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Abstract

Exotic aromatic B-series were originally introduced for the calculation of order con-
ditions for the high order numerical integration of ergodic stochastic differential equa-
tions in Rd and on manifolds. We prove in this paper that exotic aromatic B-series
satisfy a universal geometric property, namely that they are characterised by locality and
orthogonal-equivariance. This characterisation confirms that exotic aromatic B-series are
a fundamental geometric object that naturally generalises aromatic B-series and B-series,
as they share similar equivariance properties. In addition, we classify with stronger equiv-
ariance properties the main subsets of the exotic aromatic B-series, in particular the exotic
B-series. Along the analysis, we present a generalised definition of exotic aromatic trees,
dual vector fields, and we explore the impact of degeneracies on the classification.
Keywords: Butcher series, exotic aromatic B-series, equivariance, geometric numerical
integration, stochastic differential equations.
AMS subject classification (2020): 15A72, 37C81, 41A58, 60H35, 65C30.

1 Introduction
Consider the ordinary differential equation

y1ptq � fpyptqq, yp0q � y0, (1.1)

where f : Rd Ñ Rd is a Lipschitz vector field and y0 P Rd, and a one-step integrator for
solving (1.1) of the form

yn�1 � Φpyn, hq, (1.2)

where h is the timestep of the method. Following the backward error analysis idea [15], in
order to study the properties of the integrator (preservation of invariants or measures, order,
behaviour in long-time,. . . ), it proves convenient to rewrite the scheme as the exact solution
of a modified ODE

ỹ1ptq � f̃pỹptqq.

For large classes of integrators, such as Runge-Kutta methods, the modified vector field f̃ can
be expressed as a formal Taylor series in f and its partial derivatives, called a B-series [10].
The paper [32] presents universal geometric conditions on f̃ to show that it can be written
as a B-series. More precisely, any smooth local map that is invariant under affine change of
coordinates can formally be written as a B-series.
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Originally introduced in [7, 16], Butcher series proved to be a powerful tool for the con-
struction of numerical integrators for solving ODEs with a high order of accuracy and preserv-
ing geometric properties (see the textbooks [15, 8, 9] and the review [31]). The papers [11, 17]
introduced simultaneously an extension of B-series called aromatic B-series for the study of
volume preserving integrators (see also the recent works [3, 4, 25, 22, 6]). In this context,
one is interested in finding methods (1.2) satisfying divpf̃q � 0. The aromatic B-series proves
to be a crucial tool as the standard operations on vector fields, the divergence operator, and
Taylor expansions rewrite conveniently in aromatic B-series. One then wonders whether B-
series and aromatic B-series are merely tools for manipulating tedious Taylor expansions or
natural far-reaching algebraic objects. This question is answered in [30, 32] where universal
geometric characterisations of B-series and aromatic B-series are given (see also [29, 31]).

In the context of stochastic differential equations (SDEs), it is known that there is no
backward error analysis in the strong sense in general [33]. However, there exists a similar
idea for ergodic SDEs. Consider overdamped Langevin dynamics with Stratonovich noise of
the form

dY ptq � ΠMpY ptqqfpY ptqqdt�ΠMpY ptqq � dW ptq, Y p0q � Y0, (1.3)
where f : Rd Ñ Rd is a Lipschitz vector field, Y0 P Rd, ΠMpxq is the orthogonal projection on
the tangent bundle of M at the point x P M (note that ΠMpxq � Id if M � Rd), and W
is a standard d-dimensional Brownian motion in Rd on a probability space equipped with a
filtration and fulfilling the usual assumptions. Under a growth assumption on f , the solution
of (1.3) is ergodic, that is, it follows a deterministic distribution, called the invariant measure,
in long time [14, 12, 2]. In [23, 24, 21], an extension of the aromatic B-series, called exotic
aromatic B-series, is introduced to write conveniently Taylor expansions (called Talay-Tubaro
expansions [34] in this context) of the solutions of (1.3) and to build high-order approximations
of the invariant measure of (1.3), with applications in molecular dynamics [27]. The main
idea is to introduce two new types of edges to represent the Laplacian and the scalar product.
Ergodic integrators for solving (1.3) have an invariant measure that can be written as the
invariant measure of an exact problem of the form (1.3) with a modified vector field f̃ that
typically has the form

hf̃ � hf iBi�h
2rc1f

i
jj�c2f

i
jf

j�c3f
jf jf isBi�h

3rc4f
i
jjkk�c5f

j
kf

i
jk�c6f

kfkf jf jf isBi�. . . (1.4)

where Bi is the vector basis of Rd, the cn are real constants, and each term is summed on
all involved indices. Note that the expansion (1.4) is a linear combination of monomials in
the components f i and their partial derivatives, where we use pairs of indices. Note also
that the power of h associated to a monomial is not given by the number of occurrences
of f , in opposition to the deterministic context. For the integrators presented in [23, 24] for
solving (1.3), the modified vector field can be expressed as an exotic B-series [6] in Rd (see
examples in [23, Sec. 5.1]) and as a partitioned exotic aromatic B-series on manifolds at least
for the first orders [24, 6]. Moreover, the Talay-Tubaro expansions presented in [23, 24] are
exotic aromatic S-series [5].

For the high-order approximation of (1.3), the number of terms in the Taylor expansions
explodes quickly, which makes the exotic aromatic B-series a crucial tool for the study of
integrators for solving SDEs (see, for instance, the order two expansion in [24, App. D]).
A natural question is the following: are exotic aromatic B-series just a technical tool used
for carrying out tedious calculations? Or are they fundamental objects satisfying similar
geometric properties as B-series and aromatic B-series? In this paper, we show that the
exotic aromatic B-series satisfy a universal equivariance property, which justifies that the
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exotic aromatic B-series formalism is a natural extension of B-series and aromatic B-series.
We extend this result to characterise subsets of the exotic aromatic B-series, such as the exotic
B-series. This work also allows us to give a more general definition of exotic aromatic B-series,
free of the degeneracies introduced in the numerical context.

The article is organized as follows. We present in Section 2 the definition of the geometric
properties used in the characterisation, the general definition of the exotic aromatic B-series,
and the main results of the paper. The characterisation of exotic aromatic B-series is proven
in Section 3, while we derive the strong classification of exotic aromatic B-series in Section 4.
We give outlooks on future works in Section 5.

2 Preliminaries and main results
This section is devoted to the definition of locality, equivariance and decoupling. We then give
a new general definition of exotic aromatic trees and their associated elementary differential.
The main results of the paper are presented in Subsection 2.3.

2.1 Locality, equivariance, and partitions

We define the geometric properties used in the characterisation of exotic aromatic B-series.
A natural property of modified vector fields is locality.

Definition 2.1. Let d ¥ 0, a map φd : XpRdq Ñ XpRdq is local if

supppφdpfqq � supppfq, supppfq � tx P Rd, fpxq � 0u.

In [32], the aromatic B-series are characterised by locality and a property of equivariance.
Let XpRdq be the set of smooth vector fields on Rd and G be a finite dimensional Lie subgroup
of the set of diffeomorphisms DiffpRdq on Rd. The group G has the form H 
Rd, where H is
a subgroup of GLdpRq called the isotropy group. An element g � pA, bq P G acts on a vector
field f P XpRdq by

pg � fqpxq � AfpA�1px� bqq.

The G-equivariance is the compatibility with the action of G on vector fields.

Definition 2.2. A map φd : XpRdq Ñ XpRdq is G-equivariant if

φdpg � fq � g � φdpfq, g P G, f P XpRdq.

In this work, we consider G � H 
 Rd, where H is a matrix group called the isotropy
group. If H � GLdpRq, the G-equivariance is written for simplicity GL-equivariance, while
we write orthogonal-equivariance if H � OdpRq. The first main result of this paper is the
characterization of exotic aromatic B-series with orthogonal-equivariance and locality.

