ4ap q � 8

σ6ap q � ap q � ap q � 2
σ2ap q � 0

ap q � ap q � ap q � ap q � 2ap q � 2
σ2ap q � ap q � 2ap q � 4

σ2ap q

� 8
σ2ap q � 16

σ4ap q � σ2ap q � σ2ap q � 2ap q � 4ap q � 8
σ2ap q � 0

ap q � 2
σ2ap q � ap q � 2

σ2ap q � ap q � 4
σ2ap q � 4

σ2ap q

� 4
σ2ap q � 8

σ4ap q � σ2

2 ap q � ap q � 2ap q � 2ap q � 4
σ2ap q � 0

ap q � ap q � ap q � ap q � ap q � ap q

� 2
σ2ap q � σ2

2 ap q � σ2

2 ap q � σ2

2 ap q � ap q � 0

ap q � 2
σ2ap q � 4

σ4ap q � 8
σ6ap q � 0

ap q � ap q � 2ap q � 2
σ2ap q � 2

σ2ap q

� 6
σ2ap q � 12

σ4ap q � σ2ap q � 2ap q � 4
σ2ap q � 0

ap q � 2
σ2ap q � 2

σ2ap q � 4
σ4ap q � 4

σ2ap q

� 12
σ4ap q � 24

σ6ap q � 4ap q � 8
σ2ap q � 16

σ4ap q � 0

Table 4: General order 3 conditions with postprocessor (See Theorem 5.7).
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Order Tree τ Order condition

2
°
bici � 2

°
bidi � 2

°
bi � 2d0

2 � �1
2°

bid
2
i � 2

°
bidi �

°
bi � d0

2 � �1
2°

biaijcj � 2
°
biaijdj �

°
bici

3 �p° bidiq2 � 2
°
bici � 4d0

°
bidi � d0

4 � 0°
biaijd

2
j � 2

°
biaijdj �

°
bici

�p° bidiq2 �
°
bici �

°
bidi

2 � 4d0
°
bidi � d0

4 � 0
1
2
°
bic

2
i � 2

°
bidici � 2

°
bidi � 2

°
bid

2
i

�° bici �
°
bici � 2d0

°
bidi � d0

4

2 � �1
3°

bidiaijdj �
°
bicidi �

°
bidi �

°
bid

2
i �

°
bici

�° biaijdj � 1
2 p
°
bidiq2 �

°
bici � 2d0

°
bidi � d0

4

2 � �1
6

1
2
°
bicid

2
i �

°
bid

3
i � 2

°
bidi � 5

2
°
bid

2
i �

°
bicidi

�1
2
°
bici � 1

2
°
bici � 1

2
°
bidi

2 � 2d0
°
bidi � d0

4

2 � �1
3

1
8
°
bid

4
i � 1

2
°
bid

3
i � 1

2
°
bidi

�3
4
°
bid

2
i � 1

4
°
bidi

2 � 1
2d0

°
bidi � d0

4

8 � � 1
12

Table 5: Order conditions for Runge-Kutta method with Runge-Kutta postprocessor (See Theorem
5.8). The sums are over all involved indices.

5.4 Order conditions for partitioned methods

In (1.1), we assume f � f1�f2 and we consider partitioned integrators that apply different
numerical treatments to each fi. We explain in this section how to extend the exotic
aromatic B-series formalism to compute order conditions for such partitioned integrators.
The advantage is to treat differently each part of f according to their properties. For
example, if f1 is stiff and f2 is non-stiff, one would like to apply an implicit method to f1
and an explicit method for f2 (IMEX methods).

Here we follow the formalism of [23, Sect. III.2] for bicoloured B-series, called P-series.
We introduce white nodes ; they represent the function f2. Black nodes now correspond to
f1 but the root still corresponds to φ. We call these new forests exotic aromatic P-forests.
There are two slight changes in the computation rules compared to the non-partitioned
case:

• Simplification rule: if f1 � ∇V1 and f2 � ∇V2 are both gradients, then

A B � 2
σ2

�
A

B �
A

B



.

Furthermore, the node B can be replaced by an aromatic root or a white node.
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• The operator L is now written as

L � F p � � σ2

2 q.

In addition to the partitioning of the method, one can also add a postprocessor. The results
of Section 4.3, 5.2 and 5.3 are straightforwardly adapted to the P-forests.

