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Abstract

The aim of the work presented in this thesis is the construction and the study of numerical
integrators in time to solve stochastic differential equations (SDEs) and stochastic partial differ-
ential equations (SPDEs). More precisely, we are interested in the convergence of the methods,
in the weak sense and for sampling the invariant measure in the case of ergodic dynamics, in
the geometric properties of the integrators, paying particular attention to the preservation of
invariants and constraints, as well as to their robustness in the case of multiscale problems.

First, we study ergodic SDEs in large dimension, with an emphasis on Langevin dynam-
ics in R? or constrained on manifolds, the study of which is central in molecular dynamics.
Inspired by several recent works that proposed examples of high-order numerical schemes for
the invariant measure with low weak order, we propose a new formalism called exotic aromatic
B-series, based on the popular tool that are the Butcher series and their recent generalization
with aromatic trees, and prove that it is suitable for the computation of order conditions for the
invariant measure for a class of Runge-Kutta methods. In particular, we introduce a new kind
of edge, named liana, that allows us to represent isometric equivariant differential operators
such as the Laplacian, and reveals a convenient tool for the computation of order conditions.
We emphasize that the proposed tree formalism does not depend on the dimension of the
problem. We translate into simple operations on graphs the tedious calculations necessary for
the Talay-Tubaro expansion, for the integration by parts of differential operators against the
invariant measure, as well as for the composition of operators.

Secondly, we apply the exotic aromatic B-series formalism to the effective computation of
order conditions for the sampling of the invariant measure of overdamped Langevin dynamics
in R? or constrained on a manifold. The methodology is valid for any order and does not grow
in complexity when the dimension of the problem increases. We extend this methodology in
the context of R? to the computation of order conditions for partitioned methods and to the
use of postprocessors or non-reversible perturbations. We also present the conditions of order
up to order three in the weak sense, as well as for the invariant measure. For the dynamics
constrained on a manifold, we obtain the conditions of order two for a new class of methods of
Runge-Kutta type. To illustrate the analysis, we present several examples of order two methods
for solving constrained problems, as well as the first method of order two for the sampling of
constrained Langevin dynamics that does not reduce to a splitting method. We confirm the
theoretical results with numerical experiments on the sphere, the torus and the special linear
group.

Thirdly, we study highly-oscillatory S(P)DEs whose oscillation is driven by a white noise.
These equations appear naturally in the context of optical fibers via the spatial discretization
of the non-linear Schrédinger equation with dispersive white noise. In this context, applying
a standard method has a cost and a precision depending directly on the high frequency of the
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oscillations. We introduce the concept of revolution times, a generalization of the period of the
oscillations in the stochastic context, and, following the idea of deterministic multirevolution
schemes, we apply it to construct a new second-order integrator whose cost and precision are
independent of the high frequency of the oscillations. We also present a geometric variant that
preserves quadratic invariants, and we test our schemes on stiff Kubo-type oscillators, as well
as on the nonlinear Schréodinger equation with dispersive white noise.

Finally, we give an overview of the new results introduced in this thesis, as well as an outlook
on future work. In line with the new ideas and tools introduced in this work, we present in
particular a recent work on a uniformly accurate (UA) method for solving penalized Langevin
dynamics.



Résumé de la these

Le but des travaux présentés dans cette thése est la construction et I’étude d’intégrateurs
numériques en temps pour résoudre des équations différentielles stochastiques (EDS) et des
équations aux dérivées partielles stochastiques (EDPS). Plus précisément, nous nous intéressons
a la convergence des méthodes, au sens faible et pour ’échantillonnage de la mesure invariante
dans le cas de dynamiques ergodiques, aux propriétés géométriques de nos intégrateurs, en
portant une attention particuliere & la préservation des invariants et des contraintes, ainsi qu’a
leur robustesse dans le cas de problemes multiéchelles.

Dans un premier temps, nous étudions des EDS ergodiques en grande dimension, en mettant
I’accent sur des dynamiques de Langevin dans R? ou contraintes sur des variétés, dont I’étude est
centrale en dynamique moléculaire. Plusieurs travaux récents ayant montré qu’il est possible
de créer des schémas numériques d’ordre élevé pour la mesure invariante et d’ordre faible
bas, nous proposons un nouveau formalisme nommé exotic aromatic B-series, basé sur 1’outil
populaire que sont les Butcher series et leur récente généralisation avec les aromatic trees,
et nous prouvons qu’il est adapté au calcul de conditions d’ordre pour la mesure invariante
pour une classe de méthodes de Runge-Kutta. En particulier, nous introduisons un nouveau
type d’aréte, appelé liane, qui permet de représenter des opérateurs différentiels isometric-
équivariants tel le laplacien, et se révele étre un outil efficace pour le calcul de conditions d’ordre.
Nous soulignons que le formalisme d’arbres proposé ne dépend pas de la dimension du probleme.
Nous traduisons en opérations simples sur des graphes les calculs fastidieux nécessaires au
développement de Talay-Tubaro, a 'intégration par parties d’opérateurs différentiels contre la
mesure invariante, ainsi qu’a la composition d’opérateurs.

Dans un second temps, nous appliquons le formalisme des exotic aromatic B-series au cal-
cul effectif de conditions d’ordre pour I’échantillonnage de la mesure invariante de dynamiques
de Langevin overdamped dans R? ou contraintes sur une variété. La méthodologie est val-
able & tout ordre et ne gagne pas en complexité lorsque la dimension du probléme augmente.
Nous étendons cette méthodologie dans le contexte de R? au calcul des conditions d’ordre
pour des méthodes partitionnées et a 'utilisation de postprocesseurs ou de perturbations non-
réversibles. Nous présentons également les conditions d’ordre jusqu’a l'ordre trois au sens
faible, ainsi que pour la mesure invariante. Pour les dynamiques contraintes sur une variété,
nous obtenons les conditions d’ordre deux pour une nouvelle classe de méthodes de type Runge-
Kutta. Afin d’illustrer I'analyse, nous présentons plusieurs exemples de méthodes d’ordre deux
pour résoudre des problemes avec contraintes, ainsi que la premiere méthode d’ordre deux pour
I’échantillonnage de dynamiques de Langevin contraintes qui ne se réduit pas a une méthode
de splitting. Nous confirmons les résultats théoriques par des expériences numériques sur la
sphere, le tore et le groupe spécial linéaire.

Dans un troisiéme temps, nous étudions des ED(P)S hautement oscillantes dont 'oscillation
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est guidée par un bruit blanc. Ces équations apparaissent naturellement dans le contexte de
fibres optiques via la discrétisation spatiale de I’équation de Schrédinger non linéaire avec bruit
blanc dispersif. Dans ce contexte, I'application d’une méthode standard a un coflit et une
précision dépendant directement de la haute fréquence des oscillations. Nous introduisons le
concept de temps de révolution, une généralisation de la période des oscillations dans le contexte
stochastique, et, en suivant 'idée des schémas multirévolution déterministes, nous 'appliquons
pour construire un nouvel intégrateur d’ordre deux dont le cofit et la précision sont indépendants
de la haute fréquence des oscillations. Nous présentons également une variante géométrique
préservant les invariants quadratiques, et nous testons nos schémas sur des oscillateurs raides
de type Kubo, ainsi que sur I’équation de Schrodinger non linéaire avec bruit blanc dispersif.
Finalement, nous donnons un résumé des nouveaux résultats introduits dans cette these,
ainsi que quelques perspectives sur des futurs travaux. Dans la lignée des nouvelles idées
et outils introduits dans ce travail, nous présentons en particulier un travail récent sur une
méthode uniformément précise pour résoudre des dynamiques de Langevin pénalisées.
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CHAPTER 1

Introduction and main results

The aim of the work presented in this thesis is the construction and study of numerical inte-
grators for solving stochastic differential equations (SDEs) and stochastic partial differential
equations (SPDEs). In particular, we focus on the accuracy, both in the weak sense and for
sampling the invariant measure in the case of ergodic dynamics, and on the geometric properties
of our integrators, with an emphasis on the preservation of invariants and constraints.

The thesis is organized as follows. In Chapter [2| we present a concise introduction to the
standard equations, assumptions, notations and tools we use. The new results of the thesis,
published in [83] 84], 85], are presented in Chapter [3] Chapter 4| and Chapter [5} In Chapter @
we summarize the new results, and give an outlook on future work. In particular, we present a
recent work [82] in preparation on a uniformly accurate (UA) integrator for penalized Langevin
dynamics, that uses a handful of the new ideas introduced in this thesis. We give a detailed
overview of the three main contributions of this work below, and more details in the sections
that follow.

Exotic aromatic B-series for computing order conditions (Chap.: We introduce
a new algebraic framework based on a modification (called exotic) of aromatic Butcher-series
for the systematic study of the accuracy of numerical integrators for the invariant measure of
overdamped Langevin dynamics in R? and on manifolds. In particular, this formalism allows
us to conveniently compute and compose the operators in the Talay-Tubaro expansion and
to integrate them by parts with respect to the invariant measure. We also show that the
introduced exotic aromatic B-series satisfy an isometric equivariance property.

High order integrators for the invariant measure (Chap.: We derive a new method-
ology for the construction of high order integrators for sampling the invariant measure of ergodic
stochastic differential equations with dynamics constrained on a manifold. We obtain the order
conditions for sampling the invariant measure for a class of Runge-Kutta methods applied to
the overdamped Langevin equation in R? and constrained on a manifold. The proposed analysis
is valid for arbitrarily high order, includes the cases of partitioned methods and postprocessed
methods in R%, and relies on the exotic aromatic Butcher-series formalism. To illustrate the
methodology, a new method of order two for constrained dynamics is introduced, and numer-
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ical experiments on the sphere, the torus and the special linear group confirm the theoretical
findings.

Multirevolution integrators for highly-oscillatory SDEs (Chap.: We introduce a
new methodology based on the multirevolution idea for constructing integrators for stochastic
differential equations in the situation where the fast oscillations themselves are driven by a
Stratonovich noise. Applications include in particular highly-oscillatory Kubo oscillators and
spatial discretizations of the nonlinear Schrodinger equation with fast white noise dispersion.
We construct a method of weak order two with computational cost and accuracy both inde-
pendent of the stiffness of the oscillations. A geometric modification that conserves exactly
quadratic invariants is also presented.

1.1 Exotic aromatic B-series for the computation of order con-
ditions

The aim of this work is to introduce a new unified algebraic framework based on aromatic
trees and B-series for the systematic study of the order conditions for the invariant measure
of a class of numerical integrators that includes Runge-Kutta type schemes for overdamped
Langevin dynamics in R? of the form

dX () = F(X(@))dt +odW (), X(0) = Xo, (1.1.1)

where the solution X(t) is in R%, o > 0, f = —VV with V: R — R a smooth potential
and W(t) is a standard d-dimensional Wiener process. Equations of the form typically
appear when modeling the motion of particles in a fluid in a high friction regime. The dimen-
sion d of the problem represents the degrees of freedom of the physical system and is ideally
of the order of the Avogadro number Ny ~ 1024, but at most of the order of 107 in current
practical calculations. If the system of particles is subject to constraints, such as fixed angles
in molecules or strong covalent bonds between atoms, we get constrained Langevin dynamics
of the form

AX (t) = T (X (8) F(X(£))dt + oI (X (£)) 0 AW (t), X (0) = Xo € M, (1.1.2)

where M = {z € R% ((z) = 0} is a smooth manifold, ¢ is a smooth constraint, and TI is
the orthogonal projection on the tangent bundle of M. In this context, the noise term is of
Stratonovich type, of dimension d, and projected on the manifold. To simplify the analysis,
we assume that M is a compact manifold of codimension one. Hence (: R — R is a scalar
constraint and Iy, = Iy — G~lgg” with ¢ = V(¢ and G = g’ g. The new formalism we present
is also suitable for computing order conditions for the constrained dynamics ((1.1.2)).

Sampling from overdamped Langevin dynamics in R? or on manifolds allows us to com-
pute integrals in high dimension of the form SRd Ppoodz or § M PPodoa, where ¢ is a smooth
test function, py is the density of the invariant measure and do g is the canonical measure
on the manifold M induced by the Euclidean metric of R?. We refer to the textbook [90],
and references therein, for further details on the physical applications of sampling Langevin
dynamics. In this work, we introduce a new formalism of B-series for studying the accuracy
of Runge-Kutta integrators for sampling the invariant measure of (1.1.1)) or (L.1.2). The nu-
merical applications of this work are presented in Chapter [4] and include the order conditions
up to order three for a class of Runge-Kutta methods, with extensions to partitioned methods,
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the use of postprocessors and of non-reversible perturbations in the context of R?. We also
introduce a new class of Runge-Kutta methods for sampling , with the order conditions
up to order two, and several examples of order two methods for solving constrained problems.

In [5,16], a methodology for the analysis and design of high order integrators for the invariant
measure is introduced in the context of R?. First, we assume that the numerical integrator (X,,)
has a weak Taylor expansion, called the Talay-Tubaro expansion [121], of the form

N
E[¢(X1)|Xo = 2] = ¢(x) + Y WA 1¢(x) + ...,

j=1

where h is the timestep and the A;’s, j = 0,1,2,..., are linear differential operators with
coefficients depending smoothly on f, g and their (high order) derivatives (and depending on
the choice of the integrator). If we denote by L the generator of the SDE, then, under technical
assumptions, the integrator has at least weak order r if

Aj71=ﬁj/j!, j=1 ...

We use the following result for building high-order integrators for the invariant measure. It
was first introduced in [5] in the context of R?, and we generalize it in the context of manifolds
in Section

Theorem 1.1.1 (See Sect.2.3] and Theorem [2.3.2). Under technical assumptions, if the nu-

merical scheme is consistent (that is, if Ay = L), and if it satisfies,
Alpr =0, j=1,....,p—1, (1.1.3)

where .A;-‘ is the adjoint of the operator A; in L?(dor), then it has order p for the invariant
measure.

The formalism of exotic aromatic B-series is convenient for deriving the operators A; with
forests, and to integrate them by parts with respect to the invariant measure, in order to find

conditions to satisfy (|1.1.3)).

1.1.1 The formalism of exotic aromatic B-series

Originally introduced by Hairer and Wanner in [66], and based on the work of Butcher [24],
B-series have proved to be a powerful tool for the numerical analysis of deterministic differential
equations. In the stochastic context, several works extended B-series for the computation of
order conditions for strong and weak approximations on a finite time interval, but no such
algebraic framework was known for the accuracy of sampling the invariant measure of ergodic
dynamics. In particular, the first stochastic trees and B-series were introduced in [20] 21] [7§],
and were later followed by the works of Roler [110) 11T, 112} 113, 114] and Debrabant and
Kveerng [46, 45, 47]. It is known for large classes of SDEs that a scheme of weak order p is
automatically at least of order p for the invariant measure. It is however possible to create
integrators with a high order p for the invariant measure and a low weak order of accuracy (see,
for instance, [14) [86], 87, [6] in the context of Langevin dynamics). Inspired by this possibility,
we define a new B-series formalism for the computation of order conditions for the invariant
measure, based on the aromatic B-series from [36], the standard P-series and with the graph
approach of [13], that is suitable for computing specifically the order conditions for the invariant
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measure. The root of the forests (always drawn at the bottom of the rightmost tree) represents
the test function ¢, while the other black nodes represent f, as in the following examples

d
FO@) =df, PO =div(De'(f.f),  F(? E) ()= . oifitifidf'f.
ij=1
In the context of manifolds, we add white nodes that represent the gradient of the constraint g,
as in the following examples,

FOH0) = 26 a0, F(‘\/l)w) = 0?G7¢(9.9'f).

where we apply a renormalization by the constant ¢ > 0 and the map G that simplifies the
expressions, to be explained in Section Then, we introduce a new kind of edge, called
liana, that, in particular, allows us to represent the Laplacian, and double edges for representing
the scalar product. These new edges shall prove strong tools for the computation of order
conditions for the invariant measure, and allow us to represent more complicated differentials
as the following,

d
F(*)(¢) = ). ¢"(ei,ei) = 0 Ag,
=1
d
F(d3)(0) = *G2(9,0'9) Y. ¢"(d (e1). e2),
=1

)0) = 260, 1) (B0,

where (e;) is the canonical basis of R?. We call these graphs the exotic aromatic forests, gather
them in the set £AT, and denote |y| € N their order. We refer the reader to Section [3.2| for the
detailed definition of the exotic aromatic forests, and mention that the forests do not depend
on the dimension of the problem d. Note that the generator £ in the manifold case can be
written with exotic aromatic forests as

1 1 1. 1
£¢=F(I—o=.f—§©f+§o=ii+§u—§°\/°)(¢).

In R?, we have g = 0, so that the trees with white nodes vanish and £ is given by

F(ﬁ

Lo = F(I +3 @)(qs) =¢'f+ (qus.

If we restrict ourselves to black nodes, then we show in Section[3.2.4]that the exotic aromatic
B-series satisfy an isometric equivariance property in the spirit of [105], [100]. This property of
equivariance means that the method is transparent with respect to applying an affine coordinate
transformation (see the precise definition in Section [3.2.4).

1.1.2 Computation of order conditions with exotic aromatic forests

We apply the new formalism for computing the order conditions on Runge-Kutta methods for
solving or (see Section for the details on the class of Runge-Kutta methods).
In Section we use the Isserlis theorem [73] in the field of combinatorics to prove that
computing the expectation of a B-series amounts to link crosses together by pairs with lianas.
In particular, we deduce that any such stochastic Runge-Kutta method satisfies an expansion
in exotic aromatic B-series.
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Theorem 1.1.2 (See Sect.[3.3.1) and Theorem [3.3.3). For a Runge-Kutta method with initial
condition Xo = x assumed deterministic for simplicity, the weak approximations can be formally
written with exotic aromatic B-series, that is, there exist two maps e, a: EAT — R such that

E[¢(X(h)] = Y, hle()F()(¢)(x),

~yeEAT

E[¢(X1)] = Y, ha(y)F(7)(@)(),

~yeEAT

and where the operators in the Talay-Tubaro expansion are given by

NZF( > e(v)v), Aj1=F( >, a(v)v)-

il
I’ +EEAT |n|=i VEEAT n|=i
If e(y) = a(7) for all v € EAT with 1 < |y| < p, then the integrator has at least weak order p.

According to Theorem we integrate by parts the integrators 4; to obtain the order
conditions such that is satisfied. In Section we show that the integration by parts
process can be written as a direct operation of plugging/unplugging edges on exotic aromatic
forests. We represent this operation on exotic aromatic forests with the equivalence symbol ~.
For instance, we have the equivalence of the linear combinations of forests

e A 3 IO 2 V2

which represents the following integration by parts calculation,
JM |G A6 (9, 9) = o' G200 (9, 9.9,9) |pedord
= J | - 20°G71 Y 69, g, i) + 407G 26 (g, 9, 4'9)
M i

~30'G3(g,9'9)0® (9,9, 9) + oG 2 div(g)6® (g, 9, 9)
+ 202G (g, )0 (g, 9, 9) — 202G 1P (g, 9, f)]pooda/w-

We then deduce the following result, that allows us to compute the order conditions for the
invariant measure in R? or on manifolds, that we present in Chapter

Theorem 1.1.3 (See Sect.[3.3.2] and Theorem [3.3.8). Consider a consistent ergodic Runge-
Kutta method. We denote A; = F(7;) with v; € EAT. If vi ~ 7Y and F(7?) =0 for 1 <i < p,
then the method has at least order p for the invariant measure.

In addition, we present in Section [3.3.3] a new unpublished methodology for composing
differential operators via exotic aromatic forests. It allows us to conveniently compute £7 /5!
for getting weak order conditions, and the Lie bracket [£, A] = LA — AL for the construction
of high order methods with postprocessors.

The exotic aromatic B-series formalism proves to be a crucial tool for the calculations of
order conditions for the invariant measure as the number of terms grows exponentially with the
desired order. For instance, for the order two in the codimension one manifold case of a class
of Runge-Kutta methods, we present in Appendix [C] the decomposition into exotic aromatic
forests of the operator A; and the operator A obtained after integration by parts of A;j. It
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consists of a table that is eight pages long for A; and five pages long for AJ. The calculations
of the order conditions are close to the limit of what can be done by hand, so that the use of
a strong formalism for representing and integrating by parts differential operators becomes a
necessity.

1.2 High order methods for sampling the invariant measure of
ergodic SDEs

We give a methodology, based on the algebraic framework defined in Chapter [3| and on the
methodology introduced in [5], that we extend in the context of manifolds, to study integrators
of arbitrary high order for sampling the invariant measure of ergodic SDEs in R% and on
manifolds. We study in particular the following overdamped Langevin dynamics in R,

dX(t) = f(X(t))dt + cdW (t), X(0) = Xy, (1.2.1)
or Langevin dynamics constrained on a manifold M,
dX (t) = I (X (1)) f(X(2))dt + oIy (X (t)) o dW (t), X(0) = Xye M, (1.2.2)

where ¢ > 0, f = —=VV with V: R — R a smooth potential with appropriate growth as-
sumptions, W (t) is a standard d-dimensional Wiener process, M = {z € R% ((z) = 0} is a
smooth compact manifold, ¢: R? — R is a smooth scalar constraint and Iy = Iy — G lgg”
is the orthogonal projection on the tangent bundle of M with ¢ = V( and G = gTg. We
study ergodic SDEs, that is, equations where there exists a unique invariant measure dy that
has a density po, with respect to the Lebesgue measure dz, respectively to doa, the canonical
measure on M induced by the Euclidean metric of R? in the context of manifolds, such that
for all test functions ¢,

T
lim 1 H(X(t))dt = J(b(x)d,uoo(:n) almost surely.
T—oo 1 0
We emphasize that in the context of manifolds, due, is singular with respect to the Lebesgue
measure on RY, and the methodology in R¢ does not generalize straightforwardly.

A natural method for building integrators with high order for the invariant measure is to use
integrators of high weak order since a method of weak order r has at least order p > r for the
invariant measure. However, it is possible to create computationally cheaper schemes of high
order for the invariant measure with low weak order, such as in [14] [86] 87, [6] for the Langevin
equation. Inspired by this possibility, we propose a methodology for building integrators of
any order for the invariant measure and with low weak order (typically weak order one). We
consider Runge-Kutta methods for solving in the context of R? of the form

s l
Yi=Xo+h Y agf(¥;) +ovh Y dPe®, i=1,. s (1.2.3)
j=1 k=1
Xps1 = Xp + 0 Y bif(Yi) + ovVheD,
i=1

and the following new class of projection methods for solving (1.2.2)) on a manifold,

s l s
Yi=X, + h Z al]f(Y]) + O'\/E Z dgk)&(@k) + )\Z Z aijg(Y}), 1=1,...,s,
=1 k=1 j=1
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V) =0 it 6=1, i=1,...,s (1.2.4)
XTL+1 = YS?

where A = (a;), A = (@) € R, b = (b)) € R, d® = (&) e R*, §; = 33_ a5 € {0,1)

are the given Runge-Kutta coefficients, and §§L’“> ~ N(0,1;) are independent random vectors,
typically Gaussian or discrete with suitable first moments. In the manifold case , we
fix 65 = 1 so that X,,+1 € M and we ask that if ; = 0, then @;; = 0 for j = 1,..., s (internal
stages without projection, Y; ¢ M almost surely). In particular, in the manifold context,
the widely used Euler integrators (see, for instance, [37), [88, [90, 91]) can be written in the
form . In this context, the Euler integrator with implicit projection direction is given by

Xnt1 = Xn + hf(Xn) + ovVhén + Ag(Xnt1), ((Xps1) = 0. (1.2.5)

In addition to deriving the methodology for the construction of integrators of any order, we
calculate the order conditions up to order three of Runge-Kutta methods of the form ,
and we present extensions to partitioned methods, postprocessed methods and methods using
non-reversible perturbations. In the context of manifolds, we give the order two Runge-Kutta
conditions for the class of schemes and we present several examples of methods of order
two for constrained problems for illustrating the analysis.

1.2.1 High order sampling integrators in R

Using our methodology, we compute the order conditions for Runge-Kutta methods of the
form (1.2.3). The conditions of order three are detailed in Theorem [£.3.1]

Theorem 1.2.1 (See Sect. and Theorem |4.3.1)). Consider an ergodic Runge-Kutta method
of the form (1.2.3)) for solving (1.2.1)), then the conditions for order one and two for the invariant

measure are given by Table with the corresponding exotic aromatic forest.

Order | Tree 7 | F(7)(¢) Order condition
1 ! df | =1

2 } G| Db — 23 bid; = 4

U | P@Af| Dbid? — 25 bid; = —1

Table 1.1: Runge-Kutta order conditions for the invariant measure (See Theorem [1.2.1). The sums are
over all involved indices.

In the spirit of [I123], we also combine our approach with the idea of processing from
Butcher [23], to design efficient postprocessed integrators with high order for the invariant
measure at a negligible overcost compared to standard low order schemes. At the last step, we
apply a costless correction to the integrator, called a postprocessor, and we study this corrected
result instead. The following result gives the order conditions of the postprocessed integrator.
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Theorem 1.2.2 (See Sect. and Theorem |4.3.4). Consider an ergodic Runge-Kutta method
of the form (1.2.3)) and of order p = 1 for sampling the invariant measure of (1.2.1), and the

following associated postprocessor

j=1
Xy =X+ h 3 bif(Y5) + doovVh .
=1

Under technical assumptions, if the conditions of order two in Table[].3 are verified, then the
postprocessor X, has order two for sampling the invariant measure.

Order | Tree T Order condition

2 E Shici — 2 bid; —23b; + 2dp” = —1

U Sbd =2 bid — b+ dy” = —3

Table 1.2: Order conditions for Runge-Kutta method with Runge-Kutta postprocessor (See Theo-
rem [1.2.2)). The sums are over all involved indices.

Example. Assuming ergodicity, the following Runge-Kutta method, introduced in [123], is of
order two for sampling the invariant measure of (1.1.1),

Xpt1 = Xn + hf(Xni1 + =520V0E,) + ov/hén,
X, =X, + 2 (X)) + 7”2‘/5‘10\/557.

We refer to Section for more applications of the formalism to modified equations (Sec-
tion [4.3.1)), partitioned methods (Section [4.3.4)), and the use of non-reversible perturbations

(Section 4.3.5]).

1.2.2 High order sampling integrators on manifolds

In the context of manifolds, we derive the order two conditions for a method of the form (1.2.4]).
There are eleven order conditions for the invariant measure if each substage of the method is
projected on the manifold, and the conditions are detailed in Theorem [£.4.8] We propose a new
order two method of the form with four stages and the coefficients given in Appendix
For the toy problem where M is the sphere in R?, the order two conditions for the invariant
measure with projected substages (§; = 1 for i = 1,...,s) reduce to

Shid = S bid; = 1+ 32,

7 7 1
Z/Izici = > b;d? :AZ bic; = 2> bid; — 3,
Z bidiaijcj' = 22 bidiaijdj,

and an order two method is given by

= X+ 0 (3= v2) 700+ oV (12 ) 60 MY~ X GO) =0,
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—4—Euler int.
Order 2 int.

Invariant measure error

1076

Stepsize h

Figure 1.1: (From [85]) A trajectory of the order two method (left) and the convergence curve for
the torus for the invariant measure (right) with the potential V(z) = 25(x3 — 7)?, ¢(z) = 2%, a final
time T = 20 and M = 107 trajectories.

Xpi1 = Xy + hf(Y1) + oVhéEn + XY, ((Xp41) = 0.

To numerically check the order two of the new Runge-Kutta integrator, we compare it with
the Euler scheme on a torus defined by the constraint ((z) = (23 + 23 + 23 + R? —r2)? -
4R?(x? + 23) with R = 3 and r = 1. In Figure we plot the error for the invariant measure
versus the timestep h. We observe order two for the proposed integrator, which confirms the
theoretical findings. We present further experiments on a sphere and on the special linear group

in Section 4.5

1.3 Multirevolution integrators for SDEs with fast stochastic
oscillations

The highly-oscillatory nonlinear Schrodinger equation (NLS) with white noise dispersion is
used to describe the propagation of a signal in optical fibers (see [7), 8, [58]),
- %Au(t) o dW(t) + F(u(t))dt, u(t=0) = u. (1.3.1)
The highly-oscillatory behavior (¢ « 1) appears naturally when observing the propagation in
long time with a small nonlinearity or the propagation of a small initial data in an optical
fiber with a polynomial nonlinearity. The goal of this work is to develop efficient and cheap
numerical methods that can model the propagation of pulses in this context, in order to observe
some specific behaviors and, ultimately, to build enhanced fibers.

More precisely, we apply a spatial discretization of the SPDE (1.3.1]) to obtain the following
class of highly-oscillatory SDEs in R? driven by a one-dimensional Stratonovich noise

1
= TAX(t) odW(t) + F(X(t))dt, t>0, X(0)= Xy, (1.3.2)

€
where W (t) is a standard one-dimensional Wiener process, the function F' : R? — R? is a
smooth nonlinear map, the stiff parameter ¢ > 0 is fixed and assumed small, and A € R4*¢
is a given matrix satisfying e = Id (equivalently A is diagonalizable and has all its eigenval-
ues in 2i7Z). In the deterministic setting, this last property yields that the solution z(t) =

du(t)

dX (t)
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exp(eAt)xg of Cé—”t” = ¢~ 1Az is e-periodic. For stochastic oscillations, it means that the solu-
tion X (t) = exp(e 2AW (1)) X of dX = e /2AX o dW satisfies X(T) = X(0) for a random
time 7' = inf{t > 0, /2 |W(t)| = 1} of mean . The class of SDEs includes in particular
highly-oscillatory Kubo oscillators (see [39])

dX (1) = \2/7; ((1’ _01> X () o dW (L) + (O ‘“) X(t)dt, acR. (1.3.3)

Applying standard SDE integrators to solve equation requires in general a time
stepsize h < ¢ to be accurate, which makes these methods dramatically expensive when ¢ is
small. The goal of this work is to create robust numerical methods, i.e., numerical integrators
whose cost and accuracy do not deteriorate when € becomes small. Several classes of methods
have already been developed for highly-oscillatory SDEs with a deterministic fast oscillation
(see, for instance, [122]), but not in the case where the stiff oscillatory part is applied to the
noise itself. To numerically face this challenge, we introduce in this work a new methodology
to develop methods of any high weak order to approximate the solution of equation that
are robust with respect to the stiff parameter €. In particular, we propose a method of weak
order two, and a geometric modification of this algorithm that preserves quadratic invariants.