The second goal of this work is to characterize the subsets of exotic aromatic B-series, in
particular the exotic B-series. In this context, the dimension d ¥ 0 of the problem plays an
important role, so that we rely on sequences of maps φ � pφd : XpRdq Ñ XpRdqqd indexed by
the dimension d. Such a sequence is local (respectively G-equivariant) if φd is local (respec-
tively G-equivariant) for all d. To observe the interactions between the dimensions, the notion
of equivariance is extended to affine transformations [30], and we refer to such a property as
strong equivariance in the following.
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Definition 2.3. Let the set of affine transformations

AffpRd1 ,Rd2q � ta : Rd1 Ñ Rd2 , apxq � Ax� b, pA, bq P Rd2�d1 � Rd2u,

and HpRd1 ,Rd2q be a subset defined for all dimensions d1 and d2. A sequence of smooth
maps φ � pφd : XpRdq Ñ XpRdqqd is equivariant with respect to H if for all d1, d2, for
all apxq � Ax� b P HpRd1 ,Rd2q and x P Rd1, φ satisfies

f2papxqq � Af1pxq ñ φd2pf2qpapxqq � Aφd1pf1qpxq, f1 P XpRd1q, f2 P XpRd2q.

A sequence of smooth maps φ � pφdqd is affine-equivariant if it is equivariant with respect to
all affine transformations in Aff.

The different subsets of AffpRd1 ,Rd2q that we consider are associated to the classical
homogeneous spaces corresponding to the Lie-group H � OdpRq:

SpRd1 ,Rd2q � tapxq � Ax� b P AffpRd1 ,Rd2q, ATA � Id1u, (2.1)
GpRd1 ,Rd2q � tapxq � Ax� b P AffpRd1 ,Rd2q, AAT � Id2u. (2.2)

The transformations in (2.1) are the left-orthogonal transformations and correspond to the
Stiefel manifold, while the right-orthogonal transformations in (2.2) correspond to the Grass-
mann manifold. The associated equivariance properties are called Stiefel-equivariance and
Grassmann-equivariance. A sequence φ is said to be semi-orthogonal-equivariant if it is both
Stiefel-equivariant and Grassmann-equivariant.

The elementary differentials associated to standard B-series keep decoupled systems decou-
pled. Some exotic aromatic B-series also satisfy this property, which motivates the following
definition. Similarly to [30], for f1 P XpRd1q and f2 P XpRd2q, we use the notation

h � f1 ` f2 P XpRd1�d2q, hpx, yq � pf1pxq, f2pyqq.

Definition 2.4. A sequence φ � pφd : XpRdq Ñ XpRdqqd is decoupling if for all f1 P XpRd1q
and f2 P XpRd2q, φ satisfies

φd1�d2pf1 ` f2q � φd1pf1q ` φd2pf2q,

that is, for all x P Rd1, y P Rd2,

φd1�d2ppf1pxq, f2pyqqq � pφd1pf1qpxq, φd2pf2qpyqq.

A sequence φ is trivially decoupling if for all f P XpRd1q, φ satisfies

φd1�d2pf ` 0q � φd1pfq ` 0.

The Stiefel-equivariance and Grassmann-equivariance properties are stronger than the
orthogonal-equivariance in the following sense. The proof is omitted as it is nearly identical
to [30, Lem. 4.2 and 6.1].

Proposition 2.5 ([30]). If φ is Stiefel-equivariant, then φ is local, orthogonal-equivariant,
and trivially decoupling. If φ � pφd : XpRdq Ñ XpRdqqd is Grassmann-equivariant, then φ is
orthogonal-equivariant, trivially decoupling, and decoupling.
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We summarise the links between the different geometric properties in the following graph
for clarity.

semi-orthogonal-equivariance
Stiefel-equivariance

Grassmann-equivariance

locality

decoupling

orthogonal-equivariance

trivially decoupling

2.2 Exotic aromatic trees

Introduced originally in [23, 24] for the calculation of the order conditions for the approxi-
mation of ergodic stochastic differential equations, the exotic aromatic trees are an extension
of aromatic trees that involve two new kind of edges: lianas and stolons. The definition we
give in the present paper is a generalization of the one originally presented in [23, 24] (see
also [5, 6]). It reduces to the same definition under a regularity assumption discussed in
Section 4.3. We choose an approach based on permutations as in [32] (see also [3, 22]).

Definition 2.6. We consider graphs of the form pV,A0, σ, τq with V a finite set of vertices
and A0 a finite set of arrows. The vertices are indexed from 1 to |V |, and the arrows from 0
to |A|, where A � A0zt0u. The map τ : A Ñ V is the target map. The source map is a
permutation σ : V YA0 Ñ V YA0 that has no fixed points and satisfies σ � σ � id. Two such
graphs are equivalent if there exists a bijection between their sets of nodes and arrows that are
compatible with the source and target maps. An exotic aromatic tree is an equivalence class
of such graphs. We denote Γ the set of exotic aromatic trees.

Definition 2.6 differs from standard definitions of directed graphs as the source map usually
sends arrows to nodes. The extension presented here allows arrows to be sources of arrows and
vertices to be sources of vertices. If σpa1q � a2, we say that the unordered tuple pa1,a2q is a
liana and we represent it with a dashed edge between the two nodes τpa1q and τpa2q, that can
be identical. If σpv1q � v2, we call the unordered tuple pv1, v2q a stolon and we draw it with
a double edge between v1 and v2. The set of lianas is denoted L and the set of stolons is S.
An exotic aromatic tree without lianas and stolons is called an aromatic tree, an extension of
standard trees allowing for loops. A loop is a list of nodes pv1, . . . , vKq such that there is a
standard edge linking v1 to v2, . . . , vK to v1 (also called K-loop in [17]). Note that an exotic
aromatic tree is an aromatic tree if and only if σpV q � A0. In this case, Definition 2.6 reduces
to an equivalent definition of the one in [32]. We refer to Table 1 for examples.

Example. Let the exotic aromatic tree γ � pV,A0, σ, τq with the nodes V � t1, 2, 3, 4u, the
arrows A0 � t0,1,2,3u, and the following source and target maps

σ � p0, 1qp1,2qp2, 3qp3, 4q, τ � p2, 3, 4q,

where we use the notation τ � pτp1q, . . . , τp|A|qq. The tree γ has one loop p4q, one liana p1,2q,
and one stolon p2, 3q. The associated graph is the following, where we detail the vertices and
arrows for clarity.

1

0
2 3

1 2
4

3
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An exotic aromatic tree has a unique root r defined the following way. If σp0q P V , r � σp0q
is the root and 0 is called a ghost arrow. If σp0q P A, the liana r � p0, σp0qq P L is the root and
is called a ghost liana. We draw the ghost arrow (respectively ghost liana) on the graphical
representations of exotic aromatic trees as an edge (respectively dashed edge) with one end
left unattached. In the aromatic context, the ghost arrow is usually omitted on the graphical
representation, hence the name.

We say that two elements x, y P V YA0 are neighbours if σpxq � y or τpxq � y or τpyq � x.
This defines a notion of connectedness on exotic aromatic trees. The connected components
without the root are called aromas and a finite unordered collection of aromas is a multi-aroma.
The connected component with the root is a connected exotic aromatic tree. We denote Γc

the set of connected exotic aromatic trees and Γ0 the set of multi-aromas, also represented
as equivalence classes of graphs pV,A, σ, τq without the arrow 0. The aromas are gathered
in Γ0

c . An exotic aromatic tree decomposes into a number of aromas and one connected exotic
aromatic tree. This notion of connectedness is a strong motivation to understand the exotic
aromatic trees as graphs and not as trees as done beforehand in the literature. If there are
no lianas and no stolons, we find the standard definition of aromas and rooted trees in the
context of aromatic trees.

We define an exotic tree as an exotic aromatic tree that reduces to a standard Butcher
tree when removing all the lianas. Note that there is a difference between the notions of exotic
trees and connected exotic aromatic trees. A connected exotic aromatic tree does not reduce
to a tree in general when removing the lianas.

Example. Let the following exotic aromatic trees

γ1 � , γ2 � , γ3 � .

The exotic aromatic tree γ1 is a disconnected aromatic tree with one aroma. The graph γ2 is
connected, but is not an exotic tree as removing the lianas of γ2 yields γ1, which is not a tree.
On the other hand, γ3 is an exotic tree.