Theorem 5.10. Consider a Runge-Kutta method of order p of the form

Yi � Xn � h
s°
j�1

aijf1pYjq � xaijf2pYjq � diσ
?
hξn, i � 1, . . . , s,

Xn�1 � Xn � h
s°
i�1

bif1pYiq � pbif2pYiq � σ
?
hξn,

together with the following Runge-Kutta postprocessor

Yi � Xn � h
s°
j�1

aijf1pYjq � xaijf2pYjq � diσ
?
h ξn, i � 1, . . . , s,

Xn � Xn � h
s°
i�1

bif1pYiq � pbif2pYiq � d0σ
?
h ξn.

Under the notation and assumptions of Theorem 5.8, if we suppose f1 and f2 are gradients,
if we choose f1, f2 and the coefficients of the method such that γ � 0 then the method has
at least order p� 1 for the invariant measure. In particular, the conditions for consistency
and order 2 are in Table 6.

Order Tree τ F pτqpφq Order condition

1 φ1f1
°
bi � 1

φ1f2
° pbi � 1

2 φ1f 11f1
°
bici � 2

°
bidi � 2

°
bi � 2d0

2 � �1
2

φ1f 11f2
°
bipci � 2

°
bidi �

°
bi �

° pbi � 2d0
2 � �1

2

φ1f 12f1
° pbici � 2

° pbidi �° bi �
° pbi � 2d0

2 � �1
2

φ1f 12f2
° pbipci � 2

° pbidi � 2
° pbi � 2d0

2 � �1
2

φ1∆f1
°
bid

2
i � 2

°
bidi �

°
bi � d0

2 � �1
2

φ1∆f2
° pbid2

i � 2
° pbidi �° pbi � d0

2 � �1
2

Table 6: Order conditions for partitioned Runge-Kutta method with postprocessor (See Theorem
5.10). The sums are over all involved indices.
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Example. Using the previously introduced formalism, we see that, if f1 and f2 are gradients
and f � f1 � f2 satisfies Assumption 2.2, the following method, adapted from [10, Lemma
2.9], is of order 2 for the invariant measure of (1.4) (if it is ergodic).

Xn�1 � Xn � h
2f1pXn�1 � 1

2σ
?
hξnq � h

2f1pXn�1 � 3
2σ
?
hξnq

�hf2pXn � 1
2σ
?
hξnq � σ

?
hξn,

Xn � Xn � 1
2σ
?
h ξn.

It can be put in Runge-Kutta form with the coefficients below:

c A pc pA d

b pb �
0 0 0 0 0 0 0 0 1{2
1 0 1{2 1{2 1 1 0 0 1{2
1 0 1{2 1{2 1 1 0 0 3{2

0 1{2 1{2 1 0 0

and s � 0 and d0 � 1
2 for the postprocessor.

If we add a family of independent noises pχnqn independent of pξnqn, then by extending
Theorem 5.10, we can show that, under the same hypothesis as the previous example, the
following IMEX method has order 2 for the invariant measure of (1.4):

Xn�1 � Xn � hf1pXn�1 � 1
2σ
?
hχnq � hf2pXn � 1

2σ
?
hξnq � σ

?
hξn,

Xn � Xn � 1
2σ
?
h ξn.

5.5 Non-reversible perturbation

An interesting modification of (1.4) is to introduce a non gradient perturbation that pre-
serves the invariant measure. It permits for some classes of problems to improve the rate
of convergence to equilibrium [32], and it can also reduce the variance [22]. As in Section
5.4, we consider the equation (1.1) where f � f1 � f2 and we use bicoloured forests. We
suppose f1 � �∇V is a gradient, and f2 is a perturbation of f1 that satisfies

div
�
f2e

� 2
σ2 V

	
� 0. (5.2)

The perturbation f2 does not modify the invariant measure. Indeed equation (5.2) implies
that the adjoint of Bφ � φ1pf2q satisfies B�ρ8 � 0, and thus the invariant measure is
preserved. A simple example of such non gradient perturbation is f2 � J∇V , with J a
fixed antisymmetric matrix. We can now apply all the results of Section 4 that do not use
Assumption 2.2. We have the following useful properties.

• We still have the simplification rule (see Proposition 4.7): A B � 2
σ2

A

B. Furthermore,
the node B can be replaced by an aromatic root or a white node.

• The generator reads L � F p � � σ2

2 q.

• We have F p q � �F p q, and these differentials vanish if f2 � J∇V .