Brownian motion

\

' |
Exact solution X () " w“ '

% Exact solution at revolution times X, (¢T,,)

|

|

‘\& L H‘

Stochastic oscillator
o

!
| uu “

0 15 T1 15 T2 15 T3 & T4 15 T5

Figure 1.2: (From [84]) Revolution times (1.3.4) of a Brownian path (top) and exact solution evaluated
at revolution times for the Kubo oscillator (1.3.3)) with a = 1 and € = 107! (bottom).
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1.3.1 New integrators for highly-oscillatory SDEs

Initially created in the context of celestial mechanics and later extended using geometric in-
tegration, multirevolution methods represent a class of numerical methods used for solving
highly-oscillatory differential equations while reducing the cost of computation. For stochastic
oscillations, the solution X (t) = es PAWD) x| of dX (t) = e Y2 AX(t) o dW (t) is not periodic,
but satisfies X(e¢Txn) = Xo where the Ty are random variables called revolution times and
defined by Tp = 0 and

Tn1 = inf {t > Ty, e Y2 (W (et) — W(eTy)| = 1}, N=01,2,... (1.3.4)

If X is the solution of , X (eTy) is a perturbation of identity, that is, X satisfies the
estimate X (eTn) = Xo + O(eN), thus the solution loses its highly-oscillatory feature when
evaluated at revolution times, as shown in Figure The idea of multirevolution is to ap-
proximate X (¢T) with N = O(¢ 1), with a cost independent of .

We propose the two following new multirevolution methods of weak second order for in-
tegrating equation at the revolution times €Ty, for m = 0,1,2,... with cost in
H = Ne = O(1) independent of e. Method [B| is a geometric modification of Method [A] to
preserve quadratic invariants. Methods A and B involve a Fourier decomposition of the follow-
ing functions that are 1-periodic with respect to 6,

go(y) = e Y F(eMy) = Y Q(y)e* ™, (1.3.5)
keZ
g W)(2) = e YF () (e2) = > ey (y)(2)e* ™,
pEeZ

with Fourier coefficients (¢ (y))rez and (czl)(y))pez, respectively. In general, the series appearing
in have an infinite number of terms. For a practical implementation of the new methods,
we truncate these series up to an even number of modes K;, while inducing an exponentially
small error. For each timestep, we also introduce bounded discrete random variables (&év)k, and

~ ~

deterministic sequences (ﬁlj)vk)p,k and (ﬁévk)p,k, that are cheap to compute and whose definition
is omitted here for brevity.

Method A (Explicit integrator of weak order two in H = Ne to approximate the solution of
equation (1.3.2) at times eTn,, for m =0,1,2,...)

Yo = Xo

for m > 0 do

K¢/2—1 Ki/2—1
Vi1 =Ym+H > Qnay +H> D ch(Ym) (A (Ym)BN (1.3.6)
k=—K/2 pk=—K¢/2

end for

Theorem 1.3.1 (See Sect. and Theorem . Under technical assumptions, Method
has weak order two for solving (1.3.2)), that is, for all T > 0, for all test functions ¢, there
exists Hy > 0 such that for all H < Hy, for all m = 0 such that mNe = mH < T, there exist
two positive constants K and C, both independent of € and N such that

E[¢(X (£Tnm))] — E[¢(Ym)]| < CH*(1 + E[| Xo[*]). (1.3.8)
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Method B (Geometric integrator of weak order two in H = Ne to approximate the solution
of equation (|1.3.2) at times €Ty, for m = 0, 1,2, ... while preserving quadratic invariants)

Yo = Xo

for m > 0 do

Ki/2—1

Y, +Y, ~

Yyoo1=Yn+H 2 cg <m+2m+1) ozév (1.3.7)
k=—K;/2

K /2—-1
+ H2 ti: cl Ym + Ym+1 CO Ym + Ym+1 /N\N
) D 9 k 92 Dk
p,k=—Kt 2

end for

Theorem 1.3.2 (See Sect. and Theorem [5.4.2). Under technical assumptions, Method @
has weak order two for solving (1.3.2) (i.e., it satisfies an estimate of the form (1.3.8))). In

addition, it preserves quadratic invariants, that is, Q(Ym+1) = Q(Ym) almost surely if Q is a

quadratic invariant of (1.3.2).

1.3.2 Numerical experiments

We solve numerically the nonlinear Schrédinger equation on the torus T = [—m, 7] with
the polynomial nonlinearity F(u) = i [u|>” u and the stiffness parameter ¢ = 1072, We apply
Methods [A]and [B]to a spectral discretization in space of this SPDE with o = 4, and we compare
their performance to the performance of the following one-step explicit deterministic integrator
called the Euler scheme

Yo = X07 Ym+1 = Ym + Hcg(ym)a (139)

where ¢} is defined in (1.3.5)). Its cost is independent of € and N, and it has weak order one with
respect to H. On Figure (left picture), we observe the evolution in time of one trajectory
given by Method Bl On Figure (right picture), we plot the evolution of the discrete L? norm

-3
‘ ‘ 10 x10
1.2 ——t=0 Euler method
——t =T Method A
1 L t= 5T120(] - = .Method B
t = eT1500
0.8} g
= g
06| 2
™
~
0.4
0.2 rrYvY 4w 0 Uk s -
WY , | |
-3 -2 0 5 10 15
T t

Figure 1.3: (From [84]) Approximation by Method |B| of |u(t)| (left) and evolution in long time of the
quantity U] ;2 — |uol 2 (right) with u solution of a spatial discretization with K, = 27 modes of the
nonlinear Schrodinger equation with white noise dispersion on the torus T = [—m, 7] with the
parameters € = 1072 and o = 4, and U, the computed approximation.
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of one trajectory given by our two algorithms and the Euler method . The Euler method
quickly blows up, and the L? norm of Method [Al is not preserved. In contrast, Method
preserves the L? norm according to Theorem [1.3.2) Further numerical simulations also hint
that a blow-up in the H' norm always happens for all considered methods. This behavior
agrees with the blow-up conjecture for ¢ = 1 and o > 4 presented in [I1], and suggests that
the conjecture persists in the highly-oscillatory regime e « 1. We present in Section [5.5] further
numerical experiments that confirm the results of Theorem [I.3.T] and Theorem [1.3.2]






CHAPTER 2

Preliminaries

We introduce in this chapter the notations, assumptions and standard tools we use in the rest
of this work for the study of numerical integrators for solving SDEs. In particular, Section[2.T]is
devoted to the definition of the SDEs we study here, with the physical context and the associated
numerical challenges. In Section we introduce the standard material for computing weak
averages, including the Kolmogorov equation and the Talay-Tubaro expansion. In Section
we define and analyze the ergodicity property in R and on manifolds, with an emphasis on
Langevin dynamics, and we present the conditions in terms of the Talay-Tubaro expansion for
finding the accuracy for the invariant measure of a numerical integrator. Section presents
a concise introduction to the tools of geometric numerical integration that we use in this work.

2.1 Stochastic differential equations: examples and numerical
challenges

We integrate numerically systems of It6 SDEs in R? of the form
dX(t) = f(X(t)dt + (X (¢))dW(t), X(0)= Xo, (2.1.1)

where the solution X (¢) is in R?, f: R? > R% and ¥: R? — R¥** are smooth globally Lipschitz
maps, W (t) is a standard k-dimensional Brownian motion in R? on a probability space equipped
with a filtration and fulfilling the usual assumptions. We also study SDEs in the sense of
Stratonovich that are constrained on a compact smooth manifold M,

dX () = Iy (X (1) FX(®)dt + (X (E)D(X () 0 dW (1), X(0) = Xoe M,  (2.1.2)

where f is a Lipschitz map in a neighborhood of M, the solution X (t) lies on M for all ¢ > 0
due to the projection operator IIys: R* — R%*? on the tangent bundle of the manifold M, and
where o denotes the Stratonovich product. In both contexts, the Lipschitz condition guaranties
the existence and uniqueness of a solution to — for all times ¢t > 0. The study of
numerical integrators for solving SDEs with a non-Lipschitz f is interesting, but is out of the
scope of the present work. We refer for instance to [108] 53] for further details on the standard
theory of SDEs.
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Stochastic differential equations have a wide range of applications in a variety of fields that
include physics, mathematical finance or biology. In particular, we mention the overdamped
Langevin equation in molecular dynamics (obtained in the particular case where ¥(z) = o1y is
a constant homothety),

dX(t) = f(X(t))dt + cdW (t), X(0) = Xo, (2.1.3)

where 0 > 0, f = —VV with V: R? - R a smooth potential and W(t) is a standard d-
dimensional Wiener process. The overdamped Langevin equation is widely used to model the
motion of a set of particles subject to a potential V' in a high friction regime.

If the particles are submitted to constraints such as strong covalent bonds between atoms,
or fixed angles in molecules, the solution of the SDE lies on a manifold of the form M = {z €
R, ¢(x) = 0}, where ¢: R? — RY is the smooth constraint. In this setting, the particles satisfy
the constrained overdamped Langevin equation

AX () = T (X (8) F(X (£))dt + oI (X () 0 dW (1), X (0) = Xo€ M. (2.1.4)

In particular, equations and are identical in the case of R? as the projec-
tion IIxq is the identity matrix. For ¢: R? — R a scalar constraint, we denote g = V(
its gradient, and G(z) = ¢7(z)g(z) = |g(z)]* the Gram function related to the manifold
M = {z € R% ((z) = 0}, where we denote by |z| = (zTx)/? the Euclidean norm in R?%. For
the sake of simplicity, we assume in the rest of the thesis that M is either R? or a compact and
smooth manifold of codimension one embedded in R¢. In the manifold case, we suppose in addi-
tion that the Gram function G is strictly positive on M, G(z) = a > 0 for all x € M. With these
notations, the projection I on the tangent bundle is given by Ila(z) = I —G(z) ' g(x)g(x)T.
Sampling from the constrained overdamped Langevin equation allows us to compute the so-
called free energy, which is a key quantity in thermodynamics (see, for instance, [38| 90 [91]
and references therein). Equations of the form appear naturally when studying con-
servative SDEs, that is, SDEs possessing an invariant H conserved almost surely by all real-
izations of (2.1.4). The solution of conservative SDEs are subject to the constraint ¢(X) = 0
with ((x) = H(x) — H(Xp). Drawing samples on a manifold also has many applications in
statistics (see [I8, 50] and references therein).

Finally, we mention the following SDE with a highly-oscillatory linear term driven by a
one-dimensional Stratonovich white noise that arises in fiber optics models (see [7, [8, 58]),

1

\EAX(t) o dW(t) + F(X(t))dt, t >0, X(0) = Xo, (2.1.5)

where the function F : R* — R? is a smooth possibly non-linear map, and A € R%*? is a given
matrix satisfying e = Id (equivalently A is diagonalizable and has all its eigenvalues in 2i77Z).
In the deterministic setting, this last property yields that the solution z(t) = exp(eAt)xg
of % = ¢ 1Az is e-periodic. For stochastic oscillations, it means that the solution X (t) =
exp(e V2AW (t)) X of dX = e 1/2AX o dW satisfies X(T) = X(0) for a random time T =
inf{t > 0, |e_1/2W(t)| = 1} of mean €. The parameter € > 0 is fixed and represents the high
frequency of the oscillations. If € is small, the solution has an highly-oscillatory behavior, and

the problem ([2.1.5) is stiff.

In this thesis, we introduce new efficient one-step integrators of the form

dX (t)

Xn+1 = CD(thafn)v (2'1'6)
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where the &, are independent random variables and h is the numerical timestep. The simplest
example of a consistent integrator of the form (2.1.6)) for solving (2.1.1)) is the Euler-Maruyama
method,

Xnt1 = X + hf(Xn) + VEE(X,)En, (2.1.7)

where the &, ~ N(0, I;) are independent standard Gaussian random vectors in R

Depending on the properties of the SDE we study and the quantities we wish to approxi-
mate, there corresponds a variety of numerical properties that we focus on for our numerical
schemes to be more efficient. For problem , a standard method, such as the Euler-
Maruyama method , would require a time stepsize h < € to be accurate, which makes
it dramatically expensive when ¢ is small. For equation , as the solution lies on the
manifold M, the numerical scheme should also lie on M, and this calls for specific geometric
methods. Moreover, the Langevin dynamics — satisfy an ergodicity property, that
is, the solution behaves in long time according to an invariant measure, and one is often more
interested in this context in computing averages with respect to the invariant measure than
weak averages. We recall that a natural way to achieve high order p for the invariant measure
is to consider a numerical scheme with high standard weak order r, as it is known for large
classes of SDEs that p > r. However it is possible to reach a high order p for the invariant
measure, while keeping a low standard weak order of accuracy, typically r = 1, as presented
for instance in [14) [86, 87, [6]. The analysis of weak order conditions and conditions for the
invariant measure differ in many ways, and one would like to build integrators with high order
for the invariant measure and low weak order.

2.2 Numerical integration of stochastic dynamics in finite time

In this section, we present the standard material for studying errors in the weak context, with
an emphasis on Langevin dynamics. For more details, we refer the reader to [104].

For each problem we presented in Section [2.I] one wants to approximate different quantities
that are related to the physical context. It can be the exact trajectory of the solution for a
given realisation of W, the law of the process, or the stationary law of the process if it exists.
Indeed, there are different ways to approximate the solution of the SDE problem (2.1.1). A
strong approximation focuses on approaching the realisation of a single trajectory of for
a given realisation of W. A weak approximation approaches the average of functionals of the
solution, that is, quantities of the form E[¢(X (¢))|Xo] for ¢ a given test function.

A numerical approximation is said to have local weak order r for approximating the
solution of if for every test function ¢, for all A small enough and for Xy = x assumed
deterministic for simplicity, there exists a positive constant C(¢, x) such that

[Elo(x1)] - E[o(X (h)]] < C(g ).

The integrator has global weak order r if, for all T > 0, for all test function ¢, for all A small
enough and all N € N such that 7' = Nh, there exists a positive constant C(¢,z) such that

El6(Xn)]Xo = 2] - E[6(X (1))|Xo = 2l| < C(@, )"

Under stability assumptions, a numerical scheme of local weak order r automatically has global
weak order r. Sufficient stability properties are proposed in Assumption [2.2.3
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The choice of the test functions space depends on the context. It typically is a set of the
form C*(R?,R) or CE(RY, R) for k =0, 1,...,00, where we recall that ¢ € Ck(R?, R) if and only
if for every j < k, there exists constants C;, K; > 0 such that for all z € R,

09 (@) < 51+ fal ).

Unless specified otherwise, for dynamics in R, we take C¥(R? R), and for dynamics on a
compact manifold M, we use the space C*(R%, R).

A classical tool for the study of is the generator. It is a differential operator of order
two, that is given, for ¢ a test function, by

/ 1 i Ui
Lo=d'f+3 ; ¢"(Se;, ey, (2.2.1)

where (e;) is the canonical basis of R¥, and where we use the following notation for differentials
in RY,

(m) (1 ¢ 1 ¢ " 1

m my _ . . mo_ m
o\ (a,...,a™) = E Oit.vim® Qi - - Q= E Er Eram TR
i1,eesim =1 1yeim=1 ML ETm

In particular, the generator of equation (2.1.3)) is given in R?, for ¢ a test function, by

2
Lo=d'f+ TN, (2.2.2)
and for the Langevin dynamics (2.1.4]) constrained on the manifold M, it is given by
/ -1 / o’ -1 q: / o’ -2 ISR o’
Lo=¢f—-G (9. /)¢9~ 5 G div(g)pg+ G (9.99)0 9 + 5 A¢ (2.2.3)

2 2
~ T 0,0) = T exp (V) divad (exp (= V) Vo),
where V1) := TV, diva(H) := div(H) — G (g, H'(9)).

From now on and until the end of Section we assume that W is a d-dimensional
Brownian motion, and we make an additional regularity assumption on the generator £. On a
compact manifold M, we follow the framework of [55]. In particular, we rely on the construction
of the local orthogonal coordinates. In a neighbourhood N, of the manifold M, there exists
an atlas of local orthogonal coordinate systems (y, z) € (V < R 1) x (—¢,¢) for ¢ > 0, with
respect to local charts ¢: U = Ny — (V < R¥71) x (—¢,¢), such that if ¢(x) = (y,2),
then z = ((x). We take over the following sufficient assumptions, in the spirit of [68, 5] in R?
and [55] on manifolds, to carry out our analysis, and we emphasize that finding the most general
assumptions is not the topic of this work.

Assumption 2.2.1. In the context of R%, the functions f and ¥ have bounded derivatives of
any order, ¥ is bounded and there exist C,Cy > 0 such that for all x € R?,

T flz) < —CraTx + Co.

Moreover, the generator L is uniformly elliptic, that is, there exists a constant C' > 0 such that,
for all z, v e RY,
IS (2)T8(z)v = CvTw.
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In the context of manifolds, on an open neighbourhood Nuq of M in R®, there exists a con-
stant C' > 0 such that for all x € Nayq and (y,z) = (), for all one-form field v: TM — R
on M of norm one, we have

—_

d
3 2 Sl S @@ > .

where T € M is such that ¥(Z) = (y,0) and, for k =1,...,d, (izk(y, 2)); € R4 s defined as
the restriction of the vector (IIy(T)Xi(z)); € R? to the tangent space TzM of M, written in
the local orthogonal coordinate system.

In the context of Langevin dynamics (2.1.3))-(2.1.4)), it is sufficient to assume the following.

Assumption 2.2.2. The vector field f is a globally Lipschitz smooth gradient, i.e. there exists
a C® potential V : R? — R such that f(x) = —VV(x) is globally Lipschitz. Moreover, in
the context of R%, there exist two constants C, > 0 and Cy such that for all x € R?, the
estimate V (x) = CrzTax — Cy holds.

The regularity assumption yields that the function u(z,t) = E[¢(X(t))|X(0) = «]
satisfies the backward Kolmogorov equation (see [79, 80] in R? and [55] on manifolds):

%(ZE, t) = Lu(z,t), wu(z,0)=¢(x), zeNp, t>0. (2.2.4)

The backward Kolmogorov equation ([2.2.4]) allows us to write the following expansion of the
weak average u(x, h) = E[¢(X (h))|Xo = z] for h small enough,

u(x, h) Z U z) + WVTIRR (6, 1), x € Ny, (2.2.5)

where Ny is an open neighbourhood of M in R? (that is, Ny¢ = R? if M = R?) and the
remainder satisfies the estimate |RY (¢, )| < Cn(¢, ) where the constant Cn(¢,x) is inde-
pendent of h.

For the numerical integrator , we make the following stability assumption.

Assumption 2.2.3. The integrator (2.1.6)) has bounded moments of any order along time,
i.e. for all integer k = 0 and all final time T > 0, for all h and N such that Nh =T,

sup E[| X,,|?*] < co.
n<N
Remark 2.2.4. A convenient sufficient condition to satisfy Assumption is given in [10,

Lemma 2.2.2]: if Xg is deterministic or has bounded moments of all order and the Markov
chain (Xy)n satisfies

E[Xoi1 - Xa X ]l € OO+ [XaDhe [ Xuss = Xol < Mu(1+ [ X, )V,

for C' a constant independent of h and M, a random variable whose moments are all bounded
uniformly with respect to h small enough, then the numerical scheme satisfies Assumption[2.2.3,
Hence Runge-Kutta type schemes introduced in Chapter[]] satisfy Assumption naturally.
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We assume in addition that E[¢(X1)|Xo = z], the numerical analog of u(z,h), can be
expanded in power series with respect to h, as we did for the exact solution in . This
weak expansion of the integrator was first introduced in [121], and is therefore called the Talay-
Tubaro expansion.

Assumption 2.2.5. For all test functions ¢, the numerical integrator (2.1.6|) has a weak Taylor
expansion of the form

N
E[¢(X1)|Xo = 2] = ¢(x) + > W A;_19(z) + VT RY(,7), z€ Ny, (2.2.6)
j=1

for all h assumed small enough, and where Nyq is an open neighbourhood of M in R® and
the remainder satisfies ‘R?V(QS, 1:)‘ < Cn(¢, x) where the constant Cn (¢, x) is independent of h.
The A;’s, j = 0,1,2,... are linear differential operators with coefficients depending smoothly
on f, g and their (high order) derivatives (and depending on the choice of the integrator).

With all the previously introduced material, we get the following result on global weak
order.

Theorem 2.2.6 ([121]). Under Assumptions|2.2.1},|2.2.5 and|2.2.5, if

Aj71=£j/j!, jg=1,....7m

then the integrator (2.1.6)) has at least weak order r for solving (2.1.1]).

Example. The Euler-Maruyama method (2.1.7) has weak order 1 for solving (2.1.1). The
following 0-method is of weak order two for solving (2.1.3|) when 6 = 1/2,

Xn+1 =Xn + h(l - e)f(Xn) + hef(XnJrl) + U\/Efn'

Indeed, this method naturally satisfies Assumption [2.2.3, and the Talay-Tubaro operators are
gwen by Ag = L and

1// 1// 1/ 1 ¢ 1 / 1 2 1 2
A1¢=§¢ff+§¢(faf)+1¢Af+§Z5z‘j¢5ifj+§(A¢)f+§A¢:§E¢-

ij=1

2.3 Ergodicity and high order integration for the invariant mea-
sure

We saw two different kinds of approximations of the solution of a SDE: strong and weak. In
this section, we present the ergodicity property of stochastic processes, and this leads us to
the approximation for the invariant measure. We introduce a theorem for building high order
integrators for the invariant measure in R? and on manifolds, and a method for increasing the
order of a scheme with a postprocessor.

We first assume the existence and uniqueness of an invariant measure, as well as an addi-
tional regularity property on £, in the spirit of [48, Hypotheses H1-H2] in the context of RY.

Assumption 2.3.1. There exists an open neighbourhood Nag of M in R and a unique positive
function pe € C*(Naq, R) satisfying SM Podorp = 1 and L¥py, = 0 on Npyg. Moreover, for
all ¢ € C*(Np, R) such that S/vl pdoag = 0, there exists a unique solution p € C* (N, R) to
the Poisson problem L*p = ¢ that satisfies SM pdor = 0.



21 Chapter 2: Preliminaries

The existence and uniqueness of the invariant measure are in particular satisfied for the
overdamped Langevin dynamics (2.1.3)-(2.1.4)) (see [55, Sect. 2.3] for further details). Assump-
tion yields the ergodicity of the process X(t) solution of (2.1.1)) or (2.1.2)), that is, there
exists a unique invariant measure dus, on M that has a density py, with respect to doag, the
canonical measure on M induced by the Euclidean metric of R? (that is, the Lebesgue measure
in the context of R?), such that for all test functions ¢,

T

lim 1 o(X(t)dt = f ¢(z)dps(x) almost surely. (2.3.1)

T—on T 0 M
In the context of Langevin dynamics —, the density of the invariant measure dpqs, =
Paodo p s given by pg = % exp (—% ) with Z such that duo, is a probability measure. We
emphasize that in the context of manifolds, dus is singular with respect to the Lebesgue
measure on R, thus the theory on R? does not directly apply.

To proceed further, we shall assume that the integrator is ergodic, that is, there

exists a measure duy that has a density with respect to doag such that

N
1
li X,) = hooal ly. 2.3.2
NlinooN_i_lq;qu( n) JMgbdu almost surely (2.3.2)

We refer to [I18, 119, 98| 120] in the Euclidean case, and to [55] in the manifold case, and
references therein, for further details on the ergodicity of numerical integrators.

An ergodic integrator is said to have order p for the invariant measure if for all test
functions ¢, there exists a positive constant C(¢, z) such that

N
e(p,h) < C(p)h? where e(¢,h) = ‘A}iinoo N1 nZ::OQﬁ(Xn) — JM gbd,uoo‘. (2.3.3)

A natural way to achieve high order p for the invariant measure is to consider a numerical
scheme with high standard weak order r, and it is known for large classes of SDEs that p = r,
see in particular [98] in the context of locally Lipschitz vector fields with multiplicative noise.
Note analogously that the strong order of convergence is in general lower than or equal to
the weak order r of convergence. There are interestingly many schemes in the literature for
which p > r and a high order p for the invariant measure is obtained, while the standard weak
order of accuracy remains low, typically of order » = 1, i.e.the scheme is consistent in the
weak convergence sense. This is the case in particular for the Langevin equation [14) [86, 87, [6].
In [5, 6], a methodology for the analysis and design of high order integrators for the invariant
measure is introduced in the context of R?. In particular, the papers introduce a criterion for
high order for the invariant measure that we generalize in the context of manifolds in Chapter []
in the following result.

Theorem 2.3.2. Under Assumption if the numerical scheme is consistent (that is,
if Ag = L) and ergodic, and if it satisfies in L?(do )

A;kp@:o? j:]-a"'ap_]-7

then it has order p for sampling the invariant measure of (2.1.1)) and the numerical error ([2.3.3))
satisfies, for h — 0,
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e, ) = 7 jM B(2)pr(x)do () + O(T)

[ u(x * oo (z)do p(z r+l
‘hJo JM (2, 1) A o (2) dopn ()t + O™,

where p, € C®(Nap, R) is the unique solution of the Poisson problem L*p, = —Afpa in Ny
that satisfies SM prdoa = 0, with Ny an open neighbourhood of M in RY.

Theorem [2.3.2] states the result for times ¢ — co. In practice, we use the Monte-Carlo
estimator J = ﬁzgzl <Z>(X7(1m)) ~ E[¢(Xn)] with M the number of trajectories and xim
the m-th realisation of the integrator at time t, = nh. Then, a bound of the error at finite
time t,, = nh is typically given by the following estimate (see [55, [99} 48])

el 5 mf ox) = [ dladde(o

] < Cih? + ;QM + C3€_Mt",

where the constant g > 0 is the spectral gap of a differential operator that depends on the
numerical integrator. In Chapter [3] and Chapter [4] we are interested in increasing the order of
the discretization p in the error term C1hP. The error term % is called the Monte-Carlo error
and appears with the variance of the estimator. A handful of techniques exists for improving
this error term, such as multilevel Monte-Carlo methods (see [59, 60] and references therein),
the use of perturbations [51l [4, [117], or couplings [I07]. The recent works [89] 51, [4] proposed
numerical methods in R¢ that improve the rate of convergence at infinity C3e#*». The B-series
formalism that we present in Chapter [3]is compatible with these techniques. We present in
Section a methodology that combines high-order schemes and the use of a non-reversible
perturbation [89] 51, 117]. The reversible case [4] could also be tackled with the exotic aromatic
B-series formalism.

In [123] for finite dimensions and in [I5] in the context of parabolic stochastic partial
differential equations, this approach is combined with the idea of processing from Butcher [23],
to design efficient postprocessed integrators with high order for the invariant measure at a
negligible overcost compared to standard low order schemes. The postprocessor methodology
is extended in [I] for a class of explicit stabilized schemes of order two for the invariant measure
and with optimally large stability domains. The following extension of Theorem [2.3.2] permits
to combine an integrator with a postprocessor to achieve high order for the invariant
measure at a negligible overcost compared to a standard scheme. Note that extending this
theorem in the context of manifolds is matter for future work.

Theorem 2.3.3 ([123]). Assume the hypotheses of Theorem in RY and consider a post-
processor

yn = Gn(Xn)
that admits the following weak Taylor expansion for all € CE(RY,R),
p—1
E[¢(Gn(2))] = ¢(z) + Y] ash’Lig(z) + WP Apgp(z) + ..., (2.3.4)
i=1

for some constants a; and a linear differential operator A,. Assume further that
(Ap + [£, A])*poo = 0 (2.3.5)

where [L, A,] = LA, — A,L is the Lie bracket. Then X, yields an approzimation of order p+ 1
for sampling the invariant measure of (2.1.1)).
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We study the hypotheses of Theorem and Theorem with a new algebraic formal-
ism in Chapter [3] and

2.4 Insights on deterministic geometric numerical integration

In this section, we recall several standard tools from geometric numerical integration, and we
redefine the aromatic Butcher-series using a graph approach (rather than a tree approach), to
prepare the introduction of lianas, a new type of edge on aromatic trees.

2.4.1 Invariant-preserving Runge-Kutta methods

We consider ordinary differential equations (ODEs) of the form

dy

o) = Fw®), (0 =, (24.1)

where f: R? — R? is a smooth Lipschitz vector field. For solving the ODE (2.4.1]), we consider
Runge-Kutta methods of the following form, equivalently written with the associated Butcher
tableau,

Y; ZXn-i-hZaijf(}/j), 1=1,...,s,

i1 (2.4.2)

Xn-‘rl =X, th Z bzf(}/;)7
=1

where A = (a;;) € R¥*%, b = (b;) € R® and ¢ = Al with 1 = (1,...,1)T are the given Runge-
Kutta coefficients. For instance, the implicit midpoint method can be written as a Runge Kutta
method with the following Butcher tableau.

(2.4.3)

Xn +Xn+1 % %
2 ’ 1

Xn+1 = Xn+hf<

In various contexts, the solution of the ODE leaves a quantity unchanged along time.
This conserved quantity, often called first integral or invariant, can be the energy in the context
of Hamiltonian dynamics, the angular momentum for the N-body problem or a constraint that
implicitly defines a manifold that holds the trajectory. This additional information on the
geometry of the ODE problem (2.4.1]) calls for integrators that preserve these invariants, or
that lie on the manifold. In this section, we introduce in the deterministic context the necessary
standard tools that we use in this thesis for building integrators that preserve invariants, with
an emphasis on quadratic invariants and projection methods. We refer to [65, Chap.IV] for
more details on invariant-preserving integrators.

Definition 2.4.1. A smooth non-constant function Q(y) is a first integral of the ODE (2.4.1))
if for all y € RY,
Q'(y)f(y) =0.