We denote the set of nodes that are the target of j arrows by Vj . For a given aromatic
tree γ, we define its composition κ : N Ñ N by κpjq � |Vj |, and its derived composition
by κ1pjq � jκpjq. A straightforward observation yields that the cardinals of V and A sat-
isfy |V | � |κ| and |A| � |κ1|, where |κ| � κp0q � κp1q � . . . We write Γκ the set of exotic
aromatic trees with composition κ and Γm the set of exotic aromatic trees such that |κ| � m.
Note that Γκ is finite while Γm is infinite for all m. Contrary to the case of Butcher trees
and aromatic trees, the order of an exotic aromatic tree is not given by the number of its
nodes |κ|.

Lemma 2.7. Define the order1 |γ| of an exotic aromatic tree γ P Γκ by |γ| � |V | � |L| � |S|.
Then the following identity holds

|κ| � |κ1| � 1 � 2|γ|. (2.3)

We mention that in the aromatic context, the order of an aromatic tree coincides with the
number of nodes and (2.3) becomes

|γ| � |κ| � |κ1| � 1. (2.4)
1A similar definition of the order of an exotic aromatic tree is given in the works [23, 24]. Note that the

order of an exotic aromatic tree is not the number of nodes in general.
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If an exotic aromatic tree satisfies (2.4), it does not imply that γ is aromatic. In fact, there
exists an infinite number of exotic aromatic trees satisfying (2.4) that do not reduce to aro-
matic trees: the exotic aromatic trees with the same number of stolons and lianas. In the
context of branched rough paths, a similar identity to (2.4) on multi-indices is used in [28,
eq. (6.3)], and the composition κ is called the fertility in this context.

Proof of Lemma 2.7. The arrows are either part of a liana or are standard arrows whose source
are nodes. We denote A�

0 the latter set. Similarly, the nodes of γ P Γκ can be decomposed in
two sets: the nodes that are the source of an arrow in A�

0, gathered in V �, and the ones that
are the source of no arrows (the stolons). We observe that

|V | � |V �| � 2|S|, |A0| � |A�
0| � 2|L|.

Each node in V � is the source of a unique arrow in A�
0, so that |V �| � |A�

0|. Thus, we deduce

|κ| � |κ1| � 1 � |V | � |A0| � 2p|V | � |L| � |S|q � 2|γ|,

which gives the desired identity (2.3).

In Table 1, we present the list of the exotic aromatic trees of order one and two (see
also Appendix A for the order three). On the contrary of the aromatic case, there exists an
infinite number of exotic aromatic trees for a given number of nodes |κ| ¡ 0. Indeed, adding
any number of lianas to an exotic aromatic tree does not modify the value of |κ|, but gives a
different tree.

|γ| |κ| κ κ1 τ σ γ Fpγqpfq

1 1 p1q p0q p0, 1q f iBi

2 1 p0, 0, 1q p0, 0, 2q p1, 1q p0, 1qp1,2q f i
jjBi

p0,1qp2, 1q f j
ijBi

2 2 p1, 1q p0, 1q p1q p0, 1qp1, 2q f i
jf

jBi

p0, 2qp1, 1q f j
j f

iBi

p0,1qp1, 2q f jf j
i Bi

2 3 p3q p0q p0, 1qp2, 3q f if jf jBi

Table 1: List of the exotic aromatic trees of order one and two, with their associated composition,
derived composition, target map, source map, and elementary differential (see Definition 2.8). We use
the notation τ � pτp1q, . . . , τp|κ1|qq.

2.3 Characterisation of exotic aromatic B-series

Butcher trees are used to represent elementary differentials, in order to represent conveniently
Taylor expansions in numerical analysis [15]. We associate an elementary differential to each
exotic aromatic tree. We use the standard notation Bi for the vector basis of Rd.
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Definition 2.8. Given a smooth vector field f P XpRdq and γ � pV,A0, σ, τq P Γ an exotic
aromatic tree, the elementary differential Fdpγq associated to γ is the following vector field

Fdpγqpfq �
¸

i1,...,i|κ|
i0,...,i

|κ1|

¹
vPV

f iv
iτ�1ptvuq

δiσBi0 ,

where iτ�1ptvuq � il1 . . . ilm for τ�1ptvuq � tl1, . . . , lmu and δiσ �
±|γ|

j�1 δipj ,iqj
for the source

map σ �
±|γ|

j�1ppj , qjq with δi,j � 1 if i � j and 0 else. The elementary differential map of
an exotic aromatic tree γ is the following sequence of maps indexed by the dimension of the
problem

Fpγq � pFdpγq : XpRdq Ñ XpRdqqd.

The maps Fd are extended by linearity to SpanpΓq.

Note that for a fixed dimension d, the elementary differential map Fd is not injective
in general. There can be multiple ways to write a given elementary differential with exotic
aromatic trees if the dimension d is too low. For instance, in dimension d � 1, all the trees
with composition κ represent the same elementary differential

F1pγqpfq �
8¹

j�0
pf pjqqκpjq.

This is a strong motivation for considering sequences of maps Fpγq � pFdpγqqd indexed by
the dimension of the problem.

Remark 2.9. The elementary differential extends to multi-aromas γ � pV,A, σ, τq P Γ0 by

Fdpγqpfq �
¸

i1,...,i|κ|
i1,...,i

|κ1|

¹
vPV

f iv
iτ�1ptvuq

δiσ .

Example. Consider the following exotic aromatic tree γ and its associated elementary dif-
ferential

γ � , Fpγq �
¸

iv ,ia

f i1f i2f i3
i1i2

δi0,i1δi1,i2δi2,i3Bi0 �
¸
i,j,k

f ifkfk
jjBi � pf,∆fqf.

Further examples are presented in Table 1. Note that in the elementary differentials, every
index appears twice. For aromatic trees, every index appears both at the top and at the bottom,
while this is not the case in general for exotic aromatic trees.

An exotic aromatic B-series is a formal series indexed over exotic aromatic trees. As we
consider Taylor expansions and thus use the grading by the number of nodes, we consider
series with a finite number of trees with m nodes for all m. This assumption is not required
in the numerical applications [23, 24] as the expansions are graded naturally by the order of
the trees and not by the number of nodes.

Definition 2.10. Given a coefficient map b : Γ Ñ R that has finite support on Γm for m ¡ 0,
the associated exotic aromatic B-series in dimension d is the following formal series

Bdpbq �
¸

m¡0

¸
γPΓm

bpγqFdpγq.

An exotic aromatic B-series is a sequence Bpbq � pBdpbqqd indexed by the dimension.
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The first main result of this paper is the characterization of exotic aromatic B-series with
orthogonal-equivariance and locality.

Theorem 2.11. Let φ � pφd : XpRdq Ñ XpRdqqd be a sequence of smooth maps. Then, the
Taylor expansion of φd around the trivial vector field 0 in dimension d is an exotic aromatic
B-series φd � Bdpbdq if and only if φd is local and orthogonal-equivariant. If, in addition, φ
is trivially decoupling, then there exists a coefficient map b : Γ Ñ R such that φ � Bpbq.

Theorem 2.11 provides a simple geometric criterion for checking whether a modified vector
field corresponds to an exotic aromatic B-series. In addition, it confirms that the exotic
aromatic B-series are a natural extension of the aromatic B-series as they both satisfy similar
universal geometric properties [32].

We are then interested in characterising the different subsets of exotic aromatic B-series
and in particular the exotic B-series, as they play an important role in stochastic numerical
analysis [23]. We propose the following characterisation.

Theorem 2.12. Let φ � pφd : XpRdq Ñ XpRdqqd be a local sequence of smooth maps. Then,
the Taylor expansion of φ around the trivial vector field 0 is:

• a connected exotic aromatic B-series if and only if φ is orthogonal-equivariant and de-
coupling,

• a B-series with stolons if and only if φ is Stiefel-equivariant,

• an exotic B-series if and only if φ is Grassmann-equivariant,

• a B-series if and only if φ is semi-orthogonal-equivariant.

In particular, affine equivariance and semi-orthogonal-equivariance are equivalent notions as
they both characterise B-series.