The two first properties allow us to simplify lianas in the forests as we did in Section 5.4.
Then we are left with forests with white nodes such as . This is where the last property

comes in handy, as we can integrate by part this tree and obtain � � . We deduce the
following theorem.
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Theorem 5.11. Consider an ergodic Runge-Kutta method and a postprocessor as in The-
orem 5.10, and suppose f1 � �∇V and f2 satisfies (5.2). Then under the notation and
assumptions of Theorem 5.8, if the coefficients of the method are chosen such that γ � 0
then the method has at least order p � 1 for the invariant measure. In particular, the
conditions for order 1 and order 2 are in Table 7.

Order Tree τ F pτqpφq Order condition

1 φ1f1
°
bi � 1

2 φ1f 11f1
°
bici � 2

°
bidi � 2

°
bi � 2d0

2 � �1
2

φ1f 11f2
°
bipci �° bi �

° pbi � 0

φ1f 12f1
° pbici � 2

° pbidi �° pbi �° bi �
° pbi � 2d0

2 � 0

φ1f 12f2
° pbipci � 1

2

�° pbi	2
� 0

φ1∆f1
°
bid

2
i � 2

°
bidi �

°
bi � d0

2 � �1
2

φ1∆f2
° pbid2

i � 2
° pbidi �° pbi �° pbi � d0

2 � 0

Table 7: Order conditions for partitioned Runge-Kutta method with postprocessor for the perturbed
equation (See Theorem 5.11). The sums are over all involved indices.

We note that if f2 � J∇V , we have σ2

2 � � � . In this case, the order condition for

can be omitted and the two conditions of and are respectively replaced by

2
¸ pbidi �¸ pbi �¸ bipci �¸ pbid2

i �
¸
bi � d0

2 � 0,¸ pbici �¸ pbid2
i �

¸
bi � d0

2 � 0.

Remark 5.12. In order for the method to satisfy A0 � L, the condition
° pbi � 1 should

be added in Table 7, but it is not necessary to achieve order 1 for the invariant measure.

Example. If f1 satisfies Assumption 2.2 and f2 satisfies (5.2), the following consistent
postprocessed scheme has order 2 for the invariant measure (if it is ergodic):

Xn�1 � Xn � hf1pXn � σ
2
?
hξnq � 5

4hf2pXn � σ
2
?
hξnq

�1
4hf2pXn � 2hf2pXn � σ

2
?
hξnq � σ

2
?
hξnq � σ

?
hξn,

Xn � Xn � σ
2
?
h ξn.

(5.3)

If f2 � J∇V , it needs two evaluations of ∇V per timestep similarly to a standard Runge-
Kutta weak order 2 method. For f2 � 0, note that the scheme (5.3) coincides with the one
proposed in [30], formulated in a different manner (See [47]).
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Appendix
Expression of rγ2 in Theorem 4.9.

rγ2 �

�
ap q �

2
σ2 ap q �

2
σ2 ap q �

2
σ2 ap q �

2
σ2 ap q �

4
σ2 ap q �

4
σ4 ap q

�
12
σ4 ap q �

24
σ6 ap q



�

�
ap q � ap q � ap q � ap q � ap q � 2ap q

�
2
σ2 ap q �

6
σ2 ap q �

12
σ4 ap q



�

�
ap q �

2
σ2 ap q �

4
σ4 ap q �

2
σ2 ap q

�
4
σ4 ap q �

4
σ4 ap q �

8
σ6 ap q



�

�
ap q � ap q � ap q � ap q � 2ap q

�
2
σ2 ap q � ap q � 2ap q �

4
σ2 ap q �

8
σ2 ap q �

16
σ4 ap q



�

�
ap q

�
2
σ2 ap q � ap q �

2
σ2 ap q � ap q �

4
σ2 ap q �

4
σ2 ap q �

4
σ2 ap q �

8
σ4 ap q




�

�
ap q � ap q � ap q � ap q � ap q � ap q �

2
σ2 ap q



�

�
ap q

�
2
σ2 ap q �

4
σ4 ap q �

8
σ6 ap q



�

�
ap q � ap q � 2ap q �

2
σ2 ap q

�
2
σ2 ap q �

6
σ2 ap q �

12
σ4 ap q



�

�
ap q �

2
σ2 ap q �

2
σ2 ap q �

4
σ4 ap q

�
4
σ2 ap q �

12
σ4 ap q �

24
σ6 ap q



.
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