This definition implies that if @) is a first integral of , then for any initial condition vy,
the solution y(t) satisfies Q(y(t)) = Q(yo), hence the name invariant. If the invariant is a
quadratic function, that is, if it can be written as Q(y) = y’Sy with S € R¥? a given
symmetric matrix, and if 7S f(y) = 0 for all y € R%, we say that Q is a quadratic invariant.
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To build integrators that preserve the invariant @, that is, that satisfy Q(X,,+1) = Q(Xn),
we derive conditions on the coefficients of Runge-Kutta methods of the form that ensure
the preservation of the invariant. If @ is linear, then all Runge-Kutta methods preserve ). The
following condition specifies which Runge-Kutta methods preserve quadratic invariants.

Theorem 2.4.2 ([43]). If the coefficients of the Runge-Kutta method satisfy
biaij+bjajl- =bibj, ,j=1,...,s,
then it conserves all quadratic invariants.

For instance, the implicit midpoint method preserves quadratic invariants. When
applied to Hamiltonian systems, integrators that preserve quadratic invariants play a key
role in geometric numerical integration, as they satisfy the property of symplecticity (see [65]
Chap. VI]). Symplectic methods preserve a modified Hamiltonian close to the original Hamil-
tonianﬂ and are widely used for the long-term integration of Hamiltonian systems in a variety
of fields such as celestial mechanics or molecular dynamics.

For matrix systems of ODEs, one is also interested in the polynomial invariant ) = det,
that is related to the preservation of volume. The aromatic Butcher series were originally
introduced in [36, [72] to compute conveniently the divergence of B-series, in order to build
volume-preserving integrators (see [65), Sec. VI.9]).

When the invariant is a more general map, there is no particular method to find a Runge-
Kutta method that preserves (). In particular, we recall that there exists no Runge-Kutta
method that preserves every polynomial invariant (see [65, Chap.VIL.3]). An alternative so-
lution is to project each step of the method on the manifold M = {y € R% Q(y) = 0}.
Let X,41 = ®(X,,, ) be a consistent one-step approximation for solving [2.43). Let Qq,...,
Qq be the ¢ invariants of the problem and Aq, ..., A\; be the Lagrange multipliers, then a
consistent approximation that preserves the invariants @); is given by

q
Xn+1 = Xn+1 + Z Q;(XnJrl))\@, (244)
=1

Qi(XnJrl) = Qz(Xn)a i = 1a .59

Integrators of this form are called projection methods (see [65, Sect.IV.4]). Projection methods
exactly preserve the invariants (); of the system . Note that these methods are not
strictly better than the standard Runge-Kutta methods, as explained in [64]. To solve the
implicit problem , one can apply a few iterations of a Newton method under regularity
assumptions on the functions @;. The term Q(X,41) in could be replaced by Q}(Xy)
or Qi(x) with any one-step approximation z of X,.

2.4.2 Aromatic Butcher-series for the computation of order conditions

Originally introduced in [24] [66], B-series have proved to be a powerful standard tool for the
numerical analysis of deterministic differential equations, as presented, for instance, in the
textbooks [65, 25] [26]. In this section, we give the definition of the aromatic Butcher-series, an
extension of the standard B-series introduced in [36, [72] in the context of volume-preserving
integrators. In the spirit of [13], we see the Butcher trees as graphs instead of considering the

!Note that this non-trivial result uses B-series for the construction of the modified equation (see [29] 63
and [65, Chap. IX]).
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standard recursive definition of [65]. The two definitions are equivalent, but the graph approach
is closer to the definition we shall use in Chapter [3| for the definition of the exotic aromatic
B-series. We then apply the formalism for computing the order conditions of Runge-Kutta
methods of the form ([2.4.2)).

B-series were originally introduced in [24] 66] for computing order conditions for Runge-
Kutta methods. Consider a method of the form , then a Taylor expansion gives

X1 = Xo+h ) bif(Xo) +h* ) bici f' f(Xo)

=1 i=1
+ K3 <; 2 biC? /I(f, )+ Z biaijcjflflf) (Xo) + O(h4).
=1 ij=1

On the other hand, an expansion of the exact solution of (2.4.1) is given by

2 3
X(h) = Xo + hf(Xo) + - ff(X0) + = (f"(F, 1) + ') (o) + O(ut).

Thus, if the coefficients of the Runge-Kutta method satisfy

S S 1 s ) 1 s 1
i;bi =1, ;bici =3 ;bici =3 2 biaijc; = 5

ij=1

then, under stability assumptions, the method has at least order three for solving . For
methods of higher orders, these Taylor expansions become more complex and require a strong
algebraic formalism to be dealt with. The idea of B-series is to represent the terms that appear
in the Taylor expansions with rooted trees. For a tree 7, we denote by F(y) the function
that maps a tree to its associated differential, |y| the order of the tree, and a (resp.e) the
coefficient of the Taylor expansion of the numerical (resp. exact) solution associated to a tree.
For instance, for a Runge-Kutta method of the form , the first terms are collected in
Table 2.1

Tree v | Order |y| | Differential F'()(f) | Numerical coef. a(y) | Exact coef. e(v)

. 1 f 3 b; 1
I 2 f,f Zz bici %
v 3 D) 13 bic? 8
f 3 11 f >; biaije; g

Table 2.1: First terms of the expansion in B-series of a Runge-Kutta method of the form (2.4.2) and of

the exact solution of (2.4.1).

With these notations, the Taylor expansions of the exact and numerical solutions can be
written as series indexed over trees, that we call B-series, and it is proved in [65, Chap. III] that
any Runge-Kutta method of the form can be written as a B-series. The maps e and a
can be computed conveniently with straightforward calculations on graphs (see [65, Chap. III])
in order to avoid tedious Taylor expansions. The following result allows us to compute the
order of a Runge-Kutta method conveniently with the help of B-series.
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Theorem 2.4.3 ([65]). If a(y) = e() for |y| < p, then the Runge-Kutta method has (at least)

order p for solving (2.4.1]).

Now let us give a proper definition of an extension, called aromatic, of the standard Butcher
trees and B-series. The aromatic extension was introduced in [36] to study volume-preserving
integrators. In particular, this extension allows us to represent the divergence of standard B-
series, which is a key tool in the study of volume-preserving methods (see [65, Sec. VI.9]). We
follow the graph definition of aromatic B-series of [13]. We consider directed graphs v = (V, E)
with V' a finite set of nodes and E < V x V the set of directed edges. If (v,w) € E, we say that
the edge is going from v to w, and v is called a predecessor of w. Two directed graphs (V4, E1)
and (Va, E9) are equivalent if there exists a bijection ¢ : V} — Va with (¢ x ¢)(Fy) = E,. For
brevity of notation, to avoid drawing arrows on the forests, an edge linking two nodes goes
from the top node to the bottom one. If there is a possible cycle, by convention, the arrows on
it are going in the clockwise direction. For example,

V.V

We call aromatic forests the equivalence classes of directed graphs where each node has at most
one outgoing edge. The connected components making an aromatic forest are called aromatic
trees. According to the above definition, there are two types of trees:

e aromas are aromatic tree with exactly one cycle: O, 0, .\g, \I), .

e rooted trees do not have a cycle ; they have a unique node that has no outgoing edge and

that is called the root, graphically represented at the bottom: e, I, .\/, s e

Thus, an aromatic forest is a collection of aromas and rooted trees. We call AT = {e, el }
the set of aromatic forests containing exactly one rooted tree, and we name its elements the
aromatic rooted forests. The order of a directed graph v = (V, E) is the number of nodes of 7,
and is denoted as |y|.

Definition 2.4.4 (Elementary differentials, [13]). Let v = (V,E) € AT, and let f : R? — R?
be a smooth function. We denote mw(v) = {w € V,(w,v) € E} the set of all predecessors of the
node v € V and r the root of v. We also call V? =V~ {r} = {v1,..., v} the other nodes of 7.
Finally we introduce the notation Ir ) = (ig1,---,1q,) where the gy are the predecessors of v,
and we use the notation

o f

or f=5——""—5.
() 89%1 e a{L‘iqs

Then F(7) is defined as

d
F(H = D] (H afﬁ(v)fu> Oty -

veV o

Tugseenlom =1

2Such graphs with one cycle are not strictly speaking “trees”, they are however called aromatic trees in the
literature as an analogy with carbon chemistry.
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j k
S b
Example. Letvy = . l andy = ¥m ! in AT where we added indices to apply the formula
of Definition[2.4.4. Note that there is no index for the root. Then, the associated differentials
are

d
FO(f)y = D, Omfmbidififrdixfionf = div(f) - f£7(f'1, ),
i,5,k,l,m=1
’ d d
FO)YH) = D, Ofmmufifefitifidif = ) Ful@mf)(£) - £ £'1.
m=1

i,5,k,l,m=1

We add the empty tree @ that satisfies F'(@)(f) = I4. An aromatic Butcher series is then
defined as the following.

Definition 2.4.5. Let a : AT U{@} — R a map that satisfies a(D) = 1, and let f : R? — R? be
a smooth functions, then the aromatic B-series B(a)(f) is a formal series indexed over AT {2}
defined by

Ba)(f)= D, HWla()FH)(f).

YeAT u{o}
We extend the definition of F' on Span(AT u {@}) by writing

P(S a6y )0 = B

vyeAT u{a}

Remark 2.4.6. B-series and aromatic B-series satisfy geometric properties [105, (100, [56] and
have a structure of Hopf algebras [31, [13] (see also [I7]). The new extension of aromatic B-
series, named exotic aromatic B-series, that we present in Chapter [J satisfies an isometric
equivariance property (see Section . The study of the algebraic and geometric properties
of the exotic aromatic B-series is matter for future work.






CHAPTER 3

Exotic aromatic B-series for the
computation of order conditions

Note: This chapter is based on the articles [83] (R? case) and [85] (manifold case), both in col-
laboration with G. Vilmart. Section is an unpublished work that presents a methodology
for computing the composition of differential operators with exotic aromatic B-series.

3.1 Introduction

The aim of this chapter is to provide a new unified algebraic framework based on aromatic
trees and B-series, with a set of trees independent of the dimension d of the problem, for
the systematic study of the order conditions for the invariant measure of a class of numerical
integrators that includes Runge-Kutta type schemes for Langevin dynamics. This new unified
framework permits to recover some schemes, to simplify the calculations in [5] and in [123]
15), [I] for postprocessed integrators, to obtain the order conditions of a class of Runge-Kutta
methods and to study partitioned systems or non-reversible perturbations. The reader only
interested in the numerical methods can jump directly to Chapter 4] where we present the high
order integrators for sampling the invariant measure, the order conditions and the numerical
experiments.

The usage of trees and B—seriesﬂ is known to be as a powerful standard tool for the numerical
analysis of differential equations. Originally introduced by Hairer and Wanner in [66], and
based on the works of Butcher [22] 24], B-series have proved to be a powerful standard tool
for the numerical analysis of deterministic differential equations, as presented, for instance,
in the textbooks [65, 25, 26]. In the last decades, several works extended B-series to the
stochastic context. We mention in particular Burrage and Burrage [20, 21] and Komori, Mitsui
and Sugiura [78] who first introduced stochastic trees and B-series for studying the order
conditions of strong convergence of SDEs, Roler [110, 111} 112}, 113}, 114] and Debrabant and
Kveaerng [46), [45] [47] for the design and analysis of high order weak and strong integrators on a
finite time interval, [I0] for creating schemes preserving quadratic invariants, and [81], where

originally named Butcher-series
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tree series were applied to a class of stochastic differential algebraic equations (SDAEs) for the
computation of strong order conditions. We mention that no such algebraic framework was
known for the calculation of order conditions for sampling the invariant measure of ergodic
dynamics. In [36, [72], an extension of the original B-series, called aromatic B-series, was used
to study deterministic volume-preserving integrators. It allowed in particular to represent the
divergence of a B-series. We also recall that Butcher series have important links with other fields
of mathematics, in particular the Hopf algebra of trees [42] from A. Connes and D. Kreimer
in the theory of renormalization in quantum physics in the 1980s, and the theory of regularity
structure [I9] of M. Hairer in the context of SPDEs in the 2010s (see the review article [101]).
B-series and aromatic B-series were also studied in [105} 100} [56] for their geometric properties,
and in [31), I3] for their algebraic structure of Hopf algebras. The formalism that we present in
this chapter is a new extension of the aromatic B-series, and is the first algebraic framework
specifically designed for the computation of order conditions for the invariant measure.

Analogously to [I1I] (we study here the additive noise case), we consider Runge-Kutta
methods for solving in the context of R% of the fornﬂ

s !
Y, =Xo+h Y af(V) +ovh S dPeP . i=1,. s,
j=1 k=1

- (3.1.1)
Xpi1 =X +h 3 b f(V;) + ovVRES,
i=1
and the following class of projection methods for solving (2.1.4) on a manifold,
s l s
Y=X,+h Z awf(Y]) + U\/E 2 dgk)@(lk) + N\ Z az‘jg(}/j), 1=1,...,s,
j=1 k=1 j=1
CY)=0 if =1, i=1,....s (3.1.2)

Xn+1 = YS7

where A = (ai;), A = (@) € R, b = (b)) € R*, d® = (@) e R, §; = 3.3, a5 € {0,1)

are the given Runge-Kutta coefficients, and &(Lk) ~ N(0, I;) are independent Gaussian random
vectors. In the manifold case , we fix s = 1 so that X,,.1 € M and we ask that if §; = 0,
then a;; = 0 for j = 1,...,s (internal stages without projection, Y; ¢ M a.s.). Further details
on the choice of these discretizations and their implementation is given in Chapter [} We
highlight once again that we focus in this work on the high order p of accuracy for the invariant
measure, while the order r of accuracy in the weak sense can remain low (typically r = 1).
The analysis we present applies to the classes of methods — for any number [ of
random vectors in the internal stages. However we shall often consider [ = 1 random vector per
internal stageﬂ which is sufficient to achieve order two for the invariant measure. In particular,
we shall consider the f-method as an illustrative example in this chapter and recover known
results on its accuracy. It is defined for 6 fixed as

Xps1 = Xn +h(1 = 0)f(X,) + h0f (Xpni1) + oVhE,, (3.1.3)

For 6 = 0, we get the explicit Euler-Maruyama method (2.1.7) while the scheme is implicit

2Note that the internal stages Y; depend on n, but this dependence is omitted for brevity of the notation.
3In this case, we denote d = d* and &, = fﬁl).
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for 6 # 0. It can be put in Runge-Kutta form (3.1.1)) for I = 1 with the following coefficients.

o 0 ofo
< 12 “_1]1-6 0|1
11-6 0|

This chapter is organized as follows. In Section we introduce a new generalization of
B-series, called “exotic aromatic B-series” by considering an additional new type of edge called
“liana” compared to standard aromatic B-series. We also show that these new exotic aromatic
B-series satisfy an isometric equivariance property. In Section we explain how this new
algebraic framework applies for the long time accuracy analysis of stochastic integrators for er-
godic problems by writing with exotic aromatic forests the operations of taking the expectation,
integrating by parts and composing differential operators.

3.2 Exotic aromatic B-series: definition and algebraic proper-
ties

In this section, we introduce a new modification, called exotic aromatic B-series, of the standard
aromatic B-series defined in Section [2.4.2]and originally introduced in [36] [72], that is well suited
for computing order conditions for sampling the invariant measure of ergodic SDEs. We rely
on the graph presentation of the formalism in the spirit of [13].

3.2.1 Exotic aromatic forests

In this subsection, we introduce a new kind of edge, called liana, and non-oriented edges. These
additions allow us to represent new terms with our graphs, such as the Laplacian or the scalar
product.

We split the set of edges into £ = Ey u Eg where Ej are the standard oriented edges as
defined in Section and where Fg is a new set of non-oriented edges represented as double
horizontal straight lines. If (v, w) = (w,v) € Eg, we consider this edge as an outgoing edge for
both v and w, but v and w are not predecessors of each other. If (v, w) € Eg, we denote S(v) = w
and S(v) = v otherwise. We again consider graphs where each node has exactly one outgoing
edge, except one node, called the root r, that has none. Such a graph (V, E) can still be
decomposed into two kinds of connected components: one that contains the root, that we
name the rooted tree, and the other components that we name aromas.

We also introduce a new kind of edge, called a liana, for the aromatic forests. The cor-
responding generalization is called exotic aromatic forests. Let (V, E) be a directed graph as
previously defined and L be a finite list of pairs of elements of V' (possibly with duplicates). We
say that two such directed graphs (V!, E', L') and (V2, E?, L?) are equivalent if there exists a
bijection ¢ : V! — V2 such that

e(V) =V?2 (pxp)(BE)=E% (px¢)(ES§) =Es (pxp)(L') =1L

We call exotic aromatic forests the equivalence classes of these directed graphs v = (V, E, L).
The elements of L are called lianas and correspond to non-oriented edges between any two
nodes of the forest. We graphically represent them with a dashed edge linking the two given
nodes. As we authorize duplicates, there can be several lianas between two given nodes. Also
lianas can link a node to itself. For a node v, I'(v) denotes the list of the lianas (also with
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possible duplicates) linked to v. The predecessors of v only take in account the edges of F. An
exotic aromatic tree of an exotic aromatic forest v = (V, E, L) is a connected component of the
associated aromatic forest (V, E'). We call EAT the set of exotic aromatic forests with exactly
one rooted tree, and name its elements exotic aromatic rooted forests.

Example. The lianas can link different trees of an aromatic forest and thus yield an exotic

aromatic forest. For instance, linking the aroma © and the rooted tree Y gives O \{/

The elementary differential associated with an exotic aromatic forest is given by the follow-
ing definition.

Definition 3.2.1. Let v = (V,E,L) € EAT, and let f be a smooth function. We de-

note li,...,ls the elements of L, v1,...,vy, the elements of V \ {r} and d;; the Kronecker
delta. For v € V, we denote I,y = (ig---,1q,) where m(v) = {qu,...,qs} are the predeces-
sors of v, and Jrwy = (Jipys- -+ Jis,) where F( ) = {lzy,-.., 1z} are the lianas linked to v.

Then F(7) is defined as

d d
F(V)(f) = Z Z (H 5iv,is(v) afﬂ.(v) aJF(U) flv) afﬂ(r) aJF(T) f

by seomstom =1 iy sty =1 \VEV

Examples. The differential that corresponds to the rooted tree ) with a single node and a
single liana is F(")(f) = Af. We can also represent as exotic aromatic forest more complicated
derivatives. For instance, we have

d kl
ST div(@if) - £/ (Ouf) (f" (i f.0uf))) for = O
i,5,k=1
d -
FON) = D @IS @f. ) for v =t Y

3.2.2 Exotic aromatic forests for the computation of order conditions

For studying the order conditions for the invariant measure of numerical integrators, we in-
troduce a few modifications to exotic aromatic forests. We decompose the set of nodes into
V =V uV,uV,u{r} where V; are the nodes representing a function f : R? — R and are
represented with black disks, V; are the nodes representing a function g : R? - R? and are
represented with white disks. The set Vi gathers the grafted nodes, graphically represented
by a cross, that represent a vector ¢ € R?. These nodes have exactly one outgoing edge and no
ingoing edge (including lianas). We call these graphs the grafted exotic aromatic rooted forests,
that we denote EAT,. For simplicity, we call exotic aromatic forests, and denote EAT, the
set of grafted exotic aromatic rooted forests satisfying Vi = &. Note that these new trees can
be seen as multicoloured trees in the context of P-series (see [65, Chap.3]), where the nodes
represented with crosses cannot have predecessors.

We write N¢(y) the number of elements of V; (respectively Ny(y) the number of elements
of Vy; and Ny () the number of elements of V), N;(y) the number of lianas and we assume
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that Ny(7) is even. The order of a directed graph v = (V, E, L) is defined as

Ny(v) + Nx(v)

7] = N¢(v) + Ni(v) + 5 — |Es].
For instance, the graph v = (V, E, L) with
Vi = {va,v5,v6}, Vy={v1,v3,vs,v7}, Es = {(ve,v7)}, (3.2.1)

Ey = {(Ula T)v (1}2,1}1), (’1)3,7”), (’047 ’U4), (U5a 04)}7 L= {(’Ug,’l)g), (113, U5)7 (U57U6)}a

satisfies |y| = 7 and is represented as

5 C)
SR

| 1
oLé? .

In addition, we need a different set of rooted forests where the root is in Vy or V,. We call
them exotic aromatic vector fields and gather them together in the set £A4V. The elementary
differential associated with an exotic aromatic forest is given by the following definition.

Definition 3.2.2. Let v = (V,E,L) € EAT, 0 € R, £ € R?, and let f, g: R? —» R? and
¢ : RT — R be smooth functions, and the Gram function G = ¢Tg € R*. The associated
elementary differential of v is, with the same notation as in Definition[3.2.1

d d
F(V)(f? g, 67 (b) = U2(|’Y|7Nf(’¥))G7Ng(’Y)/2 Z Z H 5iu ,is(v) aIﬂ.(U) aJF(U) fiv

ivl"“?ivm=1jl1""7jls:1 ’UEVf

H5iv7iS(v>afw<v)aJr(v>9iv ' H Oiisuy&iv | OLury Oty -

veVy vEVx

Example. The differential associated with the exotic aromatic forests \I/ and vy given by the
example (3.2.1) are F(\I/)(ﬁg’&, ¢) = ¢'(f"(§€)) and

d d

F(’Y)(f? 9, 57 (b) = USG?Z Z 2 ajlljll fiUQ 6j12j13 fivg, 6i“6 Jivr 8j13 fiq,6

ivl a~~~aiv7:1 jll r“:jlgzl

: 5@ Givy 5;‘12 Ging aiu4ius Giy, 5iv7 Jivg Jivg 5iv1 Gug .

If V; and Eg are empty, we recover the exotic aromatic forests from [83]. For the rest of the
thesis (with the exception of Section , we will use only Definition for the differential
associated with an exotic aromatic forest. For brevity of notation, we also write F(7)(¢) instead
of F(7)(f,9,&, ¢). Note that ¢ — F(v)(¢) is a linear differential operator (that depends on f, g
and &).

The functions f and g are gradient vector fields, according to Assumption Different
forests thus represent the same differential. The following simplification rules show how to
identify such forests.
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Proposition 3.2.3 (Simplification rules). The two forest patterns gathered in each of the
following pairs represent the same differential:

A
B

- _-eP Ag--gb et , |
PR’ and IC, S and “IB, rets  and rA;IE.c, re—s-"ec and Ef
One can replace the nodes A, B, C with white nodes and the result remains.

Proof. For the first pair of patterns, the associated differentials have the following respective
forms: Zle 0 fr0if;0i fi and Z;-lzl 0i fx0; fi0ifi. As f is a gradient, f’ is a symmetric matrix
and 0;f; = 0;f;. The two differentials are then equal. The other identifications are proved in
the same way. O

Example. Applying Proposition [3.2.5 yields the following equality of differentials,

F(é;;l*fxw = F(Kﬁ)(m

3.2.3 Exotic aromatic B-series

In this section, we adapt the formalism of aromatic B-series of [I05] to grafted exotic aromatic
forests, in order to use it as a numerical tool for weak Taylor expansions.

Definition 3.2.4. Let a : EATx — R a map, then the grafted exotic aromatic B-series B(a)()
s a formal series indexed over EATy defined by

B(a)(¢)= ), ha(m)F()(9).

’\/EEATX

We extend the definition of F' on Span(EATy) by writing
P 3 o)) = B,
yeE AT«

The variable & is formal and thus can be chosen to be equal to 1. One can make a similar def-
inition for the non-grafted (exotic) aromatic rooted forests of Section by replacing F'(v)(¢)
with the F'(v)(f) introduced in Definition We focus on these non-grafted exotic aromatic
B-series in Section 3.2.4

Remark 3.2.5. The coefficients a(vy) of standard B-series are sometimes renormalized as %
where p is a function determined by the symmetries of the associated forest. If p is appropriately
chosen, it greatly simplifies the composition laws of (aromatic) B-series (see [63, [31, [13]).

Finding the best definition of p for this exotic extension of B-series is matter for future work.

3.2.4 Isometric equivariance of exotic aromatic forests

In this subsection, we show that the exotic aromatic B-series satisfy an isometric equivariance
property in the spirit of [I05, [100]. We consider exotic aromatic rooted forests v with Ny(y) = 0,
and we add a new tree: the empty tree @. The function F is then extended on EAT U {@}
by F(@)(f) = Idga. Then, for a function a : EAT U {@} — R, the associated exotic aromatic
B-series is

B@(f)= Y aFO).

~eEAT u{a}



35 Chapter 3: Exotic aromatic B-series for the computation of order conditions

We study (exotic) aromatic B-series B(a) with a(@) = 1. We call these (exotic) aromatic
B-series methods. Let G be a subgroup of GL4(R) x R?, let the action of an element (A,b) € G
on R? be & — Az + b, and let the action on a vector field f : R? — R be

((A4,0) = f)(z) := Af (A" (2 = b)).

We simplify the notation by writing A * f := (A, 0) = f. We recall the definition of equivariance
from [105]. The property of equivariance means the method stays unchanged when applying
an affine coordinate transformation. Let ® be a differential operator and let G be a subgroup
of GLg(R) x RY, then ® is called G-equivariant if

V(A,b) e G, VfeC®RLRY), B((A,b)xf)=(ADb)od(f)o (A b

In particular, ® is said to be affine equivariant if G = GLg(R) x R? and isometric equivariant
if G = 0g(R) x R%.

Theorem 3.2.6. Consider an exotic aromatic B-series method B(a), then B(a) is isometric
equivariant.

Proof. By an argument of linearity, it suffices to prove the O4(R)-equivariance of every exotic
aromatic forest. Let v = (V,E,L) € EAT, f a smooth function. We name r the root and
VO =V~ {r} = {v1,...,vn} the other nodes. We denote I1,...,ls the elements of L. Then

d d
F(ry)(f) = Z Z ( H 5iv,is(v) aIW@) aJF(U) flv) alﬂ.(r) aJF(T) f

Tog e bom =1 J1y 5o sdig =1 \weV?0
Let A€ O4(R) and x € R, we would like to prove that

F()(Ax f)(x) = (F(M(AF(ATL)(x) = AF() (A ). (32.2)
On the first hand, we have

d d

(FO) (A jpla) = D) >

g seesiom =1 1y eeends =1

d
| | -1
2 2 aiv7k67:1uis(v) aITr(?I)7P7T(U) aJI‘(v)vQI‘(v) aP7r(v) aQl"(v) fk (A ':U)
veVO k=1 Pr(4),Qr(v)

d

2 2 Ao kAL 1y, Py 1 (), Qr(r) an(r) aQF(r) fre | (A
k=1 PTI'(’I‘)7QF(’V‘)

),

._ . o d d
where we denote ay j := Hie],je] a;; and ZPW(U),QF@) = Zvleﬂ(v)’l/ep(v) valzl qule'

First step: simplification of edges. For every edge of the form (v,v’) € Ey, the following
sum appears

Z aiv,kaivvpv (ap'ugl)hk = Z(apvgl)h’pzﬂ

1v,k,pv Py
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where g and h are some derivatives of f, and where we used the isometric property of A.
Moreover, for every edge of the form (v,v’) € Eg, the following sum appears

2 62'@71'1,/ iy k1 Xi s ko Gk hkz = 2 5k1,k29k1 hkw
yytyr,k1,k2 k1,k2
where g and h are again certain derivatives of f. Thus, we can simplify our expression into

d d
(FO)(Ax )jplx) = ). >

Puvy 7"'7p’0m=1jll 7"'7jls =1

-1
H Z 6p’uva('u)aJF(u):QF(U)aP‘n(U)aQF(v)fp’U (A7 z)
veVO Qr(v)

d

~1
Z Z aj07ka‘]F(T)1QF(T)6P7r(r)aQF('r)fk (A7 z).
k=1 Qr()

Second step: simplification of lianas. If [ is a liana linking v and v’, then the following
sum appears

Z @y, (0, 9p. )ajl,q{ (5q; hpvl) = Z(am 9p.)(0g, hpvr)
J1,91,4; Q

where g and h are some derivatives of f. Note that the number of sums over indexes of the

form ¢; is two times the number of lianas, and we identify these pairs of sums according to
lianas. We find

d d

FO) A Njple) = ) 2

Doy seesPom =1 diq5e-sq15=1

(H 51)%1)5(1;) an(u) aQF(v) fpu) (A7137)

veV o
d
. aj, kOp_, .0 fr ] (A7),
Jo,k P OQr(ry J K
k=1
This shows (3.2.2), and thus the isometric equivariance property. O

Note that, if Eg = &, we do not need A to be isometric to write the first step of the
proof, assuming A invertible is enough. If we do not assume A isometric, the term ar_, p, .,

becomes bp,_ 1., Where B = A~' and the sums still simplify. Thus the first step proves the
affine equivariance of aromatic B-series methods.

Remark 3.2.7. It is proved in [103] that standard B-series methods are exactly the affine equiv-
ariant methods preserving the stationary states of ODFEs. Analogously, it would be interesting
to characterize the isometric equivariant maps.

3.3 Analysis of invariant measure order conditions using exotic
aromatic forests

In this section, we show how the exotic aromatic B-series formalism presented in Section
applies for the study of order conditions for the invariant measure.
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3.3.1 Weak Taylor expansion using exotic aromatic forests

Let us begin this subsection with the example of the #-method for solving in the
context of RY, We apply the standard methodology to expand in Taylor series E[¢(X1)|Xo = 2]
as h — 0. We refer to [120, 2] for other examples of analogous calculations performed without
exotic aromatic forests. Under Xy = =, we have

500
2
Then we deduce E[¢(X1)|Xo = x] = ¢(x) + hLp(x) + h2A16(z) + ... , where

X1 =2+ Vhot + hf + WhOo f'€ + W20f f + h2— f"(£,€) + ...

0.2
A6 =EI06 T + 30, 1) + Codl P16, €) + 070 (16, 6)
2 4
+ 500169 + 7006660
= E[F(GE + %'\./ + ZY + GI\/ + %'\V + iW)(@]. (3.3.1)

All the forests with an odd number of grafted nodes vanished because odd moments of a centred
Gaussian random variable are zero. The expectation of the differential of a forest with exactly
two grafted nodes comes straightforwardly:

E[F(Yx@] = E[o?¢' (f"(&,6))] = 0° Y. iddn B8] = 0° ) 0y, fi = F(H)(6),

i,k i,J

where E[{;&,] = 0 for j # k by using the independence of the &’s. We see that taking the
expectation of the differential associated with a grafted tree amounts to linking the grafted
nodes with lianas in all possible manners. For instance, for the following example with four
grafted nodes:

E[F(V ) (@)] = B[00 (€, 6.6, = ' Y a1 uidBIEE 8]

Y
= 042 0i,ii i OE[E] + 3042 0i,i.j jOE[ETIE[E]] = 3042 0i,ij.i®
: 0 i

= 3F(7)(g).