Remark 2.13. The decoupling property exactly corresponds to the connectedness of the graphs
involved in the expansion. This link was first observed in [30] in the context of aromatic B-
series, where a decoupling aromatic B-series is showed to be a connected aromatic B-series,
i.e., a standard B-series. Observe also that the elementary differential of an exotic aromatic
tree can be factored through its connected components: let µ1, . . . , µm P Γ0

c , τ P Γc and the
exotic aromatic tree γ � µ1 . . . µmτ , then

Fdpγqpfqpxq � Fdpµ1qpfqpxq . . . FdpµmqpfqpxqFdpτqpfqpxq. (2.5)

The classification of exotic aromatic B-series is summarised in Table 2. To the best of
our knowledge, the equivalence of affine-equivariance and semi-orthogonal-equivariance is a
new non-trivial result. We derive in Subsection 4.3 a simplified characterisation related to the
numerical analysis literature under a regularity assumption on the vector fields.

3 Geometric characterisation of exotic aromatic B-series
This section is devoted to the proof of Theorem 2.11. Following [32], we first restrict our
study to symmetric multilinear local equivariant maps defined on the infinite jet bundle at
one point in Section 3.1. We then decompose our space into invariant tensor spaces using
the invariant tensor theorem. In Section 3.2, we draw a one-to-one correspondence between
tensors in the invariant spaces and exotic aromatic trees. Section 3.3 contains the proof of
Theorem 2.11 and a clarifying example.
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geometric property associated Butcher series
orthogonal-equivariance exotic aromatic B-series

GL-equivariance aromatic B-series
Stiefel-equivariance B-series with stolons

Grassmann-equivariance exotic B-series
affine/semi-orthogonal-equivariance B-series

Table 2: Classification of B-series with respect to their equivariance properties (see Theorems 2.11
and 2.12).

3.1 Invariant tensor spaces and transfer of geometric properties

Let φd : XpRdq Ñ XpRdq be a smooth local G-equivariant map with G � H 
Rd. The Taylor
expansion of φd around the vector field 0 is¸

m¥1

1
m!D

mφdp0qpf, . . . , fq, (3.1)

where φdp0q � 0 by locality [30, Lem. 6.1]. Following the transfer argument [32, Thm. 3.9],
the m-th Taylor term Dmφdp0q inherits the locality and orthogonal-equivariance properties.
Moreover, the Peetre theorem [18, § 19.9] and the equivariance [32, Thm. 5.6] allow us to
assume without loss of generality that the m-th Taylor term is in the space of multilinear
symmetric local H-equivariant maps:

Dmφdp0q P LHpS
mpM b SM�q,Mq,

where M � T0Rd � Rd, the action of H on SmpM b SM�q is the natural action induced on
tensor spaces, and for a vector space V , SV :�

À8
j�0 S

jV is the symmetric algebra. This
result works for any isotropy group H.

Given a composition κ : NÑ N, we define the tensor space Tκ and its symmetric counter-
part Sκ by

Tκ �M b
8â

j�0
T κpjqpM� b T jMq, Sκ �M b

8â
j�0

SκpjqpM� b SjMq,

and their H-invariant subspaces T H
κ and SH

κ . Then, [32, Thm. 5.6] gives the isomorphism

LHpS
mpM b SM�q,Mq �

à
|κ|�m

SH
κ .

In the affine case H � GLdpRq, it is shown in [32, Thm. 6.3] with the description of H-
invariant tensors [18, § 24.3] that LHpS

mpM bSM�q,Mq is a finite dimensional space. In the
orthogonal case H � OdpRq, this property does not hold in general, and we get the following
instead.

Theorem 3.1. Let H � OdpRq and m a positive integer, the following isomorphism holds

LHpS
mpM b SM�q,Mq �

à
|κ|�m

|κ|�|κ1|�1P2Z

SH
κ .
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Proof. Following the description of OdpRq-invariant tensors [18, § 33.2], we deduce that T H
κ is

trivial when |κ| � |κ1| � 1 is odd. As SH
κ is naturally injected into T H

κ , we obtain the desired
result.

We write ∆mφd : XpRdq Ñ XpRdq the term of order m ¥ 1 in the expansion of φd around
the vector field 0, that is,

∆mφdpfq � Dmφdp0qpf, . . . , fq.
Thanks to Theorem 3.1, ∆mφd has the following form,

∆mφdpfq �
¸

|κ|�m
|κ|�|κ1|�1P2Z

ψκ,dpf
κq, fκ � pf, . . . , flooomooon

κp0q

, f 1, . . . , f 1loooomoooon
κp1q

, . . . q, (3.2)

where only a finite number of the ψκ,d P SOdpRq
κ are non-zero.

Lemma 3.2. Let φ be a local orthogonal-equivariant sequence of smooth maps. The strong
equivariance, decoupling, or trivially decoupling properties of φ are transferred to the Taylor
terms ∆mφ in (3.2).

Proof. The proof for the transfer of equivariance properties is the same as in [30, Prop. 6.2].
Let us prove the transfer of the decoupling property. The transfer of the trivially decoupling
property uses the same arguments. The Taylor terms of φ satisfy [20, § 5.11]

∆mφdpfq � Bt1...tmφdppt1 � . . .� tmqfq
���
t1�����tm�0

.

Thus, we find

∆mφdpf1 ` f2q � Bt1...tmφdppt1 � . . .� tmqf1 ` pt1 � . . .� tmqf2q
���
t1�����tm�0

� Bt1...tm

�
φdppt1 � . . .� tmqf1q ` φdppt1 � . . .� tmqf2q

����
t1�����tm�0

� ∆mφdpf1q `∆mφdpf2q.

Hence the result.

Thus, we restrict our study for the rest of the paper to the ∆mφ � p∆mφdqd that can
be expressed as finite sums of tensors in SOdpRq

κ . We show in Subsection 3.2 that the expan-
sion (3.2) corresponds to the order m term of an exotic aromatic B-series.

3.2 Correspondence between exotic aromatic trees and invariant tensors

Let us now draw a correspondence between exotic aromatic trees and tensors in SOdpRq
κ .

Theorem 3.3. For a given κ, there exists a surjective linear map rFd : SpanpΓκq Ñ SOdpRq
κ .

The map rFd is a bijection if and only if 2d ¥ |κ| � |κ1| � 1. Moreover, the elementary
differential map Fd is injective on SpanpΓκq if 2d ¥ |κ| � |κ1| � 1.

Proof. Decomposition of Tκ. Following Theorem 3.1, we assume without loss of generality
that |κ| � |κ1| � 1 � 2d0 is even. We rewrite Tκ as

Tκ �M b
8â

j�0

κpjqâ
i�1

T j
i , T j

i �M� b T jM.

11



We number the 2d0 components of Tκ in the following way. The copies of M� in Tκ are
numbered in an arbitrary manner from 1 to |κ| and the copies of M from 0 to |κ1| so that

Tκ �M0 b
8â

j�0

κpjqâ
i�1

T j
i .

If the numbering is given by

T j
i �M�

n bMn1 b � � � bMnj ,

then we write
τpnkq � n, k � 1, . . . , j.

This defines the target map τ : A Ñ V , the arrows A � t1, . . . , |κ1|u, A0 � t0u YA, and the
vertices V � t1, . . . , |κ|u.

Definition of ω. We denote Σκ the set of permutations σ of the set V Y A0 that have
no fixed point and that satisfy σ � σ � id. Given σ P Σκ and the target map τ , there exists
a unique exotic aromatic tree pV,A0, σ, τq P Γκ according to Definition 2.6. This yields a
map ω : Σκ Ñ Γκ. We extend this map by linearity to obtain ω : SpanpΣκq Ñ SpanpΓκq.

Definition of π. The projection map π : Tκ Ñ Sκ is compatible with the action of OdpRq.
Thus, it induces a surjective linear map (still denoted π for simplicity) from T OdpRq

κ to SOdpRq
κ .

Definition of δ. Using the isomorphism Tκ � Lp
Â

nPV YA0
Mn,Rq, we define δpσq for a

permutation σ P Σκ by

δpσqpvq �
¹

i,jPV YA0
j�σpiq,i j

pvi, vjq, v �
â

nPV YA0

vn P
â

nPV YA0

Mn,

where p., .q is the standard scalar product in Rd and where we fixed an arbitrary total order
on V Y A0. We extend δ by linearity on SpanpΣκq. The surjectivity of δ is a consequence
of the OdpRq-invariant tensor theorem [18, § 33.2] (see also [35, Sec. II.9] and [19, Sec. 10.2]).
Moreover, δ is a bijection if and only if 2d ¥ |κ| � |κ1| � 1 � |V | � |A0| (see [35, Sec. II.17]).

Intermediate diagram. We defined the linear maps π, ω and δ. We obtain the following
diagram.

T OdpRq
κ SOdpRq

κ

SpanpΣκq SpanpΓκq

π

ω

δ

Action of Gκ. The target function τ : A Ñ V is an element of V A. We denote ΣA the
set of permutations of the arrows in A, respectively ΣV the set of permutations of the nodes
in V , and ΣA � ΣV the permutations of V Y A0 that leave 0 fixed, permute the elements
in V , and the elements of A without mixing them. The action of an element of g P ΣA �ΣV

on ξ P V A is
g � ξ � g � ξ � g�1.

We denote Gκ the stabilizer of the target function τ , that is,

Gκ � tg P ΣA � ΣV , g � τ � τu.

12



The permutations in Gκ represent the permutations of arrows and nodes that are compatible
with the target map τ .

Definition of KΣ. An element g P ΣA�ΣV acts naturally on σ P Σκ by g �σ � g�σ�g�1.
We observe that ωpσ1q � ωpσ2q if and only if there exists g P Gκ such that σ1 � g � σ2. We
define KΣ as the vector subspace of SpanpΣκq spanned by the g1 � σ � g2 � σ for g1, g2 P Gκ

and σ P Σκ. By definition, KΣ is the kernel of ω, so that the following sequence is exact.

0 KΣ SpanpΣκq SpanpΓκq 0ω

Definition of Kb. Using the identification Tκ � Lp
Â

nPV YA0
Mn,Rq, the action of an

element of ΣA � ΣV on Tκ is

pg � φqpvq � φp
â

nPV YA0

vgpnqq, φ P Lp
â

nPV YA0

Mn,Rq, v �
â

nPV YA0

vn.

We observe that by definition of τ , πpφ1q � πpφ2q if and only if φ1 � g � φ2 with g P Gκ.
We define Kb as the vector space spanned by the g1 � φ � g2 � φ for g1, g2 P Gκ, φ P Tκ. By
definition, Kb is the kernel of π, and is also the kernel of the restriction π : T OdpRq

κ Ñ SOdpRq
κ .

We have the following exact sequence.

0 Kb T OdpRq
κ SOdpRq

κ 0π

Definition of rFd. The action of Gκ commutes with δ, that is, δpg � σq � g � δpσq. Thus, δ
induces a linear map from KΣ to Kb. By the fundamental theorem on homomorphisms, there
exists a surjective map rδ from SpanpΣκq{KΣ to T OdpRq

κ {Kb. We obtain the following diagram,
where rFd � π � rδ � ω�1 is surjective.

T OdpRq
κ {Kb SOdpRq

κ

SpanpΣκq{KΣ SpanpΓκq

π

ω

rδ rFd

The map rFd is bijective if and only if rδ is bijective, that is, if and only if 2d ¥ |κ| � |κ1| � 1.
The elementary differential map Fd in Definition 2.8 is related to the map rFd on SpanpΓκq by

Fdpγqpfqpxq � rFdpγqpf
κq, fκpxq � pfpxq, . . . , fpxqlooooooomooooooon

κp0q

, f 1pxq, . . . , f 1pxqloooooooomoooooooon
κp1q

, . . . q, f P XpRdq.

Thus, if rFd is bijective on SpanpΓκq, then Fd is injective on SpanpΓκq.

Remark 3.4. There exists a finite number of exotic aromatic trees of composition κ, so
that SOdpRq

κ is finite-dimensional. However, on the contrary of the GL-equivariance setting,
there is an infinite number of exotic aromatic trees with a given number of nodes |κ|, so
that LOdpRqpS

mpM b SM�q,Mq is infinite-dimensional.
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3.3 Characterisation of exotic aromatic B-series

As first mentioned in [21, Sec. 3.2.4], the exotic aromatic B-series satisfy geometric properties.

Proposition 3.5. The exotic aromatic B-series are local, orthogonal-equivariant, and trivially
decoupling.

Proof. The locality and trivially decoupling properties are straightforward from Definition 2.8.
Let g � pA, bq P OdpRq 
 Rd and γ P Γ, then

Fdpγqpg � fqpxq �
¸

iv ,ia
vPV,aPA0

¹
vPV

¸
kv ,ka0

vPV,a0PA

aiv ,kvaiτ�1ptvuq,kτ�1ptvuq
fkv

kτ�1ptvuq
pA�1x� bqδiσBi0

�
¸

i0,kv ,ka
vPV,aPA

ai0,kσp0q

¹
vPV

fkv
kτ�1ptvuq

pA�1x� bqδkσBi0

� pg � Fdpγqpfqqpxq,

where aiJ ,kJ
�
±

jPJ aij ,kj
and we used that ATA � Id. By linearity, exotic aromatic B-series

are orthogonal-equivariant.

The trivially decoupling property characterises the sequences of elementary differentials
associated to exotic aromatic trees independently of the dimension d.

Proposition 3.6. Let φ � pFdpγdqqd be trivially decoupling, with γd P SpanpΓκq, then there
exists a unique γ P SpanpΓκq such that φ � Fpγq.

Proof. Let d1 ¤ d2, then we have Fd2pγd2qpf1 ` 0q � Fd1pγd1qpf1q ` 0 for f1 P XpRd1q
as φ is trivially decoupling. On the other hand, a close inspection of Definition 2.8 yields
that Fd2pγd2qpf1 ` 0q � Fd1pγd2qpf1q ` 0, and we deduce

Fd1pγd1q � Fd1pγd2q, d1 ¤ d2. (3.3)

Let d0 � p|κ| � |κ1| � 1q{2. For d ¥ d0, equation (3.3) gives Fdpγdq � Fdpγd0q. For d ¤ d0,
equation (3.3) gives Fd0pγd0q � Fd0pγdq. As Fd0 is injective on SpanpΓκq, γd � γd0 . Thus,
we obtain φ � Fpγd0q. The uniqueness of γd0 is a consequence of the injectivity of Fd0

on SpanpΓκq (see Theorem 3.3).

Let us now prove the characterisation of exotic aromatic B-series.

Proof of Theorem 2.11. Let φd : XpRdq Ñ XpRdq be a local, and orthogonal-equivariant map.
Thanks to Theorem 3.1, the term of order m in the Taylor expansion (3.1) of φd around
the 0 vector field has the form (3.2). Theorem 3.3 gives the existence of γκ,d P SpanpΓκq such
that ψκ,d � rFdpγκ,dq. The Taylor expansion of φd around the 0 vector field thus is the exotic
aromatic B-series: ¸

m¥1

1
m!

¸
|κ|�m

|κ|�|κ1|�1P2Z

Fdpγκ,dqpfqpxq.

If, in addition, φ is trivially decoupling, Proposition 3.6 gives the existence of the coefficient
map b : Γ Ñ R such that φ � Bpbq.
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Example. Let us illustrate the tensor spaces and the different maps from the proof of Theo-
rem 3.3 for κ � p2, 0, 1q (in the spirit of the examples in [29, 32]). The tensor space has the
form

Tκ �M0 bM�
1 bM�

2 b pM�
3 bM1 bM2q.

The associated set of nodes and arrows are V � t1, 2, 3u and A0 � t0,1,2u. The target
map τ : A Ñ V is given by τp1q � τp2q � 3. The stabilizer of τ is

Gκ � tid, p1, 2q, p1,2q, p1, 2qp1,2qu.

We present the output of ω, rδ and rF for the different σ P Σκ in Table 3, where we gather
together the Gκ-orbits. We write rδpσq as an element of

Tκ{Kb � LpT 2M b LpT 2M,Mq,Mq{Kb,

that is, for v, w PM and a bilinear map ζ P LpT 2M,Mq, we have rδpσqpv, w, ζq PM . For rF ,
we use the identification

Sκ � LpS2M b LpS2M,Mq,Mq.