Let us now comment this computation. The interesting fact is that E[¢}] = 3 corresponds
exactly to the number of ways to gather the indices ¢, j, k and [ in pairs. This observation
makes an exotic aromatic tree naturally appear. However, we took here only four grafted nodes
and the differential form was symmetric in the arguments €. We need to study the expectation
of general exotic aromatic forest elementary differentials. This is the aim of the following result.

Theorem 3.3.1. Let v € EATx be a grafted exotic aromatic forest with an even number of
grafted nodes 2n, let ¢ : RY — R be a smooth function, and let V* = {cy,...,can} be the set
of grafted nodes of v. We call Py(2n) the set of partitions by pair of {1,...,2n}, i.e. the set
of surjections p : {1,...,2n} — {1,...,n} such that the preimage of each singleton has exactly
two elements and the minima of those preimages follow an ascending order (min(p~!({i})) <
min(p~1({j})) for i < j). Finally we define o : Pa(2n) — EAT the application that maps the
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partition p of v to the aromatic forest where the grafted nodes are linked by lianas according
to p. Then, the expectation of F(v)(¢) is given by

E[FM@]= Y, Fley®)(@).

peP2(2n)

This theorem states that taking the expectation of the differential associated with a forest
amounts to sum the forests obtained by linking the grafted nodes together pairwise using lianas
in all possible manners and to take the associated differential.

Example. Let us take v € {.,\/, W, ...} the tree with only a root, 2n grafted nodes and

no liana, then

a?"(2n)!
2nn)!

E[F()(9)] = A"

(22;2; is exactly the number of ways to gather the grafted nodes by pairs. An other

The integer
example is

BIFC )@ = 37(D)©)

where the coefficient 3 accounts for the number of choices for linking the grafted nodes pair-
wise. There is a subtlety for forests with double edges, where Proposition [3.2.5 allows some
stmplifications. In particular, we have

E[F(L 3)(9)] = E[F( 1) (9)] = Fles 3)(9) = F<E><¢> and E[F(3 )(¢)] = F(O })(¢).

Theorem follows from the following lemma, which is an extension of the Isserlis the-
orem [73] to the case of multilinear mappings. The Isserlis theorem states that if x is a 2n-
dimensional Gaussian random vector with mean zero and arbitrary covariance, then

2n
E[sz] = > T] Ebuxl
i=1 pEPy(2n)  i<j
p(i)=p(j)

For n = 2, it gives E[x1x2x3Xx4] = E[x1x2]E[x3x4] + E[x1x3]E[x2x4a] + E[x1x4]E[x2X3]-

Lemma 3.3.2. Let B : R% x ... x R = R?" 5 R be a 2n-multilinear form, and let & be a
Gaussian vector N'(0, I4), then

d
E[B(,....0]= >, > Bley,), (3.3.2)

PEP(2n) i1,..nyin=1

with e;, = (eip(l), - ,e,-p(%)), and we recall that eq, ..., eq denotes the canonical basis of R9,
Proof. For the case of an elementary multilinear form B, : (z1,...,%2,) — H?Zl(xj)a(j)
where o : {1,...,2n} — {1,...,d} is a given mapping and (z;),(;) denotes the o(j)’s com-

ponent of z; € R% the identity (3.3.2) reduces to the Isserlis theorem. As any multilinear
form can be decomposed as a linear combination of such elementary multilinear forms, the
result (3.3.2)) is proved by linearity with respect to B. O]
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Proof of Theorem[3.3.1. We consider F(v)(¢) as a 2n-multilinear form B, , evaluated in the
vectors (&, ..., &) (see Definition [3.2.2). Lemma [3.3.2 gives

d
E[Byo(, ... Ol= >, > Bygle,) = F(o4(p))(8),

pEP2(2n) i1, in=1 peEP2(2n)

because B, 4(e;,) is the differential F'(y) where we differentiate the non-grafted nodes linked to
grafted nodes in the directions given by e;,, and F'(¢,(p))(¢) is obtained by summing B 4(e;,)
over all the indices. O

A straightforward corollary of Theorem is that the operators £7/j! and A; can be
written with exotic aromatic forests.

Theorem 3.3.3. Consider a Runge-Kutta method of the form (3.1.1)) (resp. (3.1.2))), then the
expansions (2.2.5) and (2.2.6) can be formally written with exotic aromatic B-series, that is,

there exist two maps e and a over EAT such that

E[¢(X (h))|X(0) = 2] = B(e)(¢)(x), E[p(X1)[Xo = z] = B(a)(¢)(x),
and where the operators are given by
LI
T = eMv), Aj=F a(y)y |-
' (wegA;7=j ! W) 1 <’Y€5A;|’Y|=j ! 7)

If e(y) = a(v) for all v € EAT with 1 < |y| < p, then the integrator has at least weak order p

Jor solving (2.1.3) (resp. (2.1.4) ).
For instance, the generator £ of the SDE (2.1.4) in (2.2.3) can be written with exotic

aromatic forests as

/ —1 ’ o? —1 3- ’ o? -2 / ’ o? o? —1.n
Lo=¢ -G (g,f)cbg—?G le(g)¢>g+3G (g,gg)¢>g+3A¢—7G ¢"(g,9)
1 1 1. 1

Note that removing the forests with white nodes yields the expression of the generator in R¢,
that is,

2
Lo=df+ %Aqﬁ - F(I+ 5 c‘;)((p).

Application. The operator A; of the 8-method (3.1.3) is now convenient to write with exotic
aromatic forests. Applying Theorem to (3.3.1), we deduce Ay = F(v) with

PR IS EV IS PRI S o
v=10 + 3 t3 +'9’+2”+8 \\\\\ (3.3.3)

3.3.2 Integration by parts of the exotic aromatic forests

In this subsection, we integrate by parts integrals of the form § m F()(@)dpe for v € EAT.
The idea is to transform a high order differential operator A : ¢ — F(v)(¢) into a differential
operator A° of lower order in ¢ such that § oAb = S M A%pdji. The tree formalism
previously defined makes this task systematic and very convenient.
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Let us first begin with an example in R%,

1
fRdF(g))(¢)pood:c 22 f d axlax] Gt gy, et (3.3.4)

0p _ Ofi J 09 f?poo
— 2 i} 2
ZZJ: {U J]Rd 0x;0x; 0 prod +0 Rd 0T;0%; fZ ; ]’

where we integrated by parts. Note that the boundary term vanishes using the growth assump-
tions on ¢. As we assumed f to be a gradient, the invariant measure satisfies Vpo, = % fpo
and the equality (3.3.4]) can be written using exotic aromatic forests as

1 [ e o 09
F()()pwdz = _Z {U JRd 0x;0xj Ox;j pood + 2J]Rd 0x;0x flfjpoodx}

Re ij

= [ F®)@pade -2 [ PO @i
Rd

R4

We notice that integrating by parts F'(_.)(¢) with respect to the invariant measure djio, amounts
to unplug a liana from the root and to replug it either to all the other nodes of the forests or
to add a new edge linking to a new black node.

On a manifold, the integration by parts is a corollary of the Green theorem (see, for in-
stance, [116, Chap.II]). It is a crucial tool for deriving order conditions for the invariant mea-
sure.

Lemma 3.3.4 (Integration by parts on M). If ¢ : R - R and H : R? — R? are smooth
functions, then

| Vs don =~ | v divaa(yt)don,
M M

where V a1 := MV and diva(H) := div(H) — G~ (g, H'g). In addition, with the invariant
measure dieo = podos and k = 0, we obtain

J |G/ H = G4 (g, H)'g |y, = J |64 (g, H g (3.3.5)
M M

— 2k + 1)G " (g,4'9) (g, H) — G F div(H)y + 2kG D (g, o H)p

+ G div(g)(g, HYG + 2 G g, f)(g, HYY — %Gik(f’ 1) |dyice

For instance, applying identity (3.3.5) with ¢ = 0*A¢/(e;), H = e; and k = 0, and then
summing on ¢ = 1,...,d yields

| [ota%—otam a0, |dne = | [~ o' .g0080 (33.6)
M M
+o'Gdiv(g)Ad'g + 202G (g, f)Ad g — 202A¢'f] it

Note that this calculation can be written with exotic aromatic forests as

f F(le— o},{o)duw = J F(—o=i i +0O Ci) +2 o0 Ci) -2 E’)duoo.
M M
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From these examples, we get the intuition that there exists a convenient method to integrate
by parts exotic aromatic forests with graph operations such as unplugging/plugging edges and
lianas. We shall make this intuition rigorous after defining a few notations in the spirit of the
Butcher product on trees [65, Chap. III].

Notation 3.3.5. Let vy be an exotic aromatic forest/vector field, T be an exotic aromatic vector
field and v a node of v, then we define the following operators on forests.

1. 3: sum of all exotic aromatic forests/vector fields obtained by linking the root of T to a
node of v with a new edge in Ey

2. o (resp. o= ): aroma obtained by linking the root of T to a white node (resp.a black
node) with a new edge in Eg

3. O: sum of all aromas obtained by linking the root of T to a node of T with a new edge
m EQ

4. s sum of all exotic aromatic forests/vector fields obtained by linking the node v to a
node of v with a new liana

5. 2 : forest obtained by linking the root of T to the node v of v with a new edge in Fy
1

For simplicity, we combine multiple operations on a same forest as in
ation 1 is always applied first.

and o=l, where oper-

For example, let v = o\/o, 7 ={and v = r the root of v, then we get

5:5\%+2\£, or = o, ©=g>+i>, ﬁ}iyf‘:C\\i',‘/o+2°\.(?, vvjzw/i.

The integration by parts (3.3.5)) can be written conveniently with exotic aromatic forests.

Lemma 3.3.6. Let v € EAT and 7 € EAV, then the process of integration by parts can be
written as

f F(h = o 1) (9)dpios = J F(od 7= (Ny() + Ny(7) + 1) od o 7= O (3.3.7)
M M
+ (Ng(7) + Ng()) o671+ O o 142 0w 0r 71— 2 or v) (#)dpico,

JM (=) )dpos = JM P () +1) oL (3.3.9)

+ Ny(v) 7} 1O 1200 —2 “/«»j) (¢)dpico-

We write v ~ 7 if it is possible to go from v € EAT to 5 € Span(EAT) with the processes
of integration by parts (3.3.7) or (3.3.8), and by taking account of the simplification rules of
Proposition We extend this relation by linearity on Span(€AT) and make it symmetric
so that ~ becomes an equivalence relation on Span(E£AT). For example, the integration by
parts can be written with exotic aromatic forests by using with v = . Tt yields

RN WY 11

O 42,00 20
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Similarly, applying (3.3.8) with v = N gives

R NN SRR Y S TN N NP VRPN )

which represents the integration by parts
f [04G’1A¢”(g,g) —o'G 2 (9a9:979)]dﬂoo (3.3.9)
M
= JM [ —20'G7' Y ¢ (g, dig, ei) + 40'G 7?6 (9,9, 9'9)

o 30'4G_3(g, g/g)¢(3) (g’ g7g) =+ O'4G_2 le(g)¢(3) (9795 g)
+ 2026729, )69, 9.9) = 20° G0V g, 9. F) | dpcc

Remark 3.3.7. In the Euclidean case R?, that is, for a forest v € EAT and a vector field
T € EAV with Ny(y) = Nyg(1) = 0 and g = 0, Lemma reduces to the two following
equations:

1; ~ —O Y — 2 o= 7 "/1:7 ~ =2 A/“/..

)

We refer to [83] for more details on the integration by parts of evotic aromatic forests in RY,
in particular in the case where f is not a gradient.

We can now revisit the statement of Theorem [2.3.2 in terms of B-series.

Theorem 3.3.8. Consider a consistent ergodic Runge-Kutta method of the form (re-
spectively of the form (3.1.2)). We denote A; = F(v;) withv; € EAT. Ify; ~ 4 and F(7?) =0
for 1 < i < p, then the method has at least order p for sampling the invariant measure of
(respectively ).

Application. Applying the process of integration by parts to the operator A of the 8-method
given in (3.1.3)) yields §pq A1ddpi = §ga Apduse with A} = F(4Y) and

In particular, the 6-method (3.1.3)) is of order two for the invariant measure if 0 = %
Remark 3.3.9. We call EAT? the subset of exotic aromatic forests whose root has only one
predecessor (that is, the forests associated with an order one operator) or that have a rooted tree
of the form NS Then, if v € EAT, there exists ° € EAT? such that v ~ 0.
For instance, for a consistent method of the form (3.1.2), the operator A = F(7Y) has the
form
A= ("d - b"d) ot N+ Z a®(y),

[vl=2

m(r)|=1
s0 that 79 € EATY, and A is a differential operator of order one if the condition bTd = bTd
holds. Moreover, in the context of R?, one can always integrate by parts a differential operator A
that can be represented with exotic aromatic forests into an operator Ay of order one.
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3.3.3 Composition of differential operators with exotic aromatic forests

In this subsection, we compose differential operators with the help of exotic aromatic forests.
The applications include the computation of £P and of the Lie bracket [£, 4,] that we need for
getting weak order conditions or for using Theorem The composition of exotic aromatic
forests is done according to the following theorem.

Theorem 3.3.10. Let 1 = (V1, EY,L') and o = (V2 E?, L?) be two exotic aromatic forests
with roots r1 and r9, and let ¢ : R — R be a smooth function. For ¢ : w(ry) — VY oand
Y D(rg) — V1, we build Yoo by plugging all the edges connected to ro to the nodes of 1
according to ¢, and all the lianas (counting multiplicity) according to 1. Then the composition
of forests is given by

FOp)(F)@) = D) Flrew)9).

pim(re)—V1
P (rg)—V1
Various composition rules for B-series and aromatic B-series have been studied in the litera-
ture (see [65, 31l [13] and the references therein). The main difference with these previous works
is that we compose only the roots of exotic aromatic rooted forests, as this corresponds to com-
posing linear differential operators in our context. The study of new operations with the lianas
could lead to a structure of Hopf algebra of the exotic aromatic B-series (in the spirit of [31,[13]),
and is matter for future work. For the sake of simplicity, we give a proof of Theorem in
the context of R?, that is, for forests such that Vy and Eg are empty. The extension to any
exotic aromatic forests and hence to exotic aromatic B-series is straightforward.

Proof. Using Definition we have
Fn)(¢) = 2 2 1_[ Ol Otroy fi | Ly Oy 0
iv(1)7---7iu(1) jl(l),---vjl(m veVP
1 m1 1 S1
Then we replace ¢ by F(71)(¢) and use the Leibniz rule to distribute the partial derivatives

Fe)F)@) = S S 1T e

) , ) ) o
21}51),...,11)7(73 ]l(ll),-..,]lgl) veV,

'afw(rg)aJF(Tw H Oy Oy fi 6Iw(r1)ajr(r1)¢

UEVlo

2 2 Z H aIﬂ(v)aJF(u) fiv

im(r2)=>Vid ()5t (1) Jy1)50,01) \veVy
$iD(rg)—Vy ‘1 Ymyp 1 s1

H alw(v)w:—l({v})aJr(v)uw—l({vnfi’“ alw(rl)w—l(m})aJF(r1>uw—1<m}>¢'
veVlo
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Using Definition [3.2.2] we deduce that

Fy)(Fm)@) = >, Flrew)(9).

p(re)—Vi
P:T(rg)—Vy

Hence the result. O

Using Theorem [3.3.10, we can calculate conveniently standard operations on differentials
such as the Laplacian or the divergence. For instance, using Notation for 7 € EAV an
exotic aromatic vector field such that V, and Eg are empty, the divergence of 7 is given by O.

Application. We recall that, in the context of R%, the generator (2.2.2) of equation ([2.1.3)) is
given by L = F(I + % ). We can therefore compute L2¢. Using Theorem |3. S’.Id, we obtain
11 p

Fly(Lo) = F(E +5N 4+ 5 @) and F()(Lg) = F("+ T2l % TN ().

Combining these equalities, we deduce

L2 = F(E +5 1 I + % by +l4 i O)().

In the manifold case, that is, when L is given by (2.2.3)), the same methodology applies and the
complete decomposition of L2 in exotic aromatic forests is given in Table @.1.



CHAPTER 4

High order methods for sampling the
invariant measure of ergodic SDEs

Note: This chapter is based on the articles [83] (R? case) and [85] (manifold case), both in
collaboration with G. Vilmart.

4.1 Introduction

We propose in this chapter a new methodology for the construction of high order integrators
for sampling the invariant measure of ergodic stochastic differential equations with dynamics
in R%, or constrained on a manifold M. In particular, we obtain the order conditions for
sampling the invariant measure for the classes of Runge-Kutta methods — applied
to the Langevin dynamics in R? and to the constrained Langevin dynamics on a
manifold M. The methodology is extended in R? to allow the use of postprocessors, and is also
applied in the context of modified SDEs, partitioned problems and perturbed dynamics. The
analysis is valid for arbitrarily high order and relies on the new formalism of exotic aromatic
B-series introduced in Chapter We mention that the numerical results presented in this
chapter can be understood independently from the formalism of Chapter [3} To illustrate the
methodology, several examples of methods of order two for constrained problems are introduced,
and numerical experiments on the sphere, the torus and the special linear group confirm the
theoretical findings.

As seen in Chapter [2] a natural way to achieve high order p for the invariant measure is to
consider a numerical scheme with high standard weak order. Several examples in the litterature
(as, for instance, [14), [86] [87, [6]) show that it is possible to reach high order p for the invariant
measure while keeping a low weak order (typically weak order one). In [5}[6], a methodology for
the analysis and design of high order integrators for the invariant measure in R? is introduced
and serves as a crucial ingredient in this work. The approach combines the usual Talay-Tubaro
approach [121] and recent developments of the theory of backward error analysis and modified
differential equations in the stochastic context [126], 2, [48], [79, [80], a major tool in the area of
deterministic geometric numerical integration [65]. In [123] for finite dimensions and in [I5] in
the context of parabolic SPDEs, this approach is combined with the idea of processing from
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Butcher [23], to design efficient postprocessed integrators with high order for the invariant
measure at a negligible overcost compared to standard low order schemes. The postprocessor
methodology is extended in [I] for a class of explicit stabilized schemes of order two for the
invariant measure and with optimally large stability domains.

For Langevin dynamics constrained on a manifold , one is interested in integrators
with high order for the invariant measure that stay on the manifold (that is, X,, € M for all n).
A widely used and simple numerical scheme for sampling the invariant measure distribution
on manifolds is the Euler scheme (see [37, [88] 90, O1] for instance). Two variants exist for the
overdamped Langevin equation , both of order one in the weak sense, and for sampling
the invariant measure: the Euler integrator with explicit projection direction

Xny1 = Xp + hf(Xn) + U\/ﬁgn + )\Q(Xn)v C(Xn-&-l) =0, (4'1'1)
and alternatively the Euler integrator with implicit projection direction
Xni1 = Xn + hf(Xn) + 0Vhén + Ag(Xns41),  ((Xng1) = 0. (4.1.2)

To the best of our knowledge, no high order numerical integrators for sampling the invariant
measure of the overdamped Langevin equation with constraints and that do not reduce
to a splitting method have been proposed in the literature. In [92], an order two discretization
based on the RATTLE integrator (see [115], 9l [67]) is applied to the underdamped Langevin
equation, rather than to the overdamped Langevin dynamic . The previously described
discretizations can be combined with Metropolis-Hastings rejection procedures [103], [69]. We
quote in particular the Markov-Chain Monte-Carlo (MCMC) methods [61), 18, OI] and the
Hybrid Monte-Carlo methods [124), [92], where the need for a reverse projection check is shown
to be a key step. We also mention the integrators in [125], 93] that are based on an Euler
discretization and present new approaches for projecting on the manifold. The alternative
approach of using Metropolis-Hastings rejection procedure allows us to fully remove the bias
on the invariant measure. Analogous to the Euclidean case, this procedure does not make high
order discretizations obsolete because, in particular, the rejection rate depends on the quality of
the discretization and the dimension of the problem in general, and in the case of stiff problems
or problems in high dimension, it suffers from timestep restrictions. Note also that in the
specific case where M is a Lie group, high order integrators can be naturally obtained using
splitting methods, that are, however, typically limited to weak order two of accuracy due to
the necessity of negative time steps, that are not suitable for non-reversible problems (see [12]
for further details in the context of ODEs). In this chapter, we propose the first method of
order two for sampling the invariant measure of constrained Langevin dynamics that
does not reduce to a splitting method.

This chapter is organized as follows. In Section [£.2] we explain the methodology for the
analysis of the accuracy of integrators for sampling the invariant measure on a manifold M
by using Theorem [2.3.2] We also give a proof of this theorem in the context of compact
manifolds. In Section we apply this methodology in the context of R?. We build high
order approximations for sampling the invariant measure of Langevin dynamics using modified
equations and we derive the order conditions of order two and three of the class of Runge-
Kutta methods . We generalize the results to include postprocessors, and adapt the
methodology in the context of partitioned problems and perturbed systems. In Section [{.4] we
apply the methodology in the context of manifolds to the class of Runge-Kutta methods
for solving the constrained overdamped Langevin equation , to derive arbitrary high
order conditions for the invariant measure, with special emphasis on order two conditions, and
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to introduce a new order two scheme that uses only a few evaluations of f per step. This new
order two scheme is then compared to the Euler scheme in Section in numerical
experiments on a sphere, a torus and the special linear group SL(m) to confirm its order of
convergence for sampling the invariant measure.

4.2 A criterion for high order approximation for the invariant
measure

In this section, we give a quick overview of the methodology for the analysis of the accuracy for
the invariant measure of ergodic integrators using Theorem Then, we prove Theorem[2.3.2]
in the context of compact manifolds.

The methodology is the following. Given a consistent numerical integrator or a class of
integrators such as the Runge-Kutta methods ( - -, we compute the Talay-Tubaro
expansion . In the context of Langevin dynamics (2.1.3 - the exotic aromatic B-
series formahsm proves to be a convenient tool for the Computatlon of the operators A;, as ex-
plained in Subsection Then, we integrate by parts multiple times the integrals §A;¢duq
in order to transform a high order differential operator A; : ¢ — F(v)(¢) into a differential
operator AO of lower order in ¢ such that §Ajpdug = S.Aoqﬁd,uoo We simplify the integration
by parts process in Subsection [3.3.2] with the exotic aromatic B-series formalism. If AO =0
for all j < p, then Theorem [2.3.2| ensures that the numerical integrator has at least order p for
sampling the invariant measure of .

Let us now prove Theorem The proof relies on Talay-Tubaro expansions [121], back-
ward error analysis and modified differential equations for SDEs [126, 2] 48], [79, [80]. It is similar
to [5, Thm.3.2] in the context of smooth compact manifolds. In the spirit of backward error
analysis for differential equations (see [65], 126 2 48]), we build a modified generator L" such
that U(x, h) = E[¢(X1)|Xo = z] formally satisfies

Uz, h) = 2 f(ﬁh)]fb(ac). (4.2.1)

Truncating this formal series yields an estimate of the form

N hj
7(£h)]¢( ) hNJrth (d)a )7 T € NM7

=l

U, h) = d(x) +

where N is an open neighbourhood of M in R? and the remainder satisfies ‘R}]lv(gf),ﬂj)‘ <
C’N(qﬁ). For this, we write formally £" = £ + D ns1 MLy and compare the series expression
in ) and - By formally identifying the powers of h, we deduce the following rigorous
deﬁmtlon of the L,, on an open neighbourhood of M in R¢,

B
Lo=L, Ln=A,+ Z l D Loy LppAny,,, n=1, (4.2.2)
=1 ! ny+--tnppp=n—Il

where the B; are the Bernoulli numbers (see [48], 126}, 5] for similar expansions in T¢ or R%).
Using Assumption we build recursively a sequence of functions (p,) such that

n
L*pp = — Z Lipp—; and po = pw, (4.2.3)
=1
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where SM pndopg = 0 for n = 1. We denote pl! = D —oh"pr and dul = pldo g and adapt on
the manifold M the following result from [48, Thm. 2.1] in the context of R%.

Lemma 4.2.1. Under Assumptions [2.2.4, |2.5.1) and |2.2.5, for all ¢ € C*(R%,R), for every
positive integer r, there exists a constant Cy(¢p) independent of h such that, for all h small

enough,
‘ j b f pdul| <

We omit the proof of Lemma as it is exactly the same as in [48, Thm. 2.1] by replac-
ing dz by do g and T¢ by M. We are now able to prove Theorem

< Cp(p)h 1 (4.2.4)

Proof of Theorem[2.3.4 As A%py =0 for j=1,...,7 — 1, we deduce recursively from
and that p; = 0 for j = 1,...,7 — 1, which yields pff = po + h"pr. Using the defini-
tion of the error for the invariant measure and the ergodicity of the integrator ,
equation becomes

(g, h) — " JM 6(2)pr (@)do g ()] < OB

We are left to prove that

M Dor(@)dop(z jf (i, ) AL pon (2 dorpa ().

By the backward Kolmogorov equation and ergodicity, u satisfies

Jim 1) = o) + [ Lute 0t = | 6()duslo)
Using L*p, = —L¥po = — A’ po, we deduce

|, s@pr@aonie) - J || cutwtip@ios@ar + [ o) [ prte)iza)
f j (e, 0)£* () dopa () dt

Jo JM u(z, ) A7 poo (z)do s (z)dt,

where we used that §,, p.(z)dor(2) = 0. This concludes the proof of Theorem O

Remark 4.2.2. One can consider possible generalisations of Theorem in the case where
the manifold M is not compact, or if M is a manifold of any dimension. We refer to [5] for
the non-compact extension of Theorem in the context of RY.

4.3 High order sampling integrators in R?

In this section, we apply the formalism of B-series presented in Chapter [3|to obtain high order
integrators for sampling the invariant measure of Langevin dynamics (2.1.3)) in the context
of R%.
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4.3.1 Improvement of a method order via a modified equation

In [5], a recursive method to obtain integrators of any order for the convergence to the invariant
measure is presented. Let us suppose we have an integrator of order exactly p = 1 for the
invariant measure, that is, for all j < p, A¥p = 0 and Ajp, # 0. By integrating by parts, we
can write SRd Apppodr as SRd ¢ fppoodzr. We then consider the same numerical integrator but
for the modified equation where we replaced f by f — h”f,. Applying Theorem to the
new context, we see that this integrator is at least of order p + 1 for the original equation.

In this section, we give tools to simplify the computation of those modified integrators, in
particular to calculate simply the operators A;, and to find the function f,.

Example. For the 0-method (3.1.3)), we have Ay = F(~y) where v is given by (3.3.3)). Applying
integration by parts as described in Section we obtain

y~ (1—9)(£+c‘;).

2
Then f1 is given by

1 , o?
= (g-0) e+ Fan.

Application. Let us calculate the modified vector field fo for the 6-method (3.1.3). First we
write the differential operator As for the modified equation where we replaced f by f—hfi. We

call it .Agl). We find .Agl) = F(v) where

=0(30 — 1) %+9(392_1) ¥+W“2_D ?+02Y+T e £+9(592_1) E

0(20 + 1) } 0(20 +1) 1 40 -1 \) 49 —1) “ L@ £ 46-1) 1
+ o o 4 )
2 4 4 8
o I 1 .\./. 1.2 1
I v W (\ ) _ (\ ) _ (\ /I’\ ) _ ‘\,Y\ .
'+ 6 +5 +5 T+ 3t g

Applymg integration by parts, we find

70

5 1 % 5 1 302 30 1Y\ ¢
7~(—29 +20—2) +<—0 +0—4) E+(—2+2—3)E
5 1 0> 0 1Y\ Ty 2 1\ ¢
+(—0 +9—6> Y+<—4+4—24) I+<—9 +0—6)E.
Thus we define
f2=(—292+29—;)f'f'f+(—«92+9—D02f’Af
0> 30
+(-5+5-3) 3 e ) v (<o)

62 0 1 42 2 1 2 /
+<_4+4_24> A f+<—9 +9—6)o (AP (),

and, if the §-scheme applied to dX = (f — hf1 — h®f2)dt + odW is ergodic, then it has order 3
for the invariant measure.
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For fi, we recover the formula of [5, Prop.5.1]. The computation of fo was first done
for = 0 in [5, Prop. 5.2], which reveals a typographical error. Note that for f linear and 6 = %,
we get fo = 0, as the #-method with § = % samples the invariant measure exactly in the
Gaussian case [3].

This method can give numerical integrators of any order, but it comes with a high computing
cost if the partial derivatives of f are difficult to compute. In the following sections, we present
order conditions for certain classes of numerical schemes, in order to obtain high order methods
avoiding derivatives and unnecessary evaluations of f.

4.3.2 Order conditions for stochastic Runge-Kutta schemes

We consider stochastic Runge-Kutta schemes for solving the overdamped Langevin
equation . Using the proposed framework, our goal is to find algebraic conditions on the
coefficients A = (a;;), b = (b;) and d = (d;) to achieve a given order condition for the invariant
measure.

First, we suppose >,b; = 1 in order for Ap = £ in Assumption to be satisfied. Then,
we have A1¢ = F(71)(¢) where

7122@'01‘% ZbdZI—l—Zde—l— \/+ 1 ér\().

Lemma [3.3.0] yields

~ (ZblCZ + % — 2szdz) I-ﬁ- % (Zbld% + % — 2szdz> \/I‘

Thus if the method satisfies

Moi=1, Zbici—i—é—QZbidi =0, Zbidf+%—22bidi =0,

then 1 ~ 0 and, according to Theorem [3.3.8] we get a Runge-Kutta scheme of order two for
sampling the invariant measure of .

By continuing this approach, we obtain the order conditions of order three, and our analysis
allows us to obtain the conditions for any order. The following result states the order conditions
for Runge-Kutta methods.

Theorem 4.3.1. Consider an ergodic Runge-Kutta method of the form with > b; =1
for solving [2.1.3). If A; = F(v;) and ~; ~ 7Y, where F(+Y) is an operator of order one, if A, b
and d are chosen such that 7Y = 0 for all 1 < i < p, then the method has at least order p for
the invariant measure. In particular, Table gives sufficient conditions to have consistency
and order two or three for the invariant measure for the Runge-Kutta schemes .