Replacing v � w � fpxq and ζ � f2pxq yields the elementary differential Fpγqpfqpxq of
Definition 2.8. Note that the first two lines of Table 3 are aromatic trees, and also appear
in [32, Table 2]. It can be seen directly on the associated permutations σ, as each arrow is
paired with a node and vice versa.

σ P Σκ γ � ωpσq rδpσqpv, w, ζq rFpγqpv, w, ζq
p0, 3qp1, 1qp2, 2q ζipv, wqBi

p0, 3qp1, 2qp2, 1q ζipw, vqBi ζipv, wqBi

p0, 1qp1, 2qp2, 3q ζjpw, Bjqv
iBi

p0, 1qp1, 3qp2, 2q ζjpBj , wqv
iBi

p0, 2qp1, 1qp2, 3q ζjpv, Bjqw
iBi

p0, 2qp1, 3qp2, 1q ζjpBj , vqw
iBi

1
2pζ

jpw, Bjqv
i � ζjpv, Bjqw

iqBi

p0, 3qp1,2qp1, 2q pv, wqζipBj , BjqBi pv, wqζipBj , BjqBi

p0, 1qp1,2qp2, 3q pw, ζpBj , Bjqqv
iBi

p0, 2qp1,2qp1, 3q pv, ζpBj , Bjqqw
iBi

1
2ppw, ζpBj , Bjqqv

i � pv, ζpBj , Bjqqw
iqBi

p0,1qp2, 1qp2, 3q pw, ζpBi, vqqBi

p0,1qp2, 2qp1, 3q pv, ζpBi, wqqBi

p0,2qp1, 1qp2, 3q pw, ζpv, BiqqBi

p0,2qp1, 2qp1, 3q pv, ζpw, BiqqBi
1
2ppw, ζpBi, vqq � pv, ζpBi, wqqqBi

p0,1qp2, 3qp1, 2q pv, wqζjpBi, BjqBi

p0,2qp1, 3qp1, 2q pv, wqζjpBj , BiqBi pv, wqζjpBj , BiqBi

Table 3: Outputs of the functions ω, δ and rF appearing in the proof of Theorem 3.3 for the compo-
sition κ � p2, 0, 1q and target map τp1q � τp2q � 3. The bilinear map ζ is assumed symmetric in the
last column. The sums on all involved indices are omitted for simplicity.
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4 Classification of exotic aromatic B-series
This section is devoted to the proof of the stronger classification of Theorem 2.12. The
proof, presented in Subsection 4.2, relies heavily on the use of new dual vector fields, that we
introduce in Subsection 4.1. We present the impact of degeneracies on the classification in
Subsection 4.3.

4.1 Dual vector fields

The exotic aromatic trees given in Definition 2.6 produce independent elementary differentials.
The standard method for proving this property is to consider dual vector fields, as presented
in [15, 17, 30, 23]. In the proof of Theorem 2.12, we use the following new dual vector fields.

Proposition 4.1. Given an exotic aromatic tree or multi-aroma γ P Γ0 Y Γ, index the co-
ordinates of R|γ| by the uplets in pV Y A0q{σ (respectively in pV Y Aq{σ if γ P Γ0), where v
and σpvq are identified. This corresponds to the nodes pv,aq P V � that are not part of stolons,
the stolons s � pv1, v2q P S, and the lianas l � pa1,a2q P L. Let θγ be the following parameter
indexed by the standard nodes, the nodes in stolons, and the arrows in lianas,

θγ � pθV �
, θS , θLq � pθV �

1 , . . . , θV �

|V �|, θ
S
1 , . . . , θ

S
2|S|, θ

L
1 , . . . , θ

L
2|L|q.

Define the associated vector field f pθ
γq

γ P XpR|γ|q by

f pθ
γq,v

γ pxq � θV �

v

¹
τpaq�v

θL
axa,

f pθ
γq,s

γ pxq � θS
v1

¹
τpaq�v1

θL
axa � θS

v2

¹
τpaq�v2

θL
axa, s � pv1, v2q P S,

f pθ
γq,l

γ pxq � 0,

where an empty product equals 1 and θL
a � 1 if a R L. By convention, if γ has a root, the

coordinate of the root is the first one. Let γ, γ̂ P Γ0 Y Γ, then

pF|γ̂|pγqpf
pθγ̂q
γ̂ qq1θγ

���
θ�0

p0q � 0 if γ̂ � µγ, µ P Γ0.

In particular, the elementary differential map F is injective on SpanpΓq. Moreover, for con-
nected graphs γ, γ̂ P Γ0

c Y Γc, we find

pF|γ̂|pγqpf
pθγ̂q
γ̂ qq1θγ

���
θ�0

p0q � σpγq � 0 if and only if γ � γ̂.

In the latter case, the constant σpγq is the symmetry coefficient of γ, that is, the number of
bijections of the vertices and arrows of γ that preserve the graph structure.

Remark 4.2. Given an exotic aromatic tree γ � µm . . . µ1τ , we enforce an order on the
aromas, so that µ1µ2 is now different from µ2µ1 if µ1 � µ2. Consider the additional parame-
ter θγ � pθτ , θµ1 , . . . , θµmq, where the numbering of the nodes, lianas and stolons starts with τ ,
and continues in order with the µi. With this order on the aromas and the numbering of θ,
the first statement of Proposition 4.1 is then replaced by

pF|γ̂|pγqpf
pθγ̂q
γ̂ qq1θγ

���
θ�0

p0q � 0 if and only if γ̂ � µγ, µ P Γ0.
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Proof. Let γ � pV,A, σ, τq, γ̂ � pV̂ , Â, σ̂, τ̂q P Γ0 Y Γ. Definition 2.8 rewrites as

F|γ̂|pγqpf
pθγ̂q
γ̂ qpxq �

¸
i : pV YAq{σÑpV̂ YÂq{σ̂

¹
vPV

pfγ̂q
iv
iτ�1ptvuq

Bir

�
¸

i : pV YAq{σÑpV̂ YÂq{σ̂

¹
vPV

�
θV �

iv
θL

τ̂�1pivq
xτ̂�1pivq1ivPV̂0

� pθS
v̂1θ

L
τ̂�1pv̂1q

xτ̂�1pv̂1q � θS
v̂2θ

L
τ̂�1pv̂2q

xτ̂�1pv̂2qq1iv�pv̂1,v̂2qPŜ

	
iτ�1ptvuq

Bir .

where we fix Bir � B1 if γ P Γ0. By definition of the map i, if σpxq � y, σ̂pixq � iy.
Moreover, it is necessary that τ̂�1pivq � iτ�1ptvuq for v P V � (and analogously for v P S) so
that pf pθ

γ̂q
γ̂ qiv

iτ�1ptvuq
p0q � 0. Thus, the map i is compatible with the source and target maps.

In particular, i sends predecessors of v to predecessors of iv.
On the other hand, the θ parameter enforces the injectivity of i and it forces i to send

stolons to stolons, lianas to lianas, nodes in V � to nodes in V̂ �. Thus i sends γ to a subgraph
of γ̂. If γ̂ � µγ, then at least an edge is missing and F|γ̂|pγqpf

pθγ̂q
γ̂ qpxq is a non-constant

polynomial in x, so that it vanishes at x � 0.
If γ, γ̂ P Γ0

c Y Γc, the only maps i such that pF|γ̂|pγqpf
pθγ̂q
γ̂ qq1θγ

���
θ�0

p0q � 0 are the graph
isomorphisms between γ and γ̂. The number of such maps i is σpγq.

Example. Consider the following exotic aromatic tree with its associated vector field and
elementary differential

γ � , f pθ
γq

γ

��x1
x2
x3

��
�� 0
θS

1 θ
L
2 θ

L
3x

2
3 � θS

2 θ
L
1x1

0

�, pF3pγqpf
pθγq
γ qq1θγ

���
θ�0

p0q � 2,

where the coordinates represent in descending order the root, the stolon, and the liana. Con-
sider now the aroma

γ � , f pθ
γq

γ

�
x1
x2



�

�
θS

1 θ
L
1x2 � θS

2 θ
L
2x2

0



, θγ � pθS

1 , θ
S
2 , θ

L
1 , θ

L
2 q,

and the tree

γ̂ � , f
pθγ̂q
γ̂

�
x1
x2



�

�
θV �

1 x2
θV �

2

�
, θγ̂ � pθV �

1 , θV �

2 q.

A calculation yields

pF2pγqpf
pθγ̂q
γ̂ qq1pxq � pθV �

1 q2, pF2pγqpf
pθγ̂q
γ̂ qq1θγ

���
θ�0

p0q � 0.

Note that fixing θ � 1 yields pF2pγqpf
p1q
γ̂ qq1p0q � 1, so that the dual vector field without the θ

parameter fails to identify the difference between γ and γ̂. The main use of the θ parameter in
the proof of Proposition 4.1 is to enforce the map i to be injective and to preserve the nature
of each pair pv, σpvqq. The dual vector field without the θ parameter is not sufficient, even in
the aromatic context:

γ � , γ̂ � , F|γ̂|pγqpf
p1q
γ̂ qp0q � 1.

This reveals a typographical error in [23, Rk. 4.8] where the remark only applies to exotic
trees, and a minor error in [30, Sec. 4.2]. The further proofs of this paper can be adapted
straightforwardly to fix the proofs in [30].
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4.2 Strong characterisations

This section is devoted to the proof of Theorem 2.12. Following Subsection 3.1, as the regu-
larity assumptions of Theorem 2.12 imply the locality, orthogonal-equivariance, and trivially
decoupling properties, we work directly with φ � Fpγq and γ P SpanpΓq.
Proposition 4.3. Connected exotic aromatic B-series are decoupling. B-series with stolons
are Stiefel-equivariant and exotic B-series are Grassmann-equivariant.

Proof. The decoupling property is straightforward from Definition 2.8. Let γ be an exotic
aromatic tree without lianas and loops, f P XpRd1q, f̂ P XpRd2q, apxq � Ax� b P SpRd1 ,Rd2q
with d1 ¤ d2. Differentiating the identity f̂papxqq � Afpxq gives aK,J f̂

i
Kpapxqq � ai,kf

k
J pxq.

We call leaves the vertices in V that are not the target of any arrow. We say a node v has
depth p if the shortest path of v to a leaf passes through p different nodes (not including the
start and end points). The nodes of depth at most p are gathered in the set V ppq. As γ does
not have lianas or loops, V p|γ|q � V . An induction on the depth yields

Fd2pγqpf̂qpapxqq �
¸
i,k

¹
vPV p0q

aiv ,kvf
kvpxq

¹
vRV p0q

f̂ iv
iτ�1ptvuq

papxqqδiσBi0

�
¸
i,k

¹
vPV p1q

a
p1q
iv ,kv

a
p1q
kτ�1ptvuq,iτ�1ptvuq

fkv
kτ�1ptvuq

pxq
¹

vRV p1q

f̂ iv
iτ�1ptvuq

papxqqδ
p1q
iσ
δ
p1q
kσ
Bi0

� � � � �
¸
i,k

¹
vPV p|γ|q

a
p|γ|q
iv ,kv

a
p|γ|q
kτ�1ptvuq,iτ�1ptvuq

fkv
kτ�1ptvuq

pxqδ
p|γ|q
iσ

δ
p|γ|q
kσ

Bi0

�
¸
i,k

¹
vPV

ai0,kσp0qf
kv
kτ�1ptvuq

pxqδkσBi0 � AFd1pγqpfqpxq,

where appqiv ,kv
� aiv ,kv if σpvq P τ�1pwq with w R V ppq and a

ppq
iv ,kv

� 1 else, δppqiσ
, δppqkσ

contain the
indices involved in the expression at step p, and the sums are on all involved indices.

On the other hand, let the exotic tree γ, the vector fields f P XpRd1q, f̂ P XpRd2q, and the
affine transformation apxq � Ax� b P GpRd1 ,Rd2q with d1 ¥ d2. We find

Fd2pγqpgqpapxqq �
¸
i,k

¹
vPV

f̂ iv
iτ�1ptvuq

papxqqδiσBi0

�
¸
i,k

¹
vPV

aiτ�1ptvuqXL,kτ�1ptvuqXL
f̂ iv

iτ�1ptvuq
papxqqδiσδ

pLq
kσ
Bi0 ,

where we used that AAT � Id2 to add the coefficients associated to lianas and δ
pLq
kσ

identifies
the coefficients k associated to lianas. The rest of the calculation is analogous to the Stiefel-
equivariance case: we define the depth function on the tree without the lianas and we perform
the calculation with an induction on the depth of the tree.

Proposition 4.4. Assume φ � Fpγq is decoupling, then γ P SpanpΓcq.

Proof. Let γ P SpanpΓq and γ̂ P Γ be one of its exotic aromatic trees of maximal order among
the ones that have at least one aroma, so that

γ � cγ̂ �R, γ̂ � µm . . . µ1τ, c P R, R P SpanpΓq. (4.1)

Without loss of generality, we assume c � 1. Define f pθ
γ̂q

γ̂ as in Proposition 4.1 and following
the numbering of Remark 4.2,

f
pθγ̂q
γ̂ � f pθ

τ q
τ ` f pθ

µ1 q
µ1 ` � � � ` f pθ

µm q
µm

P XpRdq,
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where the first entry of f pθ
γ̂q

γ̂ corresponds to the root of τ . Using (2.5) and Proposition 4.1,
we obtain

pFdpγqpf
pθγ̂q
γ̂ qq1θγ̂

���
θ�0

p0q � pFdpγ̂qpf
pθγ̂q
γ̂ qq1θγ̂

���
θ�0

p0q � 0.

On the other hand, as Fpγq is decoupling, we find

pFdpγqpf
pθγ̂q
γ̂ qq1θγ̂

���
θ�0

p0q � pF|τ |pγqpf
pθτ q
τ qq1θγ̂

���
θ�0

p0q � 0,

as θγ̂ holds more parameters than θτ . We obtain a contradiction and γ P SpanpΓcq.

We now prove our second main result.

Proof of Theorem 2.12. Assume φ � Fpγq is decoupling, then Proposition 4.4 yields the
connectedness of γ. Assume in addition that φ is local and Grassmann-equivariant and that at
least one of the connected exotic aromatic trees τ in γ has a stolon or a loop. Consider d1 � |τ |,
index the coordinates of Rd1 by pV Y A0q{σ as in Proposition 4.1. We split the coordinates
of Rd1 into x � y ` z, where y P Rd2 contains the coordinates that are not stolons or
nodes in a loop and z the others. Let A P Rd2�d1 be the projection matrix on Rd2 , that
is, Apy ` zq � y. Define f1 � f

pθτ q
τ and f2pAxq � Af1pxq. The Grassmann-equivariance

property and Proposition 4.1 yield

pφd2pf2qq
1
θτ

���
θ�0

p0q � pφ|τ |pf
pθτ q
τ qq1θτ

���
θ�0

p0q � pF|τ |pτqpf
pθτ q
τ qq1θτ

���
θ�0

p0q � σpτq � 0.

As d1 ¡ d2, there is at least one θV �

v or θS
v that does not appear in f2, but appears in θτ .

Thus pφd2pf2qq
1
θτ

���
θ�0

p0q � 0, which brings a contradiction.
Assume now that φ � F pγq is Stiefel-equivariant and that at least one of the exotic

aromatic trees in γ has a liana or a loop. Consider the decomposition (4.1) of γ where γ̂ is
the term of maximal order among the ones that have a liana or a loop. For d2 � |γ̂|, we split
the coordinates of Rd2 into x � y ` z (or x � z ` y if the root is a ghost liana, so that the
root is still in first position), where y P Rd1 contains the coordinates that are not lianas or
nodes in a loop and z the others. Let A P Rd2�d1 be such that AT is the projection matrix
on Rd1 , that is, AT py ` zq � y. Define f2 � f

pθγ̂q
γ̂ and f1pyq � AT f2py ` 0q. Proposition 4.1

and the Stiefel-equivariance give

pφd1pf1qq
1
θγ̂

���
θ�0

p0q � pφd2pf2qq
1
θγ̂

���
θ�0

p0q � 0.