Remark 4.3.2. As presented in Theorem[3.3.3, the exotic aromatic B-series can also be used
to derive weak order conditions We collect in Table[{.3 the weak order conditions of the class of
Runge-Kutta schemes up to order p < 3. We recover exactly the same order conditions
as first derived in [45, Thm. 4] using different types of trees and B-series, and in the specific
case where f is a gmdient. We recall that the conditions for weak order 8 have no solution for a
method of the form (|3 with only | = 1 noise. Indeed, fizing d® = 0 in Table we obtain
the incompatible order conditions ). b; ( (1)) = % (third line of Table and >, b; (dz(.l))2 =
(last line of Table . Taking | = 2 noises in the method is sufficient for reaching
weak order 3.
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Order | Tree T F(1)(¢) Order condition
1 o' f Ybi=1
2 o f'f Ybici =23 bid; = —3
O'2gZ5,Af Z bld? - 22 bzdz = —%
3 qb'f’f’f Z biaijcj — 22 biaijdj + Z bici — (Z bzdl)z =0

!

(Iw

{ U2¢IflAf Z biaijd? — 22 bia;jd; + Z bic; — (Z bidi)2 =0
% Ybic; =23 bidic;
Y oS 1) 23 bid; + 23 bid? + Y bie; = 1

3
Sibidiaizd; — > bicid; — > bid; + Y bid?
2O (f(e),ei) | + D bici — X biagd; — 5 (N bidi)? = —3
3 Dbicid} = 3 bid} — 2 3, bid;

D ow@n) | +15he - Shod + 1S he - -}
§ Lbid} — 5 2 bid}
\\,I\) O‘4¢/A2f _%szdz_i_%szd? — _%

Table 4.1: Runge-Kutta order conditions for the invariant measure (See Theorem [4.3.1)). The sums are
over all involved indices.

Remark 4.3.3. As explained in the introduction, the study of weak order conditions in finite
time using rooted trees is already well documented in the literature, but the framework of exotic
aromatic B-series has the advantage to involve rooted forests that do not depend on the dimen-
ston d, which permits us to compute integration by parts and hence derive the order conditions
for the invariant measure. Since weak convergence implies convergence with at least the same
order for the invariant measure, the weak order conditions (Table imply the order condi-
tions for the invariant measure (Table . In particular, comparing Table and Table
we observe that there is a strictly lower number of order conditions for the convergence to the
invariant measure compared to the standard weak convergence.

4.3.3 Order conditions for postprocessed integrators

In this section, we extend our analysis to the case of integrators combined with postproces-
sors [123]. As stated in Theorem [2.3.3] it permits us to increase the order for the invariant mea-
sure of a given method while maintaining a low number of function evaluations per time step.
Applying Theorem and Theorem (for the computation of the operator A,+[L, A,]),
we obtain the order conditions on postprocessors to increase by one the order of a given method.



4.3. High order sampling integrators in R¢ 52

Order | Tree T F()(¢) Order condition

1 ! o' f Sh =1

2 i o f'f Shies =
1 2GS Sbi () + N6i(dP)” = 4
! 23" (e, f1(er)) | Lbid" =]

3 % oIS Y biaijej = §
! RN S biaig (@) + Sbiay; (¢7)* = 4

Y & 1"(f, f) it =%

E ARG (fe)se) | LbidDayd + Y bidP ayd? =1
b 24 (A (F) Sbici (V) + Sbiei (d)? = §
3 s (@) + (@) = 3
} a® 21 ¢" (e, f'f'(ei) sz‘az‘jdgl) +3 (Z bidz(Q))? = o
Dl Sy | Shed -1
D 2@ | D) + nnd @) =
Dol 2o eies f'lenes) | Soi(d))’ =1

Table 4.2: Runge-Kutta standard weak order conditions for [ = 2 noises. The sums are over all involved
indices. We recover the same conditions as in [45].

Theorem 4.3.4. Consider an ergodic Runge-Kutta method of the form (3.1.1) and of order
p =1 for sampling the invariant measure of (2.1.3)), and the following associated postprocessor

Yi=Xn+h Y @G f(Y;) +diovVhé&,, — i=1,...,s,
j=1

S

Xy = X+ h 3 bif (Vi) + doovVh &
i=1

If the postprocessor satisfies an expansion of the form 7 if v is the exotic aromatic B-series
such that F(v) = (A, + [£, A,]) and if A, b, d, A, b, d, dy are chosen such that v ~ 0, then

the postprocessed method X, has at least order p + 1 for the invariant measure. In particular,
if the conditions of order two in Table [{.3 are verified, then the postprocessed integrator has
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order two. If the Runge-Kutta method has order two for the invariant measure (see Table ,
if Y.b; = %2 and if the conditions of order three in Table are verified, then the method has

order three.

Order | Tree 7 Order condition

2 E Ebici—QZbidi—QZE+2%2:_%

U | Sbd? — 25 bids — i+ do” = —1
Zbiaijq — QZbiaijdj + Zbici
% — (U bidi)? = 23 bi + 4do X bid; — dp =0
o szal]df — ZZbiaijdj + szcl
E — (X bid)? = Y b — N bidi” + 4do Y bad; — do' = 0
T3 bic? =23 bidic; — 23 bid; + 2 Y, bid?
J— N — —4
\I/ + X bici — 2. bic + 2do > bid; — Y- = —1

Sibidiaijd; — Y bicid; — Y bid; + Y. bid? + Y. bic;

S biagd; — 5 (X bidy)? — X by + 2o 3 bids — G- = —1
I3 bieid? — Y bid? — 23 bid; + 3 Y bid? — zbc”

s 1S b — L b — LS hidy? + 2 iy — % = L
D D T

| IS - LN hd My - B = — L

Table 4.3: Order conditions for Runge-Kutta method with Runge-Kutta postprocessor (See Theo-
rem (4.3.4). The sums are over all involved indices.

Example. The following Runge-Kutta method, introduced in [123], is of order 2 for the in-
variant measure of (2.1.3) (if it is ergodic):

Xn+1 = Xn + hf(Xn-H + %ﬁa\/ﬁgn) + U\/Eém
X = X+ h2F(X) + Y2ZLVhE,.

Indeed, its coefficients, placed in the following Butcher tableau, fulfill the conditions of order 2

of Theorem (See Table[4.3):

clAldle|d|a _ 1|1|15E] 2] 2| e
IR R Y B B B =

4.3.4 Order conditions for partitioned methods

We now assume that f = f; + f2 and we consider partitioned integrators that apply different
numerical treatments to each f;. We explain in this section how to extend the exotic aromatic
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B-series formalism to compute order conditions for such partitioned integrators. The advantage
is to treat each part of f differently according to their properties. For example, if f; is stiff
and fy is non-stiff, one would like to apply an implicit method to f; and an explicit method
to fo (IMEX methods).

We follow the formalism of [65, Sect.IIL.2] for bicoloured B-series, called P-series. We
introduce square nodes which represent the function fs. Circle nodes now correspond to f1 but
the root still corresponds to ¢. We call these new forests exotic aromatic P-forests. There are
two slight changes in the computation rules compared to the non-partitioned case:

e The integration by parts presented in Lemma [3.3.6| can be written as
’I’ ~ —C) T—2 e 7 —2 w17, "YZ':I ~ =2 ”/"‘j -2 7“/..
e The operator £ is now written as

=rl+1+ 3

In addition to the partitioning of the method, one can also add a postprocessor. The results
of Section [£.3.2) and Section [£.3.3] are straightforwardly adapted to the P-forests.

Theorem 4.3.5. Consider a Runge-Kutta method of order p for sampling the invariant measure

of ZL3) of the form

Y; —X+h2%ﬁd)+%ﬁ(%MoJﬂ, i=1,...,s,
Jj=

Xn1 = Xn +thf1( )+ bifo(Y:) + oVRs,
together with the following Runge-Kutta postprocessor

Y, =X, +h2a,]f1( Y;) + @i f2(Y;) + dioVh &y, i=1,...,s,

~

X, i Bfu(VE) + Bifo(To) + doovh .

If the postprocessor satisfies an expansion of the form , if v is the exotic aromatic B-
series such that F(v) = (A, + [£, A,]) and if the coefficients of the method are chosen such
that -y ~ 0, then the postprocessed method X,, has at least order p+1 for the invariant measure.
In particular, the conditions for consistency and order 2 are in Table|4.4}

Example. Using the previously introduced formalism, we see that the following method, adapted
from [15, Lemma 2.9], is of order 2 for sampling the invariant measure of (if it is
ergodic):
Xnp1 =Xn + 21 X1 + 20Vh&,) + B f1(Xns1 + 30vVhE,)
+hfo(Xn + 30VhE) + oVRE,,
X, =Xn+30Vhé,.
It can be put in Runge-Kutta form with the coefficients below:

0/o 0 o ]o]lo 0 012
clale|dlda 1o 12 12[1]1 0 0|12
‘ ‘ ‘ b ‘ 1|0 1/2 1/211]1 0 0]3/2

10 1/2 1/2] |1 0 0

with the parameters s = 0 and dg = % for the postprocessor.
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Order | Tree 7 | F(7)(9) Order condition

1 ! dfi | Shi=1
: $f | Xhi=1

2 E &' fif Zbici_ZZbidi_2ZFi+2d702:_%
E &' f1fa Zbia—2Zbidi—ZE—Zbii+2%2=—%
D 0 | She-2Shd-Th-Sheam - -}
E ¢ f5.f2 2@@_22@@_22@4‘2%2:_%
U | 2¢AR | Shid? -2 bid — Xb; +do” = —3
f PP Nfo | S bid? — 23 bid; — Zbﬁi‘HTOQ =—3

Table 4.4: Order conditions for partitioned Runge-Kutta method with postprocessor (See Theo-
rem [4.3.5). The sums are over all involved indices.

If we add a family of independent noises (xn)n that are also independent of the (§,)n, then
by extending Theorem |4.53.5, we can show that the following IMEX method has order 2 for the

invariant measure of (2.1.3|) (if it is ergodic):

Xps1 = Xn + bfi(Xni1 + 30Vhxn) + hf2(Xn + 30VRE) + 0vhén,
X, =Xn+30vVhé,.

4.3.5 Non-reversible perturbation

An interesting modification of is to introduce a non gradient perturbation that pre-
serves the invariant measure. It permits for some classes of problems to improve the rate of
convergence to equilibrium [89], and it can also reduce the variance [5I]. As in Section [4.3.4]
we write f = fi1 + fo and we use bicoloured forests. We suppose f1 = —VV, and fs is a
perturbation of f; that satisfies

div (fge_%v) = 0. (4.3.1)

The perturbation fo does not modify the invariant measure. Indeed equation implies
that the adjoint of B¢ = ¢'(f2) satisfies B*py = 0, and thus the invariant measure is preserved.
A simple example of such non gradient perturbationsis fo = JVV, with J a fixed antisymmetric
matrix. All the results of Section carry over to this setting with the following modifications:

e The integration by parts presented in Lemma [3.3.6| can be written as

T

T v 2O 20y, 4~ 247,

9

« The generator reads £ = F({ + L+ %2. ).
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o We have F(®) = —2F(as), and these differentials vanish if f, = JVV.
With similar calculations as we did in Section we obtain the following result.

Theorem 4.3.6. Consider an ergodic Runge-Kutta method and a postprocessor as in Theo-
rem[4.3.5, where fi = =VV and fo satisfies (4.3.1)). If the postprocessor satisfies an expansion
of the form (2.3.4), if v is the exotic aromatic B-series such that F(vy) = (A, + [L, Ap]) and
if the coefficients of the method are chosen such that v ~ 0, then the postprocessed method X,,
has at least order p + 1 for the invariant measure of . In particular, the conditions for
order 1 and order 2 are in Table[4.5

Order | Tree 7 | F(7)(¢) Order condition
1 ! O | =1

qb/f{fl Zbici—QZbidi—QZE+2%2=—%

S| Dhiei —2X bidi + X b — X b — Ybi + 2do” = 0

E
Dl wnn | Shassh-gh -0
%
E

dif | $ha-1(28) =0

U | o20An | i@ —2Sbid~ Shi+do =~

U | 20af | Sbd2—2%0di+ X6 - b +d =0

Table 4.5: Order conditions for partitioned Runge-Kutta method with postprocessor for the perturbed
equation (See Theorem [4.3.6)). The sums are over all involved indices.

Note that if fo = JVV, we have T~ 2 E— 2 i Thus, if fo = JVV, the order condition

for ¢ can be omitted and the two conditions of E and E are respectively replaced by

23 bids = Y by + Y i — Y bid? + Y b —do” =0,
Shei— bt -5+ 4’ =o.

In order for the method to satisfy Ay = £, the condition ZbAZ = 1 should be added in
Table but it is not necessary to achieve order 1 for the invariant measure.

Example. If fi is a gradient and fy satisfies (4.3.1)), the following consistent postprocessed
scheme has order 2 for the invariant measure (if it is ergodic):

Xn+1 = Xn + hfl(Xn + %\/Egn) + %th(Xn + %\/ﬁgn)
_ith(Xn - thQ(Xn + %\/Egn) - %\/Egn) + Ux/Efn, (4'3'2)
XiTL = Xn + %\/Eé.:
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If fo = JVV, it needs two evaluations of VV per timestep similarly to a standard Runge-Kutta
weak order 2 method. For fa = 0, the scheme (4.3.2]) coincides with the one proposed in [86],
formulated in a different manner (See [123]).

Remark 4.3.7. In the recent work [J], the convergence to equilibrium is improved and the
variance is reduced by applying a reversible stochastic perturbation that does not modify the
invariant measure, instead of a deterministic perturbation. The B-series formalism presented
in this thesis allows us to study and build high order integrators for these kind of problems.
This is matter for future work.

4.4 High order sampling integrators on manifolds

In this section, we propose a new class of Runge-Kutta methods for sampling the invariant
measure of equation , and present the methodology for deriving the conditions of any
order for the invariant measure using Theorem In particular, we compute exactly the
consistency and order two conditions for the invariant measure as they are the most relevant
for applications.

4.4.1 Runge-Kutta methods for constrained overdamped Langevin

When discretizing naively equation (2.1.4), one cannot ensure in general that the integrator
stays on M. It is natural to discretize instead the equivalent formulation with Lagrange
multipliers

dX(t) = F(X(E))dt +odW () + g(XE))dA, C(X) =0, X(0)=Xoe M.

The class of numerical schemes we obtain is in the spirit of deterministic Runge-Kutta methods
for differential algebraic problems such as the methods SHAKE and RATTLE (see [115] 9, [67]),
introduced in the context of constrained Hamiltonian dynamics, or the SPARK class of methods
for general DAEs (see [74]). Since evaluating f is in practical applications the most expensive
part of the algorithm compared to evaluating g, we propose high order integrators that are
implicit in g and explicit in f in the spirit of implicit-explicit (IMEX) integrators (see, e.g., [67]),
so that there are only a few evaluations of f per step. We thus consider the class of Runge-Kutta
integrators (3.1.2). Ideally, one aims for IMEX integrators with a low number of evaluations
of f, we hence assume in addition that A is a lower triangular matrix and A is a strictly lower
triangular matrix (in the spirit of DIRK methods). We represent the numerical integrators with
their associated Butcher tableau, where b = (as,;)i, b = (@s,)i, c = Al and 1 = (1,...,1)7T,

For instance, the Euler schemes can be written as Runge-Kutta methods of the form (3.1.2)
with s = 2 and the following Butcher tableaux:

o[o offojo offo0 o[o offojo offo
Buler @LD): 11 011 01, Bue @12): 1|1 0f1/0 11
(1o |1 0of (1 off Jo 1]

Note that the class of methods (3.1.2) satisfies automatically Assumption [2.2.5
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Remark 4.4.1. The class of Runge-Kutta methods can be straightforwardly generalized
(as done in [83] in the Euclidean case R?) to study partitioned problems where f = f1 + fo and,
for example, to create IMEX schemes. In order to improve the order of the method without
increasing its cost, one could also apply a postprocessor (in the spirit of [123] in R?) or use
multiple independent noises in instead of only one random variable &, ~ N(0,1). This
last extension can increase the number of conditions but may also increase the set of solutions.
We refer in particular to [£5,[89] in the context of R, where it is shown for a class of stochastic
Runge-Kutta method that the order conditions for weak order 8 cannot be satisfied in general,
unless we use at least two independent noises. In addition, if we write the internal stages

of (3.1.2) as
Y; = X, +h2a,]f ) + ovVhdi, + (Zaijg(lfj))Az
j=1

7=1
where g : R* — R4 gnd \; € RY, then the same class of methods is also fit for solving
with a multidimensional constraint ¢ : R4 — RY. Note that the coefficients of the method do
not depend on the dimension of the space d or the codimension q of the manifold. This will be
studied in future work.

Remark 4.4.2. If &, is a Gaussian random variable, its realisations can be arbitrarily large,
and the existence and uniqueness of the solution of the system does not hold in general.
A standard remedy to ensure that the projection on M always exists for h < hy small enough
is to replace the standard Gaussian random vectors £ in - ) by bounded discrete random
vectors § that have the same first moments in the spirit of [104, Chap. 2]. This way, the order of
the method is preserved both in the weak sense and for the invariant measure, and the method is
well-posed for all h small enough. For weak/ergodicAorder two, one can consider, for instance,
the random vectors & with independent components &; that Satisfy

P(fi:()):% and P& = +/3) = i=1,...,d. (4.4.1)

The following lemma guarantees the well-posedness of a method of the form with
bounded random variables &,. The result is still true when A and A are general matrices, but
we consider only the lower triangular case for the sake of brevity. This result is in the spirit
of [67, Chap. VII] for deterministic DAEs.

Lemma 4.4.3. For Runge-Kutta methods of the form where the &, are replaced by
bounded random wvariables &,, there exists hg > 0 such that for all h < hg, for any initial
condition X,, € M, there exists a unique solution X,,1 of in a neighbourhood of X,,.
Furthermore, the internal stages satisfy Y; = X, + O(Vh) and \; = O(Vh) fori=1,...,s

Proof. We proceed by induction on i. We assume that for j < 4, the Y; are already defined and
satisfy Y; = X,, + (’)(\/ﬁ) The result is straightforward if 6; = 0. We thus assume that §; = 1
and prove the existence of a unique solution to the equations of the internal stage i:

Y; = X, +h2%f Y;) + ovVhdin + Ni Zawg (4.4.2)
7=1
C(Y;) = 0. (4.4.3)

Using ¢(X,) = 0, we write equation (4.4.3) as

1
C(Y:) — ((Xy) = L g (X + 7(Y; — Xp))dr (Vi — X)) = 0. (4.4.4)
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Inserting (4.4.2)) in (4.4.4)) yields

1 i—1 R 7
f 9T (X + 7(Y; — Xn))dr[h N ai f(Y5) + ovVhdibn + A Y al-jg(yj)] —0. (4.4.5)

0 j=1 j=1

Multiplying both sides of equation (4.4.2)) by Sé g (X +7(Y; — Xn))dT(Z;:1 a,-jg(Yj)>, and
substituting A; in (4.4.2)) with its value from (4.4.5), we deduce that F'(Y;,h) = 0, where the
function F : R? x R — R? is given by

1

F(y,t)Zf

0

Jj=1 j=1
+ (ZZJI az]g(}/}) + azzg(y)) <y - X, -t Zzzl a”f(Y}) — U\/Zdzgn):| .
J=1 j=1

As F(X,,0) = 0 and the partial differential d,F(X,,0) = G(X,)I; is invertible, the implicit
function theorem yields the existence and uniqueness of Y; in a ball of center X,, for h < hg
small enough. As En is bounded and M is compact, there exists a deterministic hg that
works for every initial condition X;,, € M. Now that Y; is well-posed, we deduce from the
identity F(Y;,h) = 0 that Y; = X,, + O(v/h) and we derive from that \; is well-posed
for h small enough and satisfies \; = O(v/h). Finally we observe that (Yj,);) is indeed a
solution to —. O

Remark 4.4.4. In practice, one can solve numerically each internal stage of the set of equa-
tions (3.1.2) with a fized point iteration or a Newton method starting from Y; = X, and \; = 0.
As M is compact, if the &, are replaced by bounded random variables, these two methods con-
verge for h < hg where hg is small enough and independent of the initial condition. It is
crucial to initialize the Y; in a neighbourhood of X, as has multiple solutions in gen-
eral. For example, the Euler scheme always has two solutions if M is a sphere (the two
intersections of M and a straight line going through the center of M).

Before looking at the consistency and the order conditions of the class of methods (3.1.2)),
we introduce a concise notation for multiplying vectors component-wise.

Definition 4.4.5. For y,y(l),...,y(”) e RY and m > 0, we define the diamond product and
the diamond power as the vectors in R?,

(YD e ey, = Hygk) and (y*")i = y;".

We present below the detailed calculation of the consistency conditions of the class of
methods for the constrained overdamped Langevin equation . A key ingredient
of this result is an expansion of the Lagrange multipliers A; in powers of h in the spirit of [90),
Lemma 3.25]. Similar proofs can be found in [90, Prop.3.24] for the Euler schemes (4.1.1)-
(4.1.2), and in [5, B3] for Runge-Kutta methods in R%.
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Proposition 4.4.6. For a Runge-Kutta method of the form (3.1.2)), the operator Ay in (2.2.6)
is given for ¢ € C*(R%,R) by

2 2 2
Aod = b1 —bT1G (9, g — T RGT div(g)d'g + T d2AG — TG (9.9)
- 1 ~
+ o2d, (de — ’Z;T((S od) + 2d5) G 2(g,9'9)d'g + o%d, (’I;T((S od) — de) G l4'g'g
In particular, if N N
WVl=d,=1 and b'd="0"(5ed), (4.4.6)
then the method is consistent, that is, Ay = L

Proof. If we apply one step of a method of the form with the initial condition Xy = z,
then the internal stages Y; satisfy the following expansion

Y; = 2 + oVhdi€ + heif(x) + R, if 6; =0,

Y; = 2 + Vh[odi€ + Mo i(2)g()] + h[cif(x) + Ai(@)g(@) + oAj9i(2 Z aijd;g (x

S

F N i(@) Y G (2359 (2)g(@)| + BE, i 6 =1,
j=1

where the remainder satisfies ‘Rh‘ < Ch*?, and where we used that )\; can be developed in
powers of \/h as \; = \/E)\l/gﬂ‘ + hA1; + ... in the spirit of [90, Lemma 3.25]. If 6; = 1, {(Y;)
can also be expanded as

((Y3) = (z) + VI [0di(g,€) + N1 j2;iG] + h[cz‘(% )+ ALiG + Aoy Z ijM/2,505(9,9'9)
=1

1
+ oAy, Z Gijdi(g,9'€) + 02d2(§,g €) + ohiy2,di(g, 9'€) + 5/\3/2,1-(9,9'9)] +
7=1

where we omitted the dependency in = of G, g, ¢ and the Aks2,j’s for brevity. We have
¢(Y;) = ¢(x) = 0 (since x € M), thus by identifying each term of the expansion with zero, we
get

Aijo; = —00;diG™ (g, €),

A = —0,c:G7 (g, f) + 076 (Z aijdid; + d?) G™2(9,€)(9,9'¢)

2
— 0%, (Z g 0jdid + d2> G(9.9(9.9'9) = S 0:A2GT (&, 9'0).

Jj=1
For ¢ a test function, the operator Ay¢ satisfies
E[¢(X1)] = E[¢(Ys)] = ¢(x) + hAog(x) + h* Ar(x) +

By replacing Y, with its expansion in powers of h'/2, and by identifying the first terms, we
deduce that
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2 ~
Aod = E|ed'f — .G (9, )dg = TEGE g9 + 0% (BT d+ d)G 2 (9.8) (9.9 g
— . (60 )+ 50.) 60090000 + G €. — PG (0.0610.9
d2 29,6)%0(9,9) + 72,56+ DG 2(9,€)%0g'g — o*ABTAG (g, g'¢,

where we used that d; = 1 and that all the terms containing an odd number of £ vanish since
odd moments of ¢ are zero. Distributing the expectation on each term and using ¢, = b71
yield the desired expression of Ap¢. We deduce the consistency conditions V'l = d, =

and b'd = b"(6 « d) in order to get Ay = L. O

Remark 4.4.7. The analysis presented in Section is conducted for the overdamped
Langevin dynamics . It would be interesting to consider extensions with multiplicative
noise or a non-gradient vector field f. The calculations would likely become more involved
and we may get more order conditions (see, for instance, [3, Thm.3.3] and [83, Remark 5.1
and Sect. 5.5] in the context of R?, where many additional terms arise, in particular for the
integration by parts calculations). This will be studied in future work.

4.4.2 Order conditions for the invariant measure on manifolds

We now derive the methodology for getting the conditions of arbitrary high order for sampling
the invariant measure of the constrained overdamped Langevin equation . In particular,
the following theorem presents the Runge-Kutta conditions for order two for the invariant
measure on M. Note that the number of conditions does not depend on the dimension of the
space d.

Theorem 4.4.8 (Runge-Kutta conditions for order two for the invariant measure). We consider
a Runge-Kutta method of the form (3.1.1)) and assume the consistency condition (4.4.6)). If the
method is ergodic and if the following conditions are satisfied, then the integrator has order two

for the invariant measure of ([2.1.4)):

b7d =74,
b =0T (5 ec) =bTd2 =0T (5 e d*?) = 207d — 1,
bTe=0T(5ec) =bTd? =T (5 ed*?) = bTd*3 = 8 (5 ed*?) =20Td -1,

/I;T(CO d) = gT((S eced),
b (de A((1 = 6) o d))) =

BTA((S—1)ed)) =bT(5e A( §—1)ed)) = (bTd)? - 267d + 1,

bT(d e Ac) = bT(d o Ad*2) = bT(d » A(6 & d*2)) = 207 (d » Ad) + (b7d)? — 267d + L,

bT(d*? o Ad) = 07 (d o Ad) + L (b7 d)?,

bl (coe A((6—1)od) +b7(de A((5—3-1) od) +bT(de A(S » c) = 2(b7d)? — 4bTd + 1,

b (d*2 o A(6 o d)) + b7 (d e A(6 & d)) = 267 (d o Ad) + 3(b7d)? — 267d + 1,

b (d e (A((1—5) e d))*?) =0,

BT (d o (Ad)*2) + 36T (d« A(d e A((1 — 6) ¢ d))) = (4 — 267d)bT (d » Ad) + 3(bTd)? — 4bTd + 1.
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In the particular case where we set § = 1, the order two conditions reduce to the following:

(bTd)> —2b7d + L =0,

bTd = b7d,

ble=0bTd*2 =bTc=bTd? =bTd*3 = 26Td — L
b7 (d e Ac) = bT(d e Ad*?) = 267 (d » Ad),

b7 (d*? » Ad) =07 (d o Ad) +b"d — 1,

bT(d o (Ad)*2) = (4 — 26T d)b" (d » Ad) + 2b7d — 3.

For simplicity, we used in Theorem [4.4.8] the notation e of Definition £.4.5] For instance,
the condition bT(d’2 . Ad) = bT(d . Ad) (de) rewrites into

Zbd%w Zbdawd—i- (Zbd)

7] 1 7.] -

The order conditions of Theorem can be obtained from straightforward calculations with
the following methodology. We compute the operator A; with the same method used for Aj in
Proposition[4.4.6] It is a differential operator of order four, and we present the complete expan-
sion of A; in exotic aromatic forests in Table [Cl1. We use the process of integration by parts
as presented in Section to transform v A19dpe into an integral of the form § M AYpd i
where AY¢ is a differential operator of lower order in ¢. The integrations by parts of the order
four and three terms are in Appendix [B| and the complete expansion of A} in exotic aromatic
forests is in Table 2. Then, we find sufficient conditions such that A} = 0. This implies
that Ajpe = 0, and Theorem gives the order two for the invariant measure.

Although constructing methods of high weak order is not the main focus of this work,
considering the explicit formula for A; and comparing with £2/2 (see Appendix [C] for their
detailed expansion in B-series), one immediately obtains the following result for weak order
two of accuracy.

Theorem 4.4.9 (Runge-Kutta conditions for weak order two). We consider a Runge-Kutta
method of the form (3.1.1) and assume that it satisfies (4.4.6). If the following conditions are
satisfied, then the integrator has weak order two for solving (2.1.4):

b'd=bTc=0"(5ec)=0b"d? =
bTd =bTc =BT (5o c) = bTd*? =
bT(co d) = bT(5 eced),

bT(d s Ad) = &,
bI(de A((1 =6
BTA((1 —6)ed
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Remark 4.4.10. For § = 1, the weak order two conditions of Theorem[{.4.9 have no solution,
which is in contrast with the mvamant measure case presented in Theorem [[.4.8. Indeed, the
condition bTA(( —8) e d) = 1 cannot be fulfilled if we fiz § = 1.

4.4.3 Illustrative examples of high order Runge-Kutta methods on manifolds

In this section, we give several examples of high order Runge-Kutta methods of the form .
The purpose of these examples is to illustrate our analysis, and deriving new integrators with
small error constant, favourable stability properties, small variance and fast convergence to
equilibrium is a challenging open question which is not addressed in the present work. First,
we introduce a method that has order two for sampling the invariant measure of the constrained
Langevin dynamics . Since there are many solutions to the order conditions, we obtain
this integrator by solving numerically an optimization problem: we minimize the absolute
values of the coefficients of the method under the constraints given by the order conditions of
Theorem [4.4.8] This method is explicit in f and uses only three evaluations of f per step. It
is defined by the following Butcher tableau

0] 0 0 0O Of1] 1 0 0 Of dy

C2 (&) 0 0 0 1 agl agg 0 0 d2

c3 0 c3 0 0| 1|ds aze asz 0/ ds

1 |Gy G420 G43 O 1| Qg Gao ag3 O 1
| Qa1 Qa2 Qa3 O |G Qg2 Gz O |

or by the associated set of equations

Y1 = Xy + oVhdi&n + Mg(V1),
Yo = Xy, + hea f(Y1) + 0V hdobn + Mo [a219(Y1) + 229(Y2)]
Y =X, + h03f(Y2) + ovVhdsén + As [a319( 1) + az29(Y2) + az3g(Y3)]

Xns1 =X, +h2a4]f )+J\f§n+)\42a4jg (4.4.7)
7j=1
where Ai, A2, Az, A4 are such that ((Y7) = C(Yg) =((Y3) = ((Xpn41) =0,

and with the values of ¢;, d;, a;; given in Appendix@ To implement one step of this scheme, we
apply a few iterations of the Newton method to find the projections onto M. We emphasize that
if the stepsize h is not small enough, the fixed point problems of finding \; such that {(Y;) =0
may not be well defined, leading to diverging Newton iterations Following Remark [£.4.2] we
replace the standard Gaussian random vectors £ in (3.1.2) by independent bounded discrete
random vectors { that satisfy - This way, the order two for the invariant measure is
preserved and the method is well-posed for A small enough.

With the same methodology we used to obtain the order conditions of Theorem [£.4.§] and
Theorem and with the expressions of A;¢ and A%¢ (see Section 2| for further details),
we also get classes of Runge-Kutta integrators and their order condltlons for the following
specific subproblems.

Euclidean case R?. Fixing g = 0 in the expressions of A;¢ and AJ¢ yields the order two
conditions in the weak sense and for the invariant measure in R as given in [83, Tables 1-2].
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Deterministic case. Fixing ¢ = 0 in the expression of A;¢ yields the order conditions for
approximating the solution of ODEs of the form & = IT\(x)f(x), where f is a gradient. Note
that this equation can be written as the following differential algebraic equation (DAE) of index
two (see [67, Chap. VII]):

T = f(x) + Ag(x), (4.4.8)
0 = ((x).

We obtain a class of deterministic Runge-Kutta methods for solving DAEs of the form (4.4.8)

by setting o = 0 in (3.1.2). A Runge-Kutta method of this form is consistent if b'1 =1, and

has order two if bc = b7 (5 e ¢) = bTc = b”(§ ¢ ¢) = 1/2. For instance, an order two method

for solving ODEs of the form (4.4.8)) is

f(Xn) + f(XnJrl) Xn) + g(XnJrl)
2

g(
A
+ 5 ,

Xn+1 =X, + h C(XnJrl) = 0.

Spherical case. In the simple case where M is the unit sphere in R? (that is, when the
constraint is of the form ¢(z) = (Jz|* — 1)/2 and g(z) = z), the consistency conditions
reduce to b1 = d, = 1. The weak order two conditions of Theorem reduce to the
following conditions:

bTd =bTc=bT(5ec)=bTd2 =bT(5ed*?) =bTd=0bTc =
bT(d e Ad) = 1,

PrA(L = 0)ed) =1,

ET(doﬁc) = 0.

9

N[ =

On the other hand, the order two conditions for the invariant measure of Theorem [4.4.8| on
the sphere are the following:
b7d = bTd,
bTe=0"(5ec)=0Td2 =0T (50 d*?) =bc = 20Td - L,
b7 (d e Ac) = 267 (d » Ad) + (b7d)> — 2b7d + 1,
bTA((6 — 1) o d) = (bTd)? — 2b7d + L.

For example, the following integrator has order two for the invariant measure if M is a
sphere as its coefficients satisfy the order conditions on the sphere:

V=X h (5 -v2) 500 + v (1- 2 ) 6+ Mien - v, o) =0,

Yo = X, + hf(Y1) + oVhén + XY,  ((Ya) =0,
Xn+1 =Y5.

Brownian motions on manifolds. Runge-Kutta methods of the form ([3.1.2)) can also be
used for simulating a Brownian motion on a manifold (see [71, Chap. III]) by solving numerically

dX(t) = TLy(X(8) 0 dW (), X(0) = Xoe M. (4.4.9)
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We recall that in the context of R?, the Euler-Maruyama integrator is exact for approximating
a Brownian motion in law. However, in the context of manifolds, there are no exact Runge-
Kutta integrators for simulating a Brownian motion on M in general. In particular, the Euler
scheme only has weak order one for solving in general. Fixing f = 0 in (3.1.2)
yields a class of Runge-Kutta methods for solving . The consistency conditions are ds = 1
and b'd = b (5 ¢ d). The conditions for order two for the invariant measure (respectively for
weak order two) of such a Runge-Kutta method are obtained by deleting the order conditions
in Theorem m (respectively in Theorem @ that involve A, b or c¢. In the specific case
where M is a sphere, the consistency conditions @ become ds = 1 and the weak order two
conditions of Theorem reduce to the two following conditions

~ 1 -~ ~ 1
Ty _ — T N
brd=5, b(deAd = .

For example, a weak order two method for simulating a Brownian motion on a sphere is

3X, + Vh&n + Xnta

4 b
In addition, there are no additional order two conditions for the invariant measure, that is, any
consistent integrator, such as the Euler scheme (4.1.2)), has at least order two for the invariant
measure on the sphere.

Xpi1 = Xn + VhEn + A C(Xni1) = 0.

4.5 Numerical experiments

In this section, we perform numerical experiments to confirm the theoretical findings of Sec-
tion first on a sphere and a torus in R3, and then on the special linear group. We refer
to [5] for further numerical experiments on the class of Runge-Kutta methods in the
context of RY.

4.5.1 Invariant measure approximation on a sphere and a torus

To check the numerical order two of the Runge-Kutta integrator presented in Sec-
tion we first compare it with the Euler scheme on the unit sphere in R3, where the
constraint is given by ((z) = (22 +23+23—1)/2. We choose the potential V (x) = 25(1—2%—23),
with o = V2, ¢(z) = 23, f = =VV, g = V¢, M = 107 independent trajectories to have
a small Monte-Carlo error and a final time T = 20. Observe that for the smaller final
time 7' = 10 (not included in the figures for conciseness), the convergence curves reveal to
be nearly identical to the case T = 20 considered in Figure [{.I] which suggests that the
numerical solutions are already very close to equilibrium at these final times. Following Re-
mark and Lemma we use discrete bounded random variables satisfying in
the implementation of the integrators. For both integrators, we compute the Monte-Carlo
estimator J = ﬁZ%:l gb(X](Vm)) ~ E[¢p(Xn)], where X{™ is the m-th realisation of the
integrator at time ¢, = nh, and N is an integer satisfying Nh = T. We compare this ap-
proximation with a reference value of § m Pdpey computed via a standard quadrature formula,
and we plot the error for the invariant measure versus different timestep h. We also
plot an estimate of the Monte-Carlo error by using the standard error of the mean estimator

(ZM ((b(X](Vm)) — j)2)1/2/«\/M(M —1). We observe in all convergence plots that the Monte-

m=1
Carlo error prevails for small values of the timestep h. In Figure [{.I] we observe as expected

order one for the Euler scheme (4.1.2)) and order two for the Runge-Kutta scheme (4.4.7)).
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Invariant measure error
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Figure 4.1: A trajectory of the order two method (left) and the convergence curve for the sphere for the
invariant measure (right) with the potential V(z) = 25(1 — 2% — 23), ¢(x) = 22, a final time T = 20
and M = 107 trajectories.

Invariant measure error
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Figure 4.2: A trajectory of the order two method (left) and the convergence curve for the torus for
the invariant measure (right) with the potential V(x) = 25(z3 — r)?, ¢(z) = 23, a final time T = 20
and M = 107 trajectories.

We then apply the Euler scheme and the Runge-Kutta integrator on a torus
defined by the constraint ((z) = (2% + 23+ 23 + R? —1r%)? —4R?(23 + 23) with R =3 and r = 1.
The potential is V(z) = 25(x3 — )% and we choose o = v/2, ¢(z) = 23, f = —VV, g = V(,
a final time 7" = 20 and M = 107 independent trajectories. On Figure we plot the
error for the invariant measure versus the timestep h, by using a reference value for { m Pdpioo
obtained with a standard quadrature formula. As expected, we observe order two for the
proposed integrator. These curves confirm the theoretical findings presented in Section In
particular, the scheme has order two of accuracy for the invariant measure on manifolds,
according to Theorem Note that if we had chosen a very short final time T', we would
have observed the weak order one instead of the order two for the invariant measure as we
would not have reached equilibrium.
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4.5.2 Invariant measure approximation on the special linear group

Sampling on a manifold M is especially useful to compute integrals of the form (@) dpios
when M is a manifold of high dimension. The class of methods is convenient as the
number of order conditions does not increase with the dimension of the space increasing. We
apply Method on a Lie group (in the spirit of [124], [125]) to see how it performs in
high dimension. We choose the special linear group SL(m) = {M € R™*™ det(M) = 1},
seen as a submanifold of R™ of codimension 1. As explained in Remark our analysis
still applies to SL(m) if we choose a potential V' with appropriate growth assumptions, even
if it is not a compact manifold. We compare the Euler scheme and the Runge-Kutta
integrator on M = SL(m) for different m (that is, with the constraint {(z) = det(z)—1),
where we use in the implementation discrete random variables satisfying . We choose
the potential

V(z) = 25Tr((z — Iy2)! (@ — I,2)) (4.5.1)

and the parameters o = /2, ¢(x) = Tr(xz) and M = 10% trajectories. Each trajectory is an
approximation of the solution of equation at time 7" = 10 with a timestep h = T/N
and N = 22 steps. With this timestep h, the Newton method used in the Euler scheme (4.1.2))
does not converge for approximately 0.005% of the trajectories for m = 4. We choose to
discard these trajectories, which induces a negligible bias in the expectation. This does not
occur for the Runge-Kutta integrator . We recall that for a small enough timestep h,
the Newton method would always converge (see also Remark . The reference solution
for J(m) = SSL(m) ¢(x)dpoo(x) is computed with the Runge-Kutta method with hper =

2717 With the factor 25 in the potential , the solution of stays close to I,,2,
and J(m) is close to ¢(I,,2) = m. This choice of factor permits to explore a reasonably
small area of SL(m) with moderate manifold curvature. We observe numerically that replacing
the factor 25 by 1 in induces a severe timestep restriction (results not included for
conciseness). The computation of J(m) could also be done via the parametrization given by
the Iwasawa decomposition for SL(m) (see, for instance, [62, Chap. 1]) and the use of standard
quadrature methods, but these methods have prohibitive costs in high dimension. We put
together the numerical results in Table and observe that the Runge-Kutta method
performs significantly better than the Fuler scheme .

m || dim(SL(m)) J(m) Jiuler | error for Jguyler Ja error for Jy
2 3 2.00967 || 2.01031 6.4-107% 2.00962 | 4.4-107°
3 8 3.01954 || 3.02068 1.1-1073 3.01934 | 2.0-107*
4 15 4.02930 || 4.03095 1.6-1073 4.02907 | 2.3-107%

Table 4.11: Numerical approximation of the integral J(m) = SSL(m)

d(x)dpy for 2 < m < 4 with the

estimator J = M~! Zf:[:l gb(X](\];)) where (X,) is given by the Euler scheme (4.1.2) for Jeuler and by the
Runge-Kutta integrator (4.4.7) for Jo, with their respective errors. The average is taken over M = 10°
trajectories, with the potential (4.5.1)), ¢(z) = Tr(z), a final time 7' = 10 and a timestep h = 27 127..







CHAPTER 5

Multirevolution integrators for SDEs with
fast stochastic oscillations

Note: This chapter is almost identical to the article [84] in collaboration with G. Vilmart.

5.1 Introduction

In this chapter, we develop invariant-preserving integrators of second weak order that are robust
with respect to the stiffness € both in accuracy and cost for the class of highly-oscillatory d-
dimensional SDEs . This class of SDEs includes in particular highly-oscillatory Kubo
oscillators (see [39])

_27r

ax() = =

or equivalently, dY = 2ire~Y2Y o dW + iaYdt in the complex setting where Y = X + iX5.
Applying standard SDE integrators to solve equation requires in general a time
stepsize h < € to be accurate, which makes these methods dramatically expensive when ¢ is
small. The goal of this work is to create robust numerical methods, i.e., numerical integrators
whose cost and accuracy do not deteriorate when € becomes small. Several classes of methods
have already been developed for highly-oscillatory SDEs with a deterministic fast oscillation (see
for instance [41),[122]), but not in the case where the stiff oscillatory part is applied to the noise
itself. To numerically face this challenge, we introduce a new methodology to develop robust
methods of any high weak order to approximate the solution of equation . In particular,
we propose a method of weak order two, and a geometric modification of this algorithm that

(? _01> X(t) o dW(t) + (2 _0“) X(t)dt, aeR, (5.1.1)

preserves quadratic invariants.

Stochastic oscillations as defined in typically arise in fiber optics models (see [7} 8
58]) with a spatial discretization of the highly-oscillatory nonlinear Schrédinger equation (NLS)
with white noise dispersion

du(t) = —=Au(t) o dW (t) + F(u(t))dt, u(t = 0) = ug. (5.1.2)

-
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As described for instance in [58], in the case ¢ = 1, the NLS equation with a cubic
nonlinearity F(u) = |u|?u is a model in dimension d = 1 describing the propagation of a
signal in optical fibers where x corresponds to the retarded time, while ¢ corresponds to the
distance along the fiber. Taking into account the inevitable chromatic dispersion effects of the
signal, modeled by a random centered stationary process m with a coefficient v > 0, yields the
following random PDE,

ov v

a—m(a:,t) = m’m(x)ﬁ(a:,t) + V2F(v(x, 1)), vz = 0,t) = up(t).

The perfect fiber would satisfy m = 0, but in practice, engineers build fibers with a small
varying dispersion coefficient. To limit the pulse broadening induced by random dispersion,
specialists use a wide range of dispersion management techniques (see for instance [58] and
references therein). In [07, 44], the authors show that if we denote u”(z,t) = v(z/v?,t), then
as v tends to 0 and under some ergodicity assumptions on m, u” converges to the solution u
of equation with € = 1. The non-stiff counterpart of equation , ie., fore =1,
has also been studied theorically in [49] for a particular nonlinearity. The highly-oscillatory
behavior (¢ « 1) appears naturally when observing the propagation in long time with a small
nonlinearity (via the change of variable t « et) or the propagation of a small initial data in an
optical fiber with a polynomial nonlinearity (via the change of variable u «<— u/c). A goal of this
chapter is to develop efficient and cheap numerical methods that can model the propagation
of pulses in this context, in order to observe some specific behaviors and, ultimately, to build
enhanced fibers. Models of the form also appear in the recent work [54] in the context
of stochastic three-wave semi-linear systems. We emphasize that there is a growing interest in
the recent litterature for stochastic models involving a fast Stratonovitch noise in the context
of ergodic stochastic dynamics. In [4], it is shown for a class of overdamped Langevin equations
that adding an appropriate fast Stratnovitch noise permits to increase the convergence rate to
equilibrium, while reducing the asymptotic variance at infinity. This suggests that new efficient
samplers for the invariant distribution of Langevin type models in context of large dimensional
molecular dynamics models could be developed. We also mention the recent homogenization
results on stochastic dynamics with fast Stratonovitch noises in [94] where our periodicity
assumption is replaced by an ergodicity assumption on the fast component of the dynamics
posed on manifolds.

Numerous possibilities exist for numerically integrating equations (2.1.5) or (5.1.2). We
highlight in particular the exponential integrators [39] [62] for the SDE (2.1.5)), and the expo-
nential integrators [40], the Fourier split-step method [97] or the Crank-Nicholson scheme [11]
for the SPDE (5.1.2). These methods have the advantage that they preserve the L? invariant
of the equation (that is, |u(t)] ;2 = |uol 2 for all ¢ > 0) for a class of polynomial nonlinearities.
However, they face a severe timestep restriction h < € when the stiff parameter ¢ is small. Even
in the case of deterministic oscillations, there are restrictions in general, though some robust
algorithms exist (see [41] for instance). The methods presented in this chapter solve this issue
of stepsize restriction. The idea is to approximate the solution of equation at random
times called revolution times because they correspond to complete revolutions of the oscillatory
part dX = e~2AX o dW. This is in the spirit of [70] which also approximates the solution of
SDEs at random times.

The chapter is organized as follows. Section is devoted to the presentation of the new
integrators. In Section we build an asymptotic expansion of the solution of and eval-
uate it at revolution times to derive the new integrators and a limit model for equation .
Section is devoted to the weak convergence theorems and their proofs. In Section [5.5, we
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Figure 5.1: Exact solution evaluated at revolution times for the deterministic oscillator (5.2.1))
with F(y) =iy and e = 10~ 1.

present numerical experiments to confirm our theoretical error estimates, and we apply the new
methods to solve numerically the Schrodinger equation (5.1.2)).

5.2 Multirevolution integrators for stochastic oscillators

Initially created in [102, 27] in the context of celestial mechanics and later extended using
geometric integration (see for instance [106] 28] [35]), multirevolution methods represent a class
of numerical methods used for solving highly-oscillatory differential equations while reducing
the cost of computation. In particular, they can approximate the solution of highly-oscillatory
ODE:s of the following form at stroboscopic times e NT', where T' = 1 is the period of % = Az,

and N is an integer,

dr 1
i gAa: + F(z), x(0) = zo. (5.2.1)

The solution x of this equation at times eNT is a perturbation of identity, that is, x sati-
fies z(et) = xp + O(et), thus the solution loses its highly-oscillatory feature when evaluated
at stroboscopic times, as shown in Figure [5.1] for the first component of the solution of equa-

tion (5.2.1) with F(z) = iz (respectively F(y) = (2 _01> y in the real setting). The idea of

multirevolution is to approximate x(e N) with N = O(¢~1) with a cost independent of .

For stochastic oscillations, the solution X (¢) = s PAW® X of X = e~ Y/2AX odWV is not
periodic, but satisfies X (¢Tx) = Xy where the T are random variables called revolution times
and defined by

Ty = 0, (5.2.2)
Tyy1 = inf {t > Ty, e V2 W (et) — W(eTy)| = 1}, N=012...

If X is the solution of , we show in Subsection that X evaluated at times €T}y is a
perturbation of the identity (in a strong and weak sense). Figure illustrates the definition
of revolution times and shows the perturbation of identity property on the first component of a
Kubo oscillator with a = 1. We highlight that the revolutions times Ty can be simulated
without simulating the exact path W. Also we emphasize that the proposed algorithms do not
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0 eTy Ty Ty eTy eTs
T W'l r S "W - ) N
Wikt "
Fol 0L DL o 1 “

e e A tionsmes ey M I 11 I

0 eTy Ty Ty eTy eTs

Figure 5.2: Revolution times ([5.2.2)) of a Brownian path (top) and exact solution evaluated at revolution
times for the Kubo oscillator (5.1.1)) with a =1 and & = 107! (bottom).

require to simulate W due to the use of appropriate discrete random variables. This will be
explained in Section

We show in Section that the solution X of evaluated at times €T.—1 (when t/e
is an integer) converges weakly when ¢ — 0 to the solution y; of the deterministic ODE

dyt

0
L =X
dt <g >(yt)7 Yo 0

where gJ(y) = e A F(eA%) and (¢*) := Sé g9df. This ODE is exactly the same as the asymp-
totic model for deterministic oscillators of the form . This asymptotic model naturally
yields a weak order 1 deterministic integrator. We propose the two following new multirevolu-
tion methods of second weak order for integrating equation at the revolution times 7T,
for m = 0,1,2,... with cost in H = Ne = O(1) independent of . Method [B|is a geo-
metric modification of Method |A| to preserve quadratic invariants of the form Q(y) = %yTSy
where S € R?*? is a given symmetric matrix. Methods A and B involve a Fourier decomposition
of the following functions that are 1-periodic with respect to 6,

g) = e F(eMy) = 3 (y)e? ™ (5.2.3)
keZ

B(W)(2) = e F () (e2) = 3 ¢ (y) ()™
PpEZ
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with Fourier coefficients (c(y))xez and (c},(y))pez, respectively. The series appearing in ((5.2.3))
have an infinite number of terms in general. For a practical implementation of the new methods,
we truncate these series up to an even number of modes K;, while inducing an exponentially
small error (see Remark . For each timestep, we also introdlAlce the bounded discrete

random variables (@3 ), and deterministic sequences (B\Z];Vk)p,k and (EIJ)\C,g)prC that satisfy

. 1if k=0, .
E[a]kv] :{Oelse 1+%lfp:k:0,
’ ElaNaN] = 1 if _
(l+ Lifp=k=0, (o o] 82pr11?+’< 0, p,k #0,
sy P =0,k #0, e
BN = Lo ifp#£0, k=0, 5 spN Ep =0,k #0,
sy £+ k=0, pk#0, Pk 2mep*N ’ ’
0 f 0 else.
| O else,

The definition and construction of these random variables are further discussed in Sections[5.3.2]

and (.3.41

Method A (Explicit integrator of weak order two in H = Ne to approximate the solution of
equation (2.1.5)) at times Ty, for m =0,1,2,...)

Yo = Xo

for m > 0 do

K21 Ki/2—1
Y1 =Ym+H Y Qm)ay +H> D ch(Ym) (A (Ym)BN (5.2.4)
k=—K¢/2 pk=—K¢/2

end for

Method B (Geometric integrator of weak order two in H = Ne to approximate the solution
of equation (2.1.5)) at times TNy, for m = 0,1,2,... while preserving quadratic invariants)

Yo = Xo

for m > 0 do

Yi=Ym+H > o 5 ad (5.2.5)
k=—K/2

Ki/2—1 ~
e B e () (4 A

p7k:7Kt/2

Ki¢/2—1
o (Ym+Ym+1> ~N

end for

Remark 5.2.1. One could apply a Newton iteration to solve the implicit equation in
Method@. However, a few fized point iterations are sufficient (see discussion in [65, Chap. VIII]
for non-stiff implicit methods). Indeed, since the Lipschitz constant of the iterated map has
size O(H), the convergence rate of the fixed point iterations is independent of the smallness

of €.
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Remark 5.2.2. We observe that B;Vk and EIJ)V,C are always zero except when p = 0, k = 0
or p+k = 0. Thus the computational cost of one step of Methods[A] and [B grows linearly in

the number of modes in (5.2.3).

5.3 Analysis and asymptotic expansion of the exact solution

In this section, we first obtain a local expansion of the solution of (2.1.5) and then evaluate it
at particular random times to deal with the highly-oscillatory patterns of the exact solution.
Finally we derive from this expansion an asymptotic limit for equation (2.1.5) when & — 0.

5.3.1 Asymptotic expansion of the exact solution

Instead of studying directly equation (2.1.5)), we apply the change of variable t « ~1¢ to obtain
the following equation, whose solution satisfies Y'(t) = X (et) with X solution of (2.1.5)),

dY (t) = AY () o AW (t) + e F(Y (t))dt, Y(0) = Xo, (5.3.1)

where we denote for simplicity the Brownian motion W (t) = £~ /2W (t) again by W. We intro-
duce the following assumption which guarantees in particular global existence and uniqueness
of the solution.

Assumption 5.3.1. The function F is globally Lipschitz continuous and lies in C})’p, i.e., there
exists constants L, C, K > 0 such that for all y, y1, yz € R?

Py) —Fp) < Ll -l [FO@|<cO+y), ie(0,1,23.  (532)

Also the initial condition Xy has bounded moments, that is, E[|Xo|’] < oo for p = 0.

Therefore we denote ¢.+(Xo) = Y (t) the solution of equation ([5.3.1)) and focus in the rest
of the chapter on the approximation of ¢, ;(y) at times t = O(¢™1). The variation of constants
formula yields

t
perly) = A0y 4 ¢ j AWO-WE) p(o (4))ds. (5.3.3)
0

We deduce the following regularity properties.

Lemma 5.3.2. Under Assumption the following estimates hold for all y, y1, y2 € RY,
where C' and K are independent of € and t,

1. per(y1) — 0ei(y2)| < C'lyr — yo| €%,

2. |pes(y)| < C(A + |y])et,

3. @ei(y) is C3 iny and goazz(y)‘ < C(et) (1 + |y|®)et forie1,2,3.

Proof. 1. First, ¢ (y) is the solution of

t
p=t(y) = MWWy 4 AW O JO e WEF (g s(y))ds.
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Using the boundedness of the continuous periodic function § — %4 and Assumption
we get

¢
|Q05,t(y1) - SOE,t(yQ)| < |y| + Lef |908,s(y1) - @s,s(y2)| ds.
0
The Gronwall lemma yields the desired bound.
2. Straightforward using previous statement.

3. Differentiating the integral formulation defining ¢, ;(y) gives

t
Oypet(y)(h) = WO 4 geAWH) J eiAW(S)FI(QOS,s(y))(ay‘Pe,S(y)(h))ds-
0

Then Assumption yields

t
upes )] < Il + L | [oyee )] ds.
The Gronwall lemma allows us to obtain

10y et (y)] < e-.

For the second derivative, we get

ey (y) (. ) = eV JO AV (g o (1) (0202 () (1K)
(e o (9)) () 00 (0) (B). 2ype.0 () ()] ds.

Then

‘5§¢a,t(y)(h, k)‘ < C&JO [(1+ |‘P6,s(y)|K) |ayap6,s(y)(h)| |5y<Pe,s(y)(k)|
+ 10200 5(y) (h, k) [1ds

t
< Cet(1-+ul)e il ]+ e | [ )(h 1)

Then the Gronwall lemma allows us to conclude. The proof is similar for the third
derivative.

O]

Using a local expansion of the solution of (5.3.1) in e, we define the following first and
second order approximations of ¢. ¢(y),

t

wg,t(y) = AWy 4 AV J e AWE) P (eAW )y ds (5.3.4)
0
t

w?,t(y) = w;’t(y) =+ €2€AW(t) J e—AW(s)

0
F (AW )y ( AW (s) f T AW F(eAW 0, dr) s,
0
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Proposition 5.3.3 (local expansion). Under Assumption 1, for all y € RY, j € {1,2}
and t = 0, there exist C and K two positive constants mdependent of € and t such that

pealy) = VLow)| < CQL+ [y (e,

The functions wg’t satisfy the following straightforward inequalities proved with similar
arguments as for Lemma [5.3.2

Lemma 5.3.4. With the assumptions and notations of Proposition the following esti-
mates hold for all y € R?, where C and K are independent of ¢ and t,

Ve ()] < C(L+ [yhe™, (5.3.5)
\%tws C(1+ Jy[")e, (5.3.6)
U24(y) = WOy < O+ [y ) (et (5.3.7)

Proof of Proposition[5.5.3. Using Assumption [5.3.1] we get

6AW(S)

t
|905,t(y) - sz)el,t(y)| < LsJ ‘P&,s(y) -
0

Then Lemma yields

peals) =™ O] < Ce [ 1P(ou W) dr < Cz | (1+ e ) ir

y‘ ds.

< cef (14 C(1+ y)eC)dr < C(1 + y])e = (cs).
0

We deduce e (y) — L, ()] < C(1 + [yl et (et)?.
For j =2, we ﬁrst denote

t
FElg) = Oy 4O [ AVORQL()ds
0
With the same arguments we used for j = 1 and inequality ([5.3.5]), we have

petly) = B2,y)| < OO+ Iy e (o).

It is sufficient to prove that |42, (y) — Jgt(y)| < O(1 + y[f)eCet(et)®. A Taylor expansion
of F(¢},(y)) in e gives

z«w;gy»::F@AW“@>+5F%6””@y)Q%W“>fefAW“Uwe”””wd{)+fg&
0

The remainder R, , satisfies

2

Rl<ce s )
ze[eAW () y,pl ()]

6AW(5)J =AW @) F (AW ) ) gy
0

Then, using the polynomial growth of F” and inequality ([5.3.5]), we get

S K K S S
[Reol < OO+ [V 4 0L, ()] (e85 < C(1 + [y]) (e5) %=

Hence the result. O
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We shall prove in Section that the function 2, in (5.3.4) evaluated at the revolution
times T (defined in (5.2.2)) yields a strong order 2 approximation in H = eN.

Remark 5.3.5. If we replace the Brownian motion W in (5.3.4) by a piecewise linear func-
tion W, defined by

t t
W, = <1 -+ z> W; + ( - z) Wit forir <t < (i+ 1), (5.3.8)
T

where Wy = 0 and Wiy = Wi + /7& with (&); a family of independent standard Gaussian
random variables, then it can be shown that we obtain an integrator of strong order two in &t.
However, the cost of a standard method computing an approzimation of the integrals of equa-
tion by replacing W with W, is in O(t?/72), which makes this method tremendously
expensive for t = O(e™1). This is why we develop in Section weak integrators based on a
weak approrimation of equation with a cost independent of t. We shall replace stochas-
tic integrals by appropriate discrete random variables in order not to simulate any expensive
Brownian path W.

5.3.2 Properties of the revolution times

In this section, we study some properties linked to the revolution times T that will be useful
for the analysis.

Proposition 5.3.6. The revolution times Ty defined in are positive and finite al-
most surely. Their differences (Tny+1 — Tn)N=o0 are independent identically distributed ran-
dom variables (same law as T1). The Laplace transform E[e*T1] of Ty exists and is analytic
for Re(z) < %2. In addition, for x € [O ”—2[, E[e*T1] = L__ The variable Ty has bounded

78 cos(v/2x)
moments, and they are given by

P g 5 (2% 2P | an)‘ (5.3.9)

ni+--+n;=p
n;EN¥
In particular, E[T1] = 1, E[T?] = , and Var(Ty) = % Finally, for a fized g € ] , 16[ for
all € €]0,e0] and p = 0, we have the estimate
E[e*TV (T )P] < CeCN (eN)P. (5.3.10)

The law of the first revolution time 77 has an analytic density, but there is no closed formula
for it. It can be numerically approximated accurately by inverting the Laplace transform. In
Figure we observe the convergence in law of Ty to a Gaussian variable according to the
central limit theorem.

Proof of Proposition[5.5.6., The first properties can be deduced from [109, Chap. 2.3], where the
Laplace transform formula is obtained with an analytic continuation of the equality E[e—*T1] =

Fsh(l N for x > 0. Comparing the Taylor expansions of E[e*T1] and - o f) yields (5.3.9).

The estimate (|5.3.10)) is proved as follows
E[eeTN(€TN) ] < E[ 2ETN]1/2E[(ET ) ]1/2 E[ 2€T1]N/28PE[T2P]1/2
< E[ 260T1]6N/260(€N) E[Tfp]lﬂ < CSCEN(E-:N) ’

where we used first the Cauchy-Schwarz inequality and then twice the Jensen inequality. [
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Figure 5.3: Convergence in law of VML% (TWN - E[Tl]) to a standard Gaussian random variable.

For developing an algorithm for the weak error, it is useful to know the moments of the
random variables appearing in the discretization, that are costly to simulate numerically, in
order to replace them with cheap discrete approximations with the same first and second
moments. This is the goal of the following proposition.

Proposition 5.3.7. The random variables

N _ 1 ¢In 2irkW(s
ap =x5"e )ds,
N _ 1 ¢In 2impW (s) (S ,2imkW (r
k= N §oVe ( )Soe M drds,
~ N _ N
N _ 1 TN 2ixpW(s) (¢S 2imkW(r) _ 1 ¢IN _2imkW (r) _ QN _ %%
pk = N? So € So € 2 So € dr)ds =B, 2

1ifk =0, |
Eloy] =5k={Oelse, o 145%#]9:]4;:0,
Ly Lifp=k=0, Elag o] = gﬁNUP+k:an¢Q
L ; else,
sy p=0,k#0, S 0 ks
Bl = wpm Y0 E=0 D EAA 2rIRIN l.fp;o’ k-0,
) = 559 L , =0,
sy fp+k=0pk=#0, ok Siig p
| O else, .

Proof. Let k # 0 (the case k = 0 is straightforward using Proposition , then the Ito6
formula applied to e2™ W () gives

1 2wk W (t) i Jt 2imkW (s) 1 Jt 2imkW (s)
- - 1) = — Wis) — —

which yields at time ¢t = T}y,

Oé;]gv _ ) JTN e2i”kW(s)dW(S).
kN 0
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Then t — Sé eQi”kW(s)dW(s) is a martingale, so by the Doob theorem, as t A Ty is finite,

E[SSATN X W () g (s)] = 0 for all . The dominated convergence theorem for stochastic
integrals allows us to take the limit ¢ — 0o and yields E[adY] = 0.

For the coefficients ﬁgk, let (p, k) # (0,0) (the case p = k = 0 is obtained straightforwardly

using Proposition , we use the It6 formula on e2™W(5) and we integrate from s to T,

. TN . TN .
1— 62'L7rpW(s) _ QinJ €2z7rpW(r)dW(7,) o 2F2p2f eQmpW(r)dr.

s

e2imkW (s)

Then, multiplying by ﬁ and integrating from 0 to Ty yields

N N .
Op — ik 2imp JTN e2i7rkW(s) JTN €2i7rpW(r)dW(7,)dS
s

N N2,
2,2 (T, T
27 f J N ezmkw(s)f N 2TV () g,
N 0 s

Using the stochastic Fubini theorem, we deduce

TN . TNy . TN . T
f e?mrkW(s) J 627,7rpW(r)dW(r)ds _ J e2z7rpW(r) f eQZﬂ'kW(s)dde(r)’
0 s 0

0

which has zero average by the same arguments as before. Also by the Fubini theorem for
stochastic integrals, B]J;]k = ﬁ SgN e2imkW (s) SSTN e2imPW(r) drds, so that we get if p # 0,

Optk — O
N1 _ Y+k k
El pk] Com2p2N

The case p = 0 is obtained by integrating by parts and using the same arguments. Indeed, we
find

TN 1

Tn 4
and E[ﬁéYk] = —IE[B,]XO]. Finally, the moments E[aév al¥] are computed via the equality B;,Yk +
~ ~ N _ N
Bl]c\,[p = aé,vozfcv. Then we obtain E[ ;)Vk] from the formula i]?\,[k = I]Xk - % O

Remark 5.3.8 (stochastic Fourier series). Let f be a L? function on ]0,1[ extended on R
by 1-periodicity, whose Fourier coefficients are denoted as (ck)rez. Then we deduce from
Proposition the following equalities, where the second one is the stochastic version of
the Bessel-Parseval theorem,

T
E [ F(W(s))ds

0

EUEWW®Wm;=Zkﬁ,

0 - keZ

_ 5|CO|2 1 Z |Ck|2
- 21.2°
| 3 i k

1
=m=Lf@M,
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5.3.3 Asymptotic expansion at revolution times and limit model

With the results of Subsection it is now possible to evaluate the local expansions ([5.3.4
at revolution times. To approximate numerically the integrals appearing in equation (|5.3.4
without evaluating F and F’ too many times, we first replace the 1-periodic functions gg(y)
and gj(y)(z) defined in equation by their associated Fourier series with the Fourier
coefficients (¢ (y))rez and (¢, (y))pez. We define the following approximation of ¢. (y),

t .
Yeu(y) = Dy 2 37 MO (y) L 2T S) g (5.3.11)
keZ

t rs
+ 82 2 eAW(t)cllj(y) (Cg (y) J J e2i7rpW(s)€2i7rkW(r)drdS) '
p,keZ 0J0

Notice that c(y) € C¢ and ep(y) = () (y) € C¥4 but . 4(y) € RY. We now evaluate this
function 1. ¢(y) at time ¢t = Ty to get a second order strong approximation.

Proposition 5.3.9. We define the following quantity
ben(W) =y+H Y AWoy +H> D b)) Bk
keZ p,kEZ

where ((y))kez and (ch(y))pez are the Fourier coefficients of the 1-periodic functions gg(y)

and gé (y) defined in , aév, B;,Yk are the random variables defined in Proposition m
and y € R? is deterministic. Under Assumption for all test functions ¢ € C3, there
exists Hy > 0 such that for all H = Ne < Hy, the following estimates hold, where C' and K
are independent of € and N,

1/2

E|lpey () = ven )] < 00+ )2, (5.3.12)

[El6 (e (1))] = Elé(wen ()] < C(1+ [y|") H?, (5.3.13)
that is, Y. N(y) is a numerical approzimation of . 1y (y) of strong/weak local order two.

Proof. Inequality (5.3.12)) is a straightforward consequence of Proposition when evaluating
the estimates of Proposition at time Tw. For the weak local estimate ([5.3.13]), using

inequality (5.3.12)), the mean value inequality, Lemma and equations ([5.3.5)) and (5.3.6)),

we get

Equ(@e,TN(y)) — oWl 1, (y))H

<E sup [/ (2)]
Ie[‘»@a,TN (y)ﬂlig,TN (y)]

eeitn W) = ¥, 0)

< C(L+[y[")E | XV (T ) sup (1+ |2[”)
xe[‘Ps,TN (y),wiTN (v)]

< O+ B[ (Tw) e (14 ey ()P +
< C(1L+ [yl )E[(Ty)7 1],

Finally we obtain inequality (5.3.13)) by taking H small enough so that we can apply Proposi-
tion 19.3.0 n

0|
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For a fixed T' = Ne, when ¢ — 0 (or equivalently N — c0), the solution of (5.3.1) evaluated
at stroboscopic times Ty = Tp.—1 converges weakly to the solution of a deterministic ODE

that involves only the first mode ¢ = {(g") = Sé g9d0 of ¢°. This asymptotic model is the same
one as for the deterministic equation (5.2.1)). The proof is postponed to Subsection m

Proposition 5.3.10 (asymptotic model). Under Assumption for T > 0, the solu-
tion @er, ,(Xo) (for € such that Te 1 is an integer) of equation (2.1.5) converges weakly
when € — 0 to the solution at time T of

dyy

e (g™ (we), yo = Xo, (5.3.14)

that is, for all test function ¢ € C3,
lim [E[¢ (e, (X0))] — E[¢(yr)]| = 0.

Remark 5.3.11. It can be proven using the results of Section[5.4) that the solution of the asymp-
totic model (Proposition is an order one weak approximation of X(eTnm) for m =0
and X solution of equation . We deduce the following simple one-step explicit determin-
istic integrator that corresponds to the Fuler method applied to equation ,

Yo = X0, Ym+1 = Ym + Hcg(ym)- (5315)

Its cost is independent of € and N, and it has weak order one w.r.t. H, that is, for all m = 0,
we have E[¢(¢e 1y, (X0))] — E[d(ym)] = O(H).

5.3.4 Construction of the second order integrators

To obtain an integrator of weak order two with a cost independent of € and N, we truncate the
local expansion of Proposition We also replace the involved random variables with cheap
discrete random variables with the same first and second moments. To simulate the random
variable afgv with discrete random variables &év with the same first and second moments, we
introduce a set (&g)reny of independent random variables such that P(§, = +1) = %, the
covariance matrix (CL), ; such that

(CX)2p-1:2p2k—1:2% = Cov(Re(ay)), Re(ay))  Cov(Re(ay)), Im(ay))
a Jap—liap,ak—1: CoV(Im(ai)V),Re(aéV)) COV(Im(OZ]J_,V),Im(a;CV) )

and 'V its square root. Then, o?,iv is defined for k = 0 as

Ay =0+ Y. (0 1, +ilN )& with 6 =

{1ﬁk:0
leN

0 else

and we fix &kN =al x for k < 0 (so that the solution stays real while still having the good
moments). We also define Aﬁ’k =E| évk] with the values of Proposition Doing so yields
Method [Al

For Method [B} we adapt Method [A]in the spirit of the implicit midpoint scheme for ODEs
e |65, Chap.IV]) so that it preserves any quadratic invariant. We also replace /ng by

e
o = E[Eévk], using the values of Proposition [5.3.7

(s
v
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Remark 5.3.12. The methodology presented in Section can be generalized to any order.
Thus, under more regularity assumptions on F, it is possible to build algorithms similar to
Method [4] of any weak order and that are still robust with respect to the stiffness . For
order 3, Method [A] becomes

Yii1=Yn +H20k m)ay + H Z ))B;])Vk
keZ p,keZ
~{1 2),N
+ 1YY e @AY + (L ) (Vi )wﬁp),
l,p,keZ

with the new random variables

N2

@ON _ L (M i) [ aimpwi) [ 2imiwi(o)
Vipk :2N2J e~ SJOe”rp Tfoe” Udgdrds,

1 TN ) S ) T )
"Yl(;j)kN _ f equW(s)J eZmpW(r)f emﬂkW(q)ddadS,
0 0 0

and where the discrete random variables share the same moments up to order 3 for the &l

order 2 for the ﬁ ko and order 1 for the A(l)k . It is also possible to generalize Method
up to any order in the spirit of the implicit mz’dpomt scheme, but the construction of discrete
random variables allowing the preservation of quadratic invariants is not obvious for higher
orders (although backward error analysis guarantees the preservation of quadratic invariants
for the exact random variables based on W ).

5.4 Weak convergence analysis

We focus in this section on the proofs of the following two theorems, showing the order two
convergence of Methods [A] and [B]

Theorem 5.4.1. Assume that the Fourier coefficients ck, c of 99 and 9(9 mn are non-
zero only for —K;/2 < k,p < K;/2. Then, under Assumptzonu Method. has weak order
two for solving (2.1.5) -, that is, for all T > 0, for all test functions ¢ € C3, there exists Hy > 0
such that for all H < Hy, for all m = 0 such that mNe = mH < T, there exist two positive
constants K and C both independent of €, N and K; such that

IE[6(¢e, 7y, (X0)] = E[6(Yi)]| < CH?(1 + E[| Xo["]). (5.4.1)

Theorem 5.4.2. Assume that the Fourier coefficients cg, c1 of 99 and 90 n are non-
zero only for —K;/2 < k,p < K/2. Then, under Assumptzon 1, if ¢h(ch) and c (08) are
Lipschitz continuous uniformly in k and p, Method [B is well deﬁned and is of weak order
two for solving (i.e., it satisfies an estimate of the form ) In addition, if for a
fized symmetric matriz S € R¥9, the quantity Q(y) = %yTSy is preserved by equation ,
then Method E also preserves the invariant Q(y) = %yTSy, that is, the solution Yn,+1 of
equation J ) satisfies Q(Yim+1) = Q(Y).

These two theorems focus on approximating the exact solution of equation (2.1.5) at the
revolution times €Tn,,, m = 0,1,..., but one could compute an approximation at different
times by composing with other methods at the end of the integration.
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Remark 5.4.3. Since the error constant C in is independent of the number K; of
Fourier modes, we emphasize that Theorems |5.4.1 and |5.4.9 remain valid for infinitely many
modes (Ky — o). In addition, assuming that F is of class C’SJrl yields a truncation error of
the Fourier series in of size O((1 + |y|™)K;*) (see, e.g., [96, Sect. II1.1.3]), and if 99
is assumed analytic in 6 (for example if F is a polynomzal) this error becomes exponentially
small as O((1 + |y|)e=°%*). For simplicity of the analysis, we thus assumed in Theorems
and that gy and g§ have a finite number K; of non-zero Fourier modes in . If
this assumption does not hold, the truncation errors O((1 + |y|™)K;*) or O((1 + |y|)e &)
should be added in the right-hand side of the error estimate (5.4.1). Let us prove it in the
analytic case. We first apply the change of variable 3. (y) = e WO, (y) that has no
effect at time t = Tnm. We now have to compare the two solutions of the following integral
formulations

Pualw) =y | oo (@esu)ds.

¢ Kt/Q 1

A =yre| 3 AEDE)A s,
0 k=—FK, /2

Using the truncation estimates that we previously discussed and the Lipschitz property of gg,
one gets

~(Kt)

t
Pep — Py | (y) < 5J ‘g[v)v(s)(@s,s(y)) I () (B (y ))‘ ds + Cete” " sup |¢°(y)|

[0,1]
C’sj

The Gronwall lemma and Proposition yield for mNe < T,

?|

The structure of the convergence proof is similar to the one for standard SDE integrators,
see e.g. [104}, Chap. 2], but one has to be cautious because our solution is evaluated at stochastic
times and the error constants should not depend on € or N.

Bes(y) = B ()| ds + Cet(1 + [yl)e "

1/2
~ K 2 —CI\¢t
et )= 250, [ | < o+ ek

5.4.1 Boundedness of the numerical moments

Proposition 5.4.4 (bounded moments for the integrator (5.2.4)). Assume that for y € R, the
numerical integrator 1. n(y) is given by

ben(y) =y +HY SWay +H® Y ¢ ))BYy (5.4.2)
keZ p,keZ

~ aN 2\ 4
where &kN, ﬂgk are random variables defined such that for all ¢ > 0, E [(Zk | £2| ) } and

~ 2\ ¢q

BN
E [ Dk ‘275 are bounded uniformly in N. Then, under Assumption|5.3.1 and if |y| has
bounded moments fm" any T > 0, for all m, H such that meN = mH <1, for all ¢ > 0, we

have IE[WJ ‘ q] Cy(1 + E[|y|2q]), where Cy is independent of m, € and N.
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Proof. We first prove

Deny) =y < CH(1L+ [y My, (5.4.3)
where E[(My)%] < C, for all ¢ > 0. We have

Y dwal + 87 Y ) w)EY,

keZ p,kEZ

0) 2 1 2 2
<ol (MY, [ R0 + MY 3 g, |3 2 |dw)
keZ PEZ keZ
where M, © =\ % |A and M =\ D, k k2 have moments bounded uniformly in N.

Then usmg the Bessel-Parseval theorem, we get >, k2 |ck | = So |a(,gg | df. Assump-
tion 1| yields ‘69g9 ‘ < C(1 + |y]). Then, the Bessel-Parseval theorem applied on g}

gives 4 /Zp |c;) Yy | < C, hence the result.

We define Atpy, = I (y) — 07y (y) = (e — 1) (7 (), then

~

ben(y) =y

(250 = (B ) + 2 (%) @ovtonn,
Equation (5.4.3) and the bounded moments of My give

~n 2q—j j
dov)| T omi+

e [zewiav)| <= NI

~ 2q
<o (1+2][ime]]).
We deduce
Tm+1 2 C,H m 2q
1+E | [/ (y )‘ <" 14+E %,zv(y)‘
2
and by induction E [ ! N(y)‘ q] < eCamH (] 4 E[|y|2q]) <e%T(1+ E[|y|2q])- O

Proposition 5.4.5 (bounded moments for the integrator (5.2.5)). Assume that for y € R?, the
numerical scheme Y n(y) satisfies

ben(@) =y +HY & (WEN)) ay (5.4.4)

keZ

vH Y o Y+ hen(y) & y + e (y) ng
p,kEZ 2 2

where QY B;)Vk are random variables defined such that for all ¢ > 0, > \a{j\, an

/BI]X]‘”

2

a2\
E [(Zk | ]f2| ] and E[(Zp’k kQ) ] are bounded uniformly in N. Then, under As-
sumption

and if |y| has bounded moments, for Hy small enough and any T > 0, for
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all m, H such that meN = mH < T and H < Hy, for all ¢ > 0, we have E|
C,(1 + E[|y|*]), where Cy is independent of m, € and N.

~ 2q
)| 1 <

Proof. We prove an equivalent of the estimate ([5.4.3) for 125, ~(y). The growth properties of
the Fourier coefficients yield

)

~

bt o] < (Sl o]+ Sl
k pk

+CH <2 ENESY
k »,k
As> ‘@fy ‘ "‘Z;;,k ‘Bfo\[k‘ is bounded, using the same estimates as in the proof of Proposition [5.4.4}

SN
Dk

/Bé\fk Ve n(y) — Y

we get for all H < Hy small enough,

Deny) =y < CHQ + y) My, (5.4.5)

where My has bounded moments. The remaining of the proof is the same as in the proof of
Proposition O
5.4.2 Local weak error

Proposition 5.4.6 (local error estimate). Assume that for y € R? deterministic, the numerical
scheme can be written as

ben() =y+HY Away + H> Y () )8 + R,
keZ p,kEZ

where E[|R]] < C(1 + |y[*)H? and &) € C, ng € R are random variables such that &Y = &%,
and

E[a;] = Elax' ], E[5] = E[By%], Elag, ak,] = Elog, ak,].

Under Assumption if @N(y) satisfies the assumptions of Proposition (or Proposi-
tion , for all test function ¢ € C%, there exists Hy > 0 such that for all H = Ne < H,

the following estimate holds, where C and K are independent of € and N,

[El6(pe,y (9))] — EI6(@e )| < C(1+ gl S) 82,
that is, the numerical scheme has weak local order two.

Proof. Using Proposition and its notation . n(y), it is enough to prove that

Blo(n ()] — Bl (Den ()] < OO+ [y ).
A local expansion gives

d(Wen () = o(y) + &' (W) (N (y) —y) + " (¥) (N (y) — ¥, %e N (y) — y) + Ru.
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As e n(y) = S,TN (y) (see equation (5.3.4)), using inequalities (5.3.6)), (5.3.7) evaluated at T
and Proposition yields

ERi] <E| sup \¢<3><x>\|w€,N<y>—y|3]
| 2€[y.ve,n (Y)]

(1 + 1y + e N ()Y (1 + [yl (Tw) e T

<E
[ K 3 CETN
<E[C(1+ [y (eTw)?eCT |
< C(1+|y|™)H>.

We obtain a similar expansion for ¢(7$5, N{y)):

(W= (y) = D) + ¢ W) (WDen () —y) + 0" (W) (Wen () — ¥, Ve (y) —y) + R,

where, using inequality (5.4.3) (or (5.4.5)),

~

3
Do) =y ]

EnﬁlusE[ swp |09 (@)]
w€[y, e, v (Y)]

< OB [+ B D0+ )08
C(1+ |y"YHPE [(1 + ME)]
C(1 + y|*)H3.

<
<

Making the difference of both equations gives

dWen () — (e n () = &' (W) (Wen () — Den(Y)) — ¢" () (Ve n(y) — y)? (5.4.6)
+ 0" () (e (y) — y)? + R,

where E[|R|] < C(1 + |y|)H3. For the first term of (5.4.6), we have

E[¢/ (y) (e v (v) — den )] = H Y E[¢ ()W) (o —ap))]

keZ

+H* Y B¢ () (cp () () (Bpx — Bpie)].

p,kEZL

Then, we get
E[¢' ()( () (e —ai))] = Elag) —ai1¢'(y)(h(y) = 0.
We can do the same thing with the term in B;J)\,[k and obtain
E[¢' () (¢, v (y) — P v ()] = 0.
Let us now study the second order term Z = ¢"(y)(@257N(y) —y)? — ¢"(y) (e n(y) — y)? that

appears in (5.4.6). We develop this expression and keep only the order one and two terms to
obtain Z = HZY + R where E[|R|] < C(1 + |y|*)H? (by the same arguments as before) and
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N N N N
Y = 3 [ ), an, &, w)ar,) — 6" W)(cR, W)ar,, &, )ag)]
k1,k2
= > (@nar, — o ar)d" (W) (e (), b, (1))
k1,k2

The condition on the moments of the & yields E[Y] = 0.
Putting all these arguments together in (5.4.6)), we finally get that

[Elo(en ()] — Bl (e n ()] < O+ [yl ) 12

We deduce the local order two of the proposed numerical scheme. ]

Remark. The constant Hy in Proposition depends on F', but also on the polynomial
growth power of ¢ and its first three derivatives. This dependence is expected when trying to
evaluate the solution of SDFEs at random times. To make Hy independent of the test functions,
one can consider the following sets of test functions

Chx ={p€C?3C >0,3k < K,Vy,

$O ()| < C+ ), i€ 0,1,2,3)),

5.4.3 Global error

Theorem 5.4.7 (global convergence) Assume that the numerical scheme 125 N satz’sﬁes equa-

tion 2) (respectively equation (5.4.4)) where & N e, ,8 'k ER (respectively [3 e R) are

random variables such that & ak = aivk and

E[ay] = Elay ], E[Byx] = E[Byx]. Elanar,] = E[O‘l]x@{c\;]-
(respectively GY satisfies the same conditions and EIJ)\’[ satisfies IE ) Under

IE
: . RN
Assumption |5.3.1, if for all ¢ > 0, E || >, & and E pk are bounded

) e o]

are bounded uniformly in N ), for all T > 0, for all test function ¢ € C?;, there exists Hy > 0
such that for all H < Hy, for all M = 0 such that MNe = MH < T, there exist two positive
constants K and C' both independent of € and N such that

2N
k|’

uniformly in N (respectively Zk |5[;€V|, Zpk

E[9( 1y (Xo))] ~ E[B(02 (Xo))]| < CHA(1 + E[| X0l ]).

Proof. We denote R
EM = E[(b((Pe,TNM (XO))] - E[(b(wé\,/[N(XO))]

and write it with a telescopic sum

M

D EL0(Pe Ty sy (B2 (X)) = E[D( e 1y, (025 (X0))]

1

eM

E[Gm1 (e x (G5 ™ (X0)))] = Eldm—1(pemy (02 ™ (X0))]

1

Il
Mz i
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where me,l = ¢ 0 e Ty (1)~ Using Lemma and ¢ € C%, we obtain for 0 <7 < 3,

S0 W) < CeTTn (1 + [y ).

m

Thus, knowing the hitting times involved, ¢, € C}. Using Assumption (cg)’ =c!
and B;,Yk = E;Vk + a”;‘k, we deduce that zzg, ~ satisfies the assumptions of Proposition m

Applying Proposition to each term of ey gives

M
lear| < ). CE [e"vm] H? (1 +E{ A;‘?N—m(XO)‘KD .
m=1

Finally, the moments of @?N(Xg) are all bounded uniformly in ¢, N and m according to

Proposition [5.4.4] (respectively 5.4.5). Thus

M
lear| < D) CHP(1+E[|1Xo|*]) < CH*(1 + E[|Xo| "))

m=1
We deduce the global weak order two. O

With the help of Theorem we prove Proposition [5.3.10] and the convergence of Meth-
ods[Al and Bl

Proof of Proposition[5.3.10, Writing Theorem for order one yields for all H = Ne small
enough and all M = 0,

B[6(0= 7y (X0)] = E[d(yennn)]| < C(eN)*(1 + E[| Xo|*]).

Evaluating in N =1, M = % and taking the limit € — 0 yield the result. O
AN

Proof of Theorem[5.4.1 As &Y < C and Dok 2L converges by Proposition [5.3.7, Theo-

rem [5.4.7] applies and concludes the proof. O

Proof of Theorem[5.].3 The regularity assumptions yield the Lipschitzness of the cg(y) and
the involved c},(y)(cg(y)) with constants independent of k and p. As Y, |af’| and 2k ‘B;Vk‘

are bounded, the right-hand side of equation is a contraction for all H < Hy small
enough and the constant does not depend on Y, so Hy depends only on F' and F’. Thus, the
integrator is well-posed for all H < Hj.

The weak order two is obtained using Theorem Indeed the use of discrete random
variables and Proposition [5.3.7] gives the convergence of the series involved.

For showing that Method [B] preserves quadratig invariants, it is sufficient to prove that

Q') (X A)ay) = 0 and Q' (9)(X,, 4 (1) (A (1)B])) = 0 (see [65, Chap. IV]). The preser-
vation of @ by equation (2.1.5)) yields Q'(y)(Ay) = 0 and Q'(y)(F(y)) = 0. We deduce the
following two equations, valid for all y € R%,

y"Sgp(y) =0, (5.4.7)
" Sgs()(90(w) = — (g2 ()" Sgh(v),
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where equation (5.4.8)) is obtained by differentiating equation (5.4.7) in the direction g0. Using
equation ([5.4.7)), we have

1
Q') (Z Ay)ay ) — J Q'(y)(98(y)) Y e ™ ajldd = o.

k 0 k
For the second order term, equation (5.4.8) and the values of Proposition yield

QW) (2 c,ﬁ(y)(cz(y))ﬁgk)

p

&
1 1 ~
_ JO jo yTSabu)(00w)) 3 e~ 2P e=2imh BN, g
p.k

1 1 ~
- fo jo<92<y>>T593<y>Ee—we*”’%gkdude
pk

1t . ) ) ) =
_ZJ f (gS(y))TSgg(y) Z[e—2z7rp06—2z7rku + e—2mpue—2z7rk0]ﬁ11)\’[kdyd0
0 JO .k
0

Hence Method B is well-posed, has weak order 2 and preserves the invariant (). ]

5.5 Numerical experiments

In this section, we first illustrate numerically the weak order two of Methods [A] and [B] with
convergence curves. Then, we apply the new algorithms to solve the nonlinear Schrédinger
equation with highly-oscillatory white noise dispersion ([5.1.2)).

5.5.1 Weak order of convergence

To confirm the results of Theorem and Theorem [5.4.2] we check numerically if Methods [A]
and [Blhave weak order two of accuracy w.r.t. H uniformly in ¢ and N. As the Euler-Maruyama
method and the algorithms presented in [39, [I1], [40] are completely inaccurate if they do not
satisfy the severe timestep restriction h « &, we compare the performance of Methods [A]
and |B| to the performance of the Euler method . We first apply the algorithms to
equation with the linearity F(y) = iy, A = 2im, Xo = 1 and ¢ = 1073. Equivalently we
can write it in the real setting as

2r (0 —1 0 -1 1
We plot on a logarithmic scale an estimate of the weak error for approximating X at time
T = 1073Tys where E[T] = 0.256. The exact solution X (T') is approximated by the output of
Method |B|for H = £. The parameters N and m are varying under the condition that Nm = 28,

The test function is ¢(y) = 2y; +4y2 and the average is taken over 107 trajectories. We choose
the tolerance 10~!3 for the fixed point. On the right picture of Figure we use a modification
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- —
a a
~ ~
3} 3}
24 4
< <
o o
E - —s#— Euler method g > —s#— Euler method
"""" Method A /"/ Method A
; —#—Method B ” —#—Method B
106 ----Slope 1 ] 10-6 ----Slope 1
e Slope 2 e Slope 2
1072 101 1072 107!
H H

Figure 5.4: Weak error versus the stepsize H = Ne for approximating the solution of equation (2.1.5)
at time Tys for the linear F(y) = iy (left) and the non-linear F(y) = i(1 + Re(y)® + Im(y)®)y (right)
with A = 2im, Xo = 1, ¢ = 1072 and the test function ¢(y) = 2Re(y) + 4 Im(y).

of a Kubo oscillator introduced in [39] with the nonlinearity F(y) = i(1 + Re(y)? + Im(y)®)y.
In the real setting, it yields the following two-dimensional SDE

_2m (0 -1 0 -1 3 5 _ (1
dX_\/E(l 0)XodW+<1 O)(1+X1+X2)th,X0_(0).

We take 8 modes for the Fourier decomposition and the same other parameters as before. The
average is taken over 10° trajectories.

In both cases, we observe the weak order two of Methods [A]and [B] The irregularities of the
curve for a small H come from Monte-Carlo errors. We repeated the same experiment on many
other examples and we always observe the desired order two as long as H is small enough.

5.5.2 Numerical experiments on the NLS equation with white noise disper-
sion

We now apply the algorithms to solve the following SPDE of the form (5.1.2]) on the torus T =
[, 7], with a polynomial nonlinearity and the stiffness parameter ¢ = 1072,

2
du = —
U N

where the unknown w is a random process depending on z € T and ¢ = 0. We consider a
spectral discretization in space of this equation with K, = 27 modes u(z,t) ~ lengI Yi(t)et®.
We obtain an equation of the desired form with a truncated nonlinearity and the block-
diagonal matrix

0 -1 0 —1 %
(1 O)AuodW—i—(l O)|u| udt, xeT, t >0, (5.5.1)

A = diag(—27l? ((1) _01> Nl < Ky).

Beginning with the initial condition ug(z) = exp(—3z* + 22) on T that decreases fast enough,
we apply Methods |[A| and |Bf in the two cases 0 = 2 and ¢ = 4 with K; = 26 modes, N = 10
revolutions, m = 150 iterations and a tolerance of 10~13 for the fixed point iteration. Figure
shows the evolution in time of one trajectory given by Method [B| (with a 300 points evaluation
grid in space).
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Figure 5.5: Approximation by Method |Bf of |u| and |0,u| with u solution of a spatial discretization
with K, = 27 modes of the nonlinear Schrédinger equation with white noise dispersion (5.5.1)) on the
torus T = [—m, w] with the parameters e = 1072, 0 = 2 (top) and ¢ = 4 (bottom).

In Figure we observe the behavior of the discrete L? and H' norms of one trajectory
given by our two algorithms and the Euler method (the simulated (o) are the same
for Methods El and . The Euler method quickly blows up in both norms. The L? norm
of Method E is not conserved. In contrast, Method [B| preserves the L? norm according to
Theorem [5.4.20 When ¢ = 4, numerical simulations hint that a blow-up in the H' norm always
happens for all considered methods at a certain time that increases as € goes to zero. We recall
that in the optic fiber model , t represents the distance along the optic fiber and a cubic
nonlinearity (o = 2) is typically considered [58]. For o = 2, we do not observe any blow-up
in the H! norm in Figure suggesting the well-posedness of the model for all optic fiber
distance. Also, the larger o is, the sooner the blow-up happens. These behaviors agree with
the blow-up conjecture for € = 1 and o > 4 presented in [I1], and suggest that the conjecture
persists in the highly-oscillatory regime ¢ « 1.
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CHAPTER 0

Conclusion and outlook

In this thesis, we introduced new methods and tools for the numerical integration of stochastic
evolutionary problems.

First, in Chapter [3| and in the articles [83] [85], we introduced a new formalism of B-series,
called exotic aromatic B-series, that is designed specifically for computing order conditions for
sampling the invariant measure of Langevin dynamics in R¢ or on manifolds. This formalism
also applies to partitioned methods, to the use of postprocessors, or perturbations that improve
the rate of convergence to infinity. The large number of terms in the Taylor expansions involved
in the considered schemes shows the necessity of a strong formalism to manage the tedious
calculations of order conditions already for relatively small orders for the invariant measure
(order two or three already).

In Chapter 4] and in the articles [83], [85], we applied the B-series formalism to find explicitly
the order conditions for a general class of Runge-Kutta methods for solving Langevin dynamics
in R? and on manifolds, in the weak sense and for sampling directly the invariant measure. In
particular, we introduced the first order two scheme that does not reduce to a splitting method
for sampling the invariant measure of constrained Langevin dynamics.

In Chapter [5| and in the article [84], we designed a robust numerical methods for solving
stochastic (partial) differential equations with fast stochastic oscillations. We introduced a
method of weak order two with computational cost and accuracy both independent of the
stiffness of the oscillations, and we built a geometric modification of this method that preserves
quadratic invariants. We proved that these algorithms have weak order two, and illustrated
their convergence and behavior with the help of numerical experiments, by solving in particular
highly-oscillatory Kubo oscillators and the nonlinear Schrédinger equation with white noise
dispersion discretized in space with a Fourier expansion.

The new tools and methods presented in this work give rise to many new interesting research
ideas, that we present in the following sections.

6.1 Future work

Even for order two on a manifold, the computations of the order conditions for sampling the
invariant measure are barely feasible by hand, and their complexity is much higher without
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the help of the B-series formalism (see Appendix . With E. Bronasco and G. Vilmart, we are
implementing the exotic aromatic B-series and the graph operations discussed in Chapter [3] to
make the calculations of the order conditions automatic on a symbolic manipulation package
(see [16]). The exotic aromatic B-series are also interesting for their algebraic and geometric
properties. It would be interesting to find a link between isometric equivariance and exotic
aromatic B-series methods as indicated in Section and in the spirit of [L00, 105} 56], and
to study the algebraic structure of the exotic aromatic B-series in the spirit of [I3] [31].

The methodology we presented for creating high order integrators Langevin dynamics can
be generalized in various ways by creating partitioned methods, adding postprocessors or per-
turbations or considering a multiplicative noise. Combining high order integration with efficient
Metropolis-Hastings rejection procedures [103}[69] is also a crucial question where the tools pre-
sented here could bring insight. More generally, the work presented in Chapter [3]and Chapter [4]
could lead to the development of new integrators with small error constant, favorable stability
properties, small variance and fast convergence to equilibrium, which is a challenging open
question.

We presented in Chapter [5a high order method for solving stochastic evolutionary problems
with a dispersion term that is led by a highly-oscillatory white noise. The multirevolution
methods A and B are robust in the regime where ¢ « 1. It would be interesting to find a
uniformly accurate (UA) method that has a cost and accuracy independent of the (possibly
not small) parameter ¢, in the spirit of the recent works [33] [34]. We could try to generalize
the analysis directly to SPDEs with fast white noise dispersion, or to highly-oscillatory SDEs
led, for instance, by two fast white noise terms of different frequencies, or by one fast white
noise and one fast deterministic oscillation, in the spirit of [32] in the deterministic context.

The variety of tools we developed in this work recently led us to the study of a uniformly
accurate discretization for penalized Langevin dynamics. We give more details on this work in

Section [6.21

6.2 A uniformly accurate integrator for penalized Langevin dy-
namics

In this section, we present a few results of the work [82] in preparation. We saw in Chapter
the overdamped Langevin dynamic in R?, and its constrained counterpart on
a manifold. In a variety of physical applications, the constraints are fixed up to a small
parameter €. The trajectory of the solution lies in the vicinity of the manifold M. One is then
interested in classes of SDEs in R? indexed by a possibly stiff parameter € that is related to the
distance to the manifold. With the same notations as in Chapter [2| we introduce the following
penalized dynamics in R¢ to simulate trajectories in a vicinity of the manifold M,

dXE(t) = F(XE(E))dt + odW () + ‘fvm(det(c:))(Xf(t))dt . é(gcrlg) (XE(1)dt, (6.2.1)

where X¢(0) = X and the parameter ¢ can be of arbitrary size. It was shown in [38, Appendix
C] for similar penalized dynamics with a stiff term of the form %g( instead of %gG_IC , that
the solution X¢ converges strongly to the solution X° of if Xg € M. This strong
convergence still holds for the dynamic , and we applied a renormalization in the stiff
term as it simplifies the analysis.
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A commonly used discretization for solving (6.2.1]) is the explicit Euler scheme,

Xps1 = X + Vhot + hf(X,) + hOjVIn(det(G))(Xn) - g(gaflg)(xn). (6.2.2)

This integrator has weak order one of accuracy, but it faces some severe stepsize restriction,
typically of the form h « €, in order to be accurate in the regime ¢ « 1. The alternative
of the explicit Euler scheme on the manifold is the constrained Euler scheme .
This integrator has weak order one for solving and it lies on the manifold M. It is
a consistent approximation of if € tends to zero. This integrator is, however, not fit
for solving if € is of size O(1), since the exact solution X¢(t) is not constrained on the
manifold in this regime.

Inspired by the results of Chapter [4f Chapter |5 and [38, Appendix C], we propose a new
integrator for solving penalized Langevin dynamics. In the context of a compact manifold M
of codimension one, the algorithm is the following:

New method: Uniform Discretization of Penalized Langevin Overdamped Dynamics (6.2.1])

€ € € (1 — e_h/€)2 2 ~—2 1 €
n+l = Xn + \/Eo'{n + hf(Xn) + f(( G g g)(Xn)
T2 - (G g) (X5) + (X0 (6:2:)

(X5 = eMEC(XE) + o §<1—e*2h/€>gT<X;>§n

+e(l—e M) (g"f+ 2 G g+ % dw( )(X5)

We would like to prove in the future work [82] that the method is uniformly accurate
(UA), that is, it has an accuracy and a cost that do not depend on the stiff parameter e
(see, for instance, [30] 32] [33] 34] and references therein). In particular, it would imply that
the method is asymptotic-preserving (AP) [76], [75, [77], that is, it converges in both
regimes € < 1 and ¢ of the size of O(1). Note that, in this latter case, the convergence can be
proved straightforwardly with a Taylor expansion. Using robust discretizations with respect to
the stiff parameter ¢ allows us to take relatively large timesteps h, even if € is very small. It
plays an important role in multilevel Monte-Carlo methods (see [59, [60] and references therein),
or parallel in time methods [57] such as Parareal [95].

The idea of the algorithm (|6 is the following. Instead of evaluating the possibly stiff
term b gG=1¢ as in the Euler scheme , We project in a modified step of the explicit
Euler scheme in R¢ on a manifold that is close to M When €K 1, and whose constraint is given
by a truncation of a uniform expansion of ((X¢). The discretization is in the spirit
of the class of Runge-Kutta projection methods of Chapter [3| and Chapter |4, and uses
truncated uniform expansions in h that are uniform with respect to the parameter ¢ in the spirit
of Chapter |5 I Note that the integrator (6.2.3 - has a cost similar to the cost of the constrained
Euler scheme in terms of the number of evaluation of the functions f, ¢, g and ¢'.

To observe numerlcally the uniform accuracy property of the method (| -, we apply it
on a torus in R? for sampling the invariant measure of @ for different time steps h and
parameters ¢, and we compare it with the Euler integrators @D in R? and on the
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Figure 6.1: Error for sampling the invariant measure of the penalized Langevin dynamics on a
torus in R? of the discretization and the Euler integrators (6.2.2)) and (4.1.1)) for different values
of e with h = 2797 (left), and error curves versus ¢ of the discretization (6.2.3)) for different timesteps h =
27T and i = 6,...,10 (right), with the parameters T = 10, f(z) = —25(z; — R + 7, 22, 23), ¢(z) = |:c|2
and M = 107 trajectories.

manifold M. The constraint is given by ((x) = (22 + 23 + 2% + R? — r?)2 — 4R%*(2} + 23)
with R = 3 and r = 1, and we choose f(z) = —25(x1 — R+ r, x2, x3), with the parameters o =
V2, ¢(z) = |z|* and the final time T = 10. Increasing the value of T does not modify
the computed averages, which hints that we reached the equilibrium. The factor 25 in f
confines the solution in a reasonably small neighborhood of the torus, which allows a faster
convergence to equilibrium and to take less trajectories. With the help of the Baobab cluster
of the University of Geneva, we compute the Monte-Carlo estimator J = ﬁ Z%zl qﬁ(Xj(\,m)) ~
E[¢p(Xn)] with M = 107 trajectories, where X{™ is the m-th realisation of the integrator at
time ¢, = nh, and N is an integer satisfying Nh = T. We compare this approximation with a
reference value of § m Pdpieo computed with the method , by using a timestep h = 2712,
We also plot an estimate of the Monte-Carlo error by using the standard error of the mean
estimator (2%:1(¢(X](vm)) —J)?) 1/2/«/M(M —1). We observe in Figure that the explicit
Euler scheme blows up in the regime £ « 1, and that the constrained integrator
is accurate only in the regime € « 1. In contrast, the accuracy of the method does not
deteriorate depending on €.
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APPENDIX A

Coefficients of the order two Runge-Kutta
method

The coefficients of the Runge-Kutta method (4.4.7) used in Section are

co = 0.621729189582953540, c3 = 0.102032386582165330,

dy = —0.898931652839146019, dy = —1.66233102561284629,
ds = 0.318924515019668897, G291 = 0.584372887990673524,
a31 = 0.887706593835748395, a32 = —0.345018694936693742,
a41 = 0.0547449506054026516, 40 = —0.0205123070437693053,
a2 = 1 — ao, asz = 1 — a3 — a3,

a43 = 1 —aq1 — aqo.






APPENDIX B

Integration by parts using the tree
formalism

We provide here the detailed calculations of the integrations by parts of the order four and
three terms, that are needed for the proof of Theorem The integrations by parts of
the order four terms are presented in the examples and , and they allow us to
rewrite § v A19dp as S wm Bédpo where B is a differential operator of order three given by

so-r(( L i by
+;®°\V_zog‘\f/>_io:.cin—;@ci;%oici»)(¢)+73¢v

and R is a differential operator of order two. Using Lemma multiple times, we get the
following integrations by parts of the order three terms of Be.
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APPENDIX C

Decomposition of the operators in exotic
aromatic forests

Forest ~ Differential F'(v)(¢) Exact e(7) Numerical approximation a(7y)
Terms of order 4 w.r.t. ¢
e 'A% g g
‘\/’ c'G AP (g, 9) ~i —1
' G729 (g,9,9,9) § 5
Terms of order 3 w.r.t. ¢
I‘ 2A / l l
o°Ag f 2 2
v 2G93 (g, g, f) -5 | 3
“\i’/i oG 24g,9,9'9) 1 1
N ctG1 Y 0B (g, geis ;) ~3 —3
oo | 02G2(g, )09, 9, 9) 3 3
N | o1G2div(g)e® (g, 9, g) i i
SN oG 2(g,9'9)0® (g, 9, 9) —5 1
)i
—h a2G (g, /)AS (9) -3 | 3

Table[C]1 (Part 1/8): Coefficients in exotic aromatic B-series of the operators £2¢/2 = 3 e(y)F(7)(¢)
and A6 = Y a(v)F(v)(¢) for consistent Runge-Kutta methods of the form (3.1.2]).
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g F(v)(9) e(v) a(v)
ok oG div(g)Ad'(g) ~1| 1
24 a'G*(9,9'9)A¢'(9) i1
Terms of order 2 w.r.t. ¢

¢"(f. f)
0.2 Z ¢”(f,€i7 ei)

1
2

bl'd

NI— | NI=

a*G1¢"(g,9'f) 1| —1

o*G~1¢"(g, f'g) 1| —Td—vTd

a2G2¢"(d'g,9'9) % —ET(d . ﬁd) — %(gTd)z +o7d

o'G2¢"(g.9"(9.9)) 5| 267d? 2" (§ed?) + 5

[N

oG 14" (g, Ag) —3

G  (Jeige) | —L | BT(de Ad)+ L(0Td)? - bTd

-~
!

" A

%

“\/% oG 2¢"(9,9'd'9) 31 20T (d e Ad) — (b7d)* +2b7d + 1

%

o

-

N
!

G 12¢"< "gye),er) |0 | B0 ede?) —bTar?
s “(g,/)¢"(9. f) -1 | -1

&N o*G~div(9)¢" (g, f) -
AN 02G g, d9)¢" (9. f) 3
e b ?G g, /)Y ¢"(ei d'es) | —3

O | slatdivig) S ¢ (eige) | —1 | —1bTd
AU | G g g9 D (eige) | L | 15Td

o \/i a?G (g, [)¢"(9.9'9) 2 | 20"d+1

O \/I o'G~2div(9)¢"(g,9'9) 1| bld+1

o ‘\/I AG3(g.99)¢" (9,9'9) | —3 | 267(de Ad) + (b7d)2 — 367d — 3

N Ot

Table[C]1 (Part 2/8): Coefficients in exotic aromatic B-series of the operators £2¢/2 = 3 e()F(7)(¢)
and A1¢ = > a(y)F(v)(¢) for consistent Runge-Kutta methods of the form (3.1.2).
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Chapter C: Decomposition of the operators in exotic aromatic forests

ot e(7) a(v)
o N 1|1
| L Td
SRV B
DN 11
20| 1] e A+ SR - -
o N | =L BT (66 d*?) —bTd? — ]
o N | L1
e O N e
ot | 2| —bTd-3
OON | %
OLN| 1| —LpTa -3
Lol N BT (d e Ad) — 1(0Td)? + 3bTd +
Terms of order 1 w.r.t. ¢
E % ble
I i %de02
% -3 /Z;T(dOA\C) —bTd
% 31 DTA((6 — 1) e d) — b db"d
% 0 | bT(deA((§ —1)ed))
T o Crgea
\f/] 0 /I;T((Socod)—/l;T(cod)
‘% —L 1 15T (g e Ade?) — 107d

Table[C]1 (Part 3/8):

Coefficients in exotic aromatic B-series of the operators £2¢/2 = Y e(v)F(7)(9)

and A1¢ = > a(y)F(v)(¢) for consistent Runge-Kutta methods of the form (3.1.2)).
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v |e(y) a(v)
E BT (d e (Ad)*2) — 357 (d e A(d e A((1 — 6) + d)))
L] —20"db"(d » Ad) + (b7d)? + b7 d
\{ L 0T (de Ad*?) — 307 (d o A(5 # d*?)) + b7 d(bTd*? — b (6 & d*?)) + L07d
D\i} 0 | —2b67(d*2 e Ad) + (b7d + 1)b7d*2 — bTdbT (5 » d*?)
% 0 | b7(d*2e Ad) — LT+
2 0 | 1b7(5d*?) — 1bTd
o—e % —% —’b\TC
@ % —% —%ch
o % i %ch
o E —2 | =bT(5ec)
o1 _L | LT (5 e d?)
OJE L1 T (d e A((1 = 8) o d))) + 367 (5 # d°2)

% b (ce A((L —5) ¢ d)) + (b7d)? +7d
et | 1| +DT(de A((1=08)ed) =BT (de A(5 w0))

% 10T(d e A((1 —0) o d)) + L(07d)% + 1b7d
@) Lol 107 (d*% o A((1 = 6) o d)) — 107 (d e A(5  d*2))

307 (d e A(d e A((1 — ) #d))) + (267d — 1)o7 (d + Ad)

% —3b7 (d » (A((1 — 6) » d))*?) + 3b7(d » A(6 # d)) + b7 (d » (Ad)*?)
o0 b | =1 | +ADT(d*2 e A((§ — 1) o d)) + 107 (d e A(S #d°?)) — 3(bTd)? — 307 d
o L | 1] —1pTge?

Ol 1] —1p7ge

Table[C}1 (Part 4/8): Coefficients in exotic aromatic B-series of the operators £2¢/2 = 3 e(y)F(7)(¢)
and A9 =Y a(v)F(7)(¢) for consistent Runge-Kutta methods of the form (3.1.2).
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v |e(v) a(y)
2T 1| e
o Y L1 15T (56 d*?)
® Q\If L1 1T (5 e d*?)
2|t | B e Ay — (T D+ (T D e )
LI S PO W
o L0756 A((1 = 6) e d)) + b7 dbTd

—1bT(d » Ad*?) + $b7d

(3
0O 00 00
W=

e}

_/Z;T(d02 N A\d) + %ET((SO d02)
B (d e (Ad)*?) + 367 (d e A(d s A((1 = 5) + d)))

L1 4257 (d*2 o Ad) + 267 db" (d o Ad) — b7(5 « d*2) — (b7d)2 — b7d
i —1 | 16T (de A((36 — 2+ 1) & d*?)) + DT (BT (5 & d*?) — bTd*?) — LbTd
o—e o % 3 BT (6 »c)
oq@% 3 %BT(éod‘Q) % (0 ec)
b (co A((6 — 1) o d)) + 7 (d e A((6 — 1) + d))
o o % 31 4B (de A(Sec)) — 30T (60 d*?) — 0T (5w ) — (b7d)% —bTd
le) % Lol 1876 e d*?)
0T (d e A((0 — 1) o d)) + 207 (d o A(5 » d*?))
P! % =31 T (A2 e A((6 — 1) # d)) — 107 (5 ¢ d*?) — L (07 d)? — LbTd
367 (d e (A((1 = 8) & d))*?) — $0T(d*2 ¢ A((0 + 1) » d))
—bT(d » (Ad)*?) — 3bT(d » A(d e A((1 — 8) + d)))
+(3 =267 d)T (d o Ad) — 107 (d » A(5 & d)) — 16T (d » A(5 » d*2))
o3 od % 9 | 40T (5 e d*?) — 2T (5 e d*?) + 3(b7d)% + 3074
o311 —3 | —bTe

Table 1 (Part 5/8): Coefficients in exotic aromatic B-series of the operators £2¢/2 = . e(7)F(v)(¢)
and A1¢ = > a(y)F(y)(¢) for consistent Runge-Kutta methods of the form (3.1.2)).
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7 |e() a(v)
DS T
St | -4 -
&1 L —LpT e
DU | 1| —b7da
A1 s | e dg +5mae
if 31 T (d e A((1 = 8) ¢ d)) + bTA((1 — &) ¢ d) + (b7d + 2)bTd
o : gT(cod)—gT(éocod)—i-%
L L T (5 ed?)
éi 31 1T (d e Ad*?) + 1bTd + 1
L | 1 - LGy 2
E) i % _/(;T(dQQ N A\d) + %gTd02 —/I;T((SO d02) + %
Dt | 1| 80 Ad)— 1Tay + 37
j B (d e (Ad)*?) + 367 (d e A(d» A((1 — ) + d)))
Dl =2 +(207d + 3)b7(d e Ad) + L (07 d)? — 4bTd — 1
167 (d e A((36 —2-1) o d*?)) + 267 (d*? » Ad)
:i/ D) =T —@07d +3)b7d*2 + 2(67d + 1)bT (5 # d°2) — 167d — 3
AN O R
o | -4 -
eodd| 2 | BTc+1
ol 3| e ]
o3 o] —2 ET(doA\c)—%ch—gTd—%
ceosd| 3| 0T(3ec)
Ol 1| LT ed?)

Table[C]1 (Part 6/8): Coefficients in exotic aromatic B-series of the operators £2¢/2 = 3 e()F(7)(¢)
and A;1¢ = > a(y)F(v)(¢) for consistent Runge-Kutta methods of the form (3.1.2).
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gl e(7) a(y)
BT (5o A((5 — 1) d))
oLoad | =3 | 4bT(de A((5 — 1) e d)) — LbT(5 ¢ d*?) — (BTd + 1)bTd
L5 | e
&b 3| 1pTgez 41
G| S| (e Aa) - 25 - 25 8
e D1 1| T
Opop! Lo 1p7q
SOl | =1 B2 e Ad) — 10T (5 e d*?) — 10T — 1
bT(co A((6—1) e d)) +b7(d e A(5 » )
o i D] =3 ] +07(de A((6—1) o d)) — (bTd)? — 3bTd — 1
107(d*2 ¢ A((5 — 1) o d)) + 107 (d o A(5 » d*2))
@jf 31 4 10T (d e A((5 — 1) o d)) — L(67d)? — 3Td — 1

BRI

307 (d o (A((1 — 6) #d))*2) — 107 (d*? ¢ A((3 -1 + 6) # d))
—2bT(d » (Ad)*2) — 6T (d » A(d ¢ A((1 — 5) » d)))
10T (d e A(5 8 d*?)) — 10T (d o A(S + d))

—(407d + 3)b7 (d » Ad) + DT (8 & d*?) + (b7 d)? + BbTd + 3
1

oeod L | =3 —1bT(6ed?) -1
O | =3 —1pT(5ed?) -1
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ceoeols| —1| —bT(5ec)—3
oo Oodl| —1| —107(50c) =0T (50d?) — 1
b (co A((1 — 0) o d)) + 07 (d » A((1 — 6) » d))
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OOl | —1| —1pT(5ed?) ]
1T (d*2 o A((1 —6) ¢ d)) — 107 (d o A(6 ¢ d*?))
Oolodl| T | +107(de A((1 —8) o d)) + 107(85 0 d*2) + L(BTd)% + bTd + 3

Table[C]1 (Part 7/8):

Coefficients in exotic aromatic B-series of the operators £2¢/2 = Y e(v)F(7)(¢)

and A10 = > a(y)F(y)(¢) for consistent Runge-Kutta methods of the form (3.1.2)).



118

gl e(7) a(v)

BT (d o (Ad)*?) + 36T (d o A(d» A((1 — 5) # d)))

—307 (d o (A((1 — &) & d))*2) + (267d + 1)b7(d » Ad)

+107(d*? ¢ A((1 + 6) # d)) + 107 (d o A(6 # d*?)) — 267(5 » d*?)
+107(d e A(3 » d)) + 2076 d*?) — (b7d)? — 36Td — 12

SO S g

NI~]

Table[C}1 (Part 8/8): Coefficients in exotic aromatic B-series of the operators £2¢/2 = 3 e()F(7)(¢)
and A1¢ =Y a(y)F(v)(¢) for consistent Runge-Kutta methods of the form (3.1.2).

v a’(v)
bTd —vTd

.t

bl'e—2b7d + 3

ol —pld + 1

bTA((6 — 1) ¢ d)) — bTdb"d + 267d — 1
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1
Y
-
!
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b7 (d e (Ad)*2) — 3bT(d e A(d e A((1 — 6)  d)))
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D\}/ 107 (d e A((2-1 — 36) »d*?)) + b7 (d » Ad)
+(07d —1)(bTd*2 — b7 (8 » d*?)) + L (07d)> —bTd + 1
—2b7(d*? » Ad) + 207 (d » Ad)

%} +(0Td — 2)bTd*? + (3 — DT d)bT (5 » d*2) + (b7d)? — 267d + 1

N
E
% bT(d e Ac) — 207 (d o Ad) — (b"d)* +207d — L

Table 2 (Part 1/5): Coefficients in exotic aromatic B-series of the operator A%¢ = Y a’(y)F(7)(¢)
for consistent Runge-Kutta methods of the form ({3.1.2]).
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@)
€000 | ¢000| 00| 0| o060 0o 0| o0

>

bT(de A((3-1 —8) o d)) — 307 (d o A(5 » d*?))

~, ~

+30T(d*2 ¢ A((1 = 6) » d)) + (b7d)> — 267d + &
b )

—307(d o (A((1 — &) & d))*2) — 37(d*? & A((1 — 6) » d))
od % +10T(d o A(6 # d)) + ST (d o A(6 & d*?)) — 4(b"d)* + 6b"d — 3
-1 —15Ta? 4+ 57d — L
51 —157d*? + $pTd — L
ST e i L

Y

oY

50T (5 & d*?) —bTd*? — 1bTd + 1

Table 2 (Part 2/5): Coefficients in exotic aromatic B-series of the operator AV¢ = > a’(7)F(v)(9)

for consistent Runge-Kutta methods of the form (3.1.2)).
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g a’(7)
(3 —DTd)bTd*? + (b7d — )b (5 + d*?)
2T | AT e Ay~ (e Ad) — 2GR+ B8

—bT(d o Ac) + 207 (d o Ad) + (07d)? — 2b7d + 1

b (5« A((1 — 6) #d)) +b"db"d — 27d + L

%
%
% — 10T (d e Ad*?) + 57 (d o Ad) + (0T d)2 —bTd + 1
%

—bT(d*? ¢ Ad) + b7 (d & Ad) + 30T (5« d*?) + 1 (07d)2 - bTd + 1
DT (d s (Ad)*?) + 30T (d s A(d e A((1 — 5) ¢ d))) + 2bT(d‘2 Ad)
% +(267d — 6)bT (d & Ad) — bT(5 & d*2) — 4(bTd)% + 6bTd — 3
107 (d e A((36 —2-1) #d*2)) — b7 (d » Ad)

+(1 = 0Td) (BT d** —bT (6 & d*?)) — (BT d)> +bTd —

o:oo:o% /I;T(50C)—2/6Td+%

o=.©% BT (5o d?) + 1T (5o c) —267d + 4
BT (co A((S — 1) ed)) +bT(de A((5 — 3-1) «d))
e ot % +0T(d e A5 o)) — 20T (50 d*?) — 10T (5 0 ¢) — 267 d)2 + 6b7d — 3

@@% 1BT(5 0 d*?) — 4b7d +
15T (de A((6—3-1) o d)) + 357 (d o A(6 » d*?))

CVJ% + 30T (d*2 ¢ A((6 — 1) # d)) — 107 (6 & d*2) — (b7d)? + 3bTd — 3
3b7(d o (A((L — 6) » d))*?) + (4 — 2T d)b” (d o Ad)
B(d (Ad)*2) — 307 (d » A(d & A((1 — 8) + d)))

b7 (d*? ¢ A((0+ 1) & d)) — 30T (d » A(6 ¢ d*?)) + 3D7(5 » d*?)
OJOJ% 1bT(d.A(5. ))_%bT(a.dﬂ) I(bTd)? — LpTg 4 15

ot | —bTc+20Td —
b1 —3b7d*? +pTd — 4
DI | —Td+bTd

Table 2 (Part 3/5): Coefficients in exotic aromatic B-series of the operator AV¢ = > a’(7)F(v)(¢)
for consistent Runge-Kutta methods of the form ({3.1.2]).
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Chapter C: Decomposition of the operators in exotic aromatic forests

a’(v)

—bT(d e Ac) + 267 (d o Ad) + (bTd)* — 267d + 1

b7 (d e A((1 - 6) #d)) + bTA((1 — 8) e d) + (b7d + 2)b"d — 4b7d + 1

bT(cod) —bT(5eced) —267d*2 + 27 (5 « d*?)

bT(5 e d*?) —bTd + 1

—1bT(d e Ad*?) + 07 (d o Ad) + $(b7d)> —bTd + 1

167d*3 — 157 (5« d*3) — BTd*> + b7 (5 + d*?)

—bT(d*? ¢ Ad) + b (d & Ad) — 307d*2 + 0T (5 # d*?) + L (07d)? - bTd + 1

)
BT (d « (Ad)*2) + 367 (d « A(d « A((1 — 6) « d)))

~,

+(267d — 4)bT (d o Ad) — 3(b7d)2 + 467d — 1
I6T(d e A((36 —2-1) & d*?)) + 2b7(d*? o Ad) — 307 (d » Ad)
+(3 = 26T d)bTd*? + (267d — 4)b7 (5 # d*2) — 3(bTd)? + 307d — 3

71| BT — b7 (5 e d*?)
oeold| BTe—207d+ 3
Ol | Wle—bTd+ 1
ot ol | BT (de Ac) — 267 (d » Ad) — 1b7c — (b7 d)? + 3b7d — 3
oeoss| OT(6ec)—20Td+ 1
Ol | LT (5ed?) —bTd+ 1
b (de A((6 — 1) ¢ d)) +bT(5 ¢ A((5 — 1) & d))
ol ol d| —10T(50d*?) — (bTd + 1)bTd + 4bTd — 3

O

17T ge 7 1
oTa? —pTd + 1

LY

17T 342 17T 1
Zb d* —Qb d+§

261

167 (d e Ad*?) — b7 (d o Ad) — 107d*? — 1(b"d)? + 3pTd — 3

=D

2
b7 (d*? » Ad) — 07 (d o Ad) — 167 (6 ¢ d*?) — L(67d)? +b7d — 1

Table 2 (Part 4/5): Coefficients in exotic aromatic B-series of the operator Ao = > a’(v)F(v)(¢)

for consistent Runge-Kutta methods of the form (3.1.2)).
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v a’(y)
bl(co A((0—1) o d)) + T (d e A0 ¢ ))
oe oji +0T(de A((5 —3-1) e d)) — 2(bTd)? + 46Td — 1
167 (d*2 ¢ A((5 — 1) o d)) + 107 (d » A(5 » d*?))
& i ! +%ZT(d. A((6—3-1) o d)) — (b7d)? +207d — L
b7 (d o (A((1 — 0) #d))*2) — 367 (d** » A((3-1 + 8) » d))
—2bT(d o (Ad)*?) — 6b" (d o A(d e A((1 — 8) + d))) + (2 — 4T d)bT (d » Ad