As d1   d2, there is at least a node or a liana of γ̂ that does not appear in f1, but appears
in θγ̂ . We deduce pφd1pf1qq

1
θγ̂

���
θ�0

p0q � 0, which brings a contradiction.
If φ is semi-orthogonal-equivariant, then γ is a linear combination of connected exotic

aromatic trees without lianas, loops, and stolons, that is, a combination of standard Butcher
trees.

4.3 Impact of degeneracies on the classification

In a variety of contexts, the vector field f satisfies additional regularity properties. For
instance, if f is a polynomial map of order p, then all exotic aromatic trees where at least a
node is the target of more than p arrows have a trivial elementary differential. We mention
in particular the work [4] on aromatic trees for quadratic differential equations that relies on
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such degeneracies. In the original numerical application of the exotic aromatic B-series in
molecular dynamics [23, 24] (see also [27]), the vector fields f of interest are gradients, that
is, f � ∇V for a smooth function V : Rd Ñ R. In [26, 13, 1], vector fields of the form f � J∇V
with J the symplectic matrix are used as perturbations to reduce the variance and accelerate
the speed of convergence to equilibrium in the numerical integration of Langevin dynamics. In
this section, we update the classification of Theorem 2.12 for gradient vector fields f � ∇V ,
gathered in the set X∇pRdq. As discussed in [23, Remark 4.8], the gradient property of f
translates into degeneracies.

Proposition 4.5 ([23, 21]). We say that two exotic aromatic trees γ1 and γ2 are equiva-
lent on X∇pRdq, written γ1 � γ2, if by performing the following operations, it is possible to
transform γ1 into γ2:

• inversion edge-liana: A

B

C � A

B

C and
A B

�
A

B ,

• inversion edge-stolon: A

C

B �
A

CB ,

• simplification stolon-liana: A C
B �

A

C

B

and A
B

�

A

B

.

The equivalence relation � preserves the composition κ of the graph. Two equivalent exotic
aromatic trees represent the same elementary differential Fdpγ1q � Fdpγ2q on X∇pRdq. More-
over, for any connected exotic aromatic tree, there exists a unique exotic tree in its equivalence
class.

Proof. This is a direct consequence of the Schwarz theorem f i
j1...jq

� f
jp

j1...jp�1ijp�1...jq
.

Example. The following connected exotic aromatic trees are equivalent to exotic trees:

� , � � , � � .

For further examples, the list of exotic aromatic trees of order 3 presented in Section A gathers
the equivalent exotic aromatic trees in adjacent lines.

On X∇pRdq, Theorem 2.11 and Theorem 2.12 simplify into the following simpler classifi-
cation, which exactly characterises the exotic trees used in numerical analysis [23].

Theorem 4.6. Let φ � pφd : X∇pRdq Ñ XpRdqqd be a sequence of smooth maps. The Taylor
expansion of φ around the trivial vector field 0 is an exotic B-series on X∇pRdq if and only
if φ is local, orthogonal-equivariant, and decoupling.

5 Conclusion and future works
In this work, we showed that smooth local orthogonal-equivariant maps and exotic aromatic
B-series represent the same object. This universal property shows that exotic aromatic B-
series are not just a tool for calculations in numerical analysis, but a natural algebraic object
that is interesting in itself. The analysis relies on the invariant tensor theorem for orthogonal-
equivariant tensors and the Peetre theorem, but also on a new generalised construction of
exotic aromatic trees. In addition, we classified the intermediate subsets of exotic aromatic
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B-series, and in particular the exotic B-series, with respect to strong equivariance properties.
We also defined new dual vector fields and identified the effect of the degeneracies appearing
in numerical analysis on the classification.

A variety of theoretical and applied questions arise from the present work. There exists
different extensions of B-series such as partitioned B-series or Lie-Butcher series, and a va-
riety of equivariance properties in Rd but also on manifolds. We mention in particular the
equivariance with respect to symplectic tranformations. It would be interesting to link the
different equivariance properties with the various B-series. This could allow us to create new
extensions of B-series and to find corresponding applications in numerical analysis. For the
B-series presented in this paper for instance, the B-series with stolons could be used in the
study of projection methods for the approximation of ODEs on manifolds and modifications
of the exotic aromatic formalism could be applied to the study of stochastic differential equa-
tions with multiplicative noise or to the creation of stochastic Lie-group methods of high weak
order. This is matter for future work.
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Appendices
A Exotic aromatic trees of order 3

|κ| κ κ1 τ σ γ Fpγqpfq

1 p0, 0, 0, 0, 1q p0, 0, 0, 0, 4q p1, 1, 1, 1q p0, 1qp1,2qp3,4q f i
jjkkBi

p0,1qp2, 1qp3,4q f j
ijkkBi

2 p0, 1, 1q p0, 1, 2q p1, 1, 2q p0, 2qp1,2qp3, 1q f i
jf

j
kkBi

p0, 2qp1, 1qp2,3q f i
jf

k
jkBi

p0,3qp1, 2qp1,2q f j
i f

j
kkBi

p0,3qp1, 1qp2, 2q f j
i f

k
jkBi

p0, 1qp1, 2qp2,3q f i
jkf

j
kBi

p0,1qp3, 1qp2, 2q fk
ijf

j
kBi

p0,1qp1, 2qp2,3q f j
ikf

j
kBi

p0, 1qp1,2qp3, 2q f i
jjf

k
k Bi

p0,1qp2, 1qp3, 2q f j
ijf

k
k Bi

2 p1, 0, 0, 1q p0, 0, 0, 3q p1, 1, 1q p0, 1qp1, 2qp2,3q f i
jkkf

jBi

p0,1qp2, 1qp3, 2q f j
ijkf

kBi

p0,1qp2,3qp1, 2q f j
ikkf

jBi

p0, 2qp1, 1qp2,3q f if j
jkkBi

Table 3 (Part 1/2): List of the exotic aromatic trees of order three, with their associated composition,
derived composition, target map, source map, and elementary differential (see Definition 2.8).
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|κ| κ κ1 τ σ γ Fpγqpfq

3 p1, 2q p0, 2q p1, 2q p0, 1qp1, 2qp2, 3q f i
jf

j
kf

kBi

p0, 1qp1,2qp2, 3q f i
jf

k
j f

kBi

p0,1qp1, 2qp2, 3q f j
i f

j
kf

kBi

p0,1qp2, 1qp2, 3q f j
i f

k
j f

kBi

p0, 1qp1, 3qp2, 2q f i
jf

jfk
k Bi

p0,2qp1, 1qp2, 3q f j
i f

jfk
k Bi

p0, 3qp1, 2qp2, 1q f if j
kf

k
j Bi

p0, 3qp1,2qp1, 2q f if j
kf

j
kBi

p0, 3qp1, 1qp2, 2q f if j
j f

k
k Bi

3 p2, 0, 1q p0, 0, 2q p1, 1q p0, 1qp1, 2qp2, 3q f i
jjf

jf jBi

p0,1qp2, 2qp1, 3q f j
ikf

jfkBi

p0, 1qp1,2qp2, 3q f i
jjf

kfkBi

p0,1qp2, 1qp2, 3q f j
ijf

kfkBi

p0, 2qp1, 1qp2, 3q f if j
jkf

kBi

p0, 3qp1,2qp1, 2q f if jf j
kkBi

4 p3, 1q p0, 1q p1q p0, 1qp1, 2qp3, 4q f i
jf

jfkfkBi

p0, 4qp1, 2qp1, 3q f if jf j
kf

kBi

p0,1qp1, 2qp3, 4q f j
i f

jfkfkBi

p0, 2qp1, 1qp3, 4q f if jf jfk
k Bi

5 p5q p0q p0, 1qp2, 3qp4, 5q f if jf jfkfkBi

Table 3 (Part 2/2): List of the exotic aromatic trees of order three, with their associated composition,
derived composition, target map, source map, and elementary differential (see Definition 2.8).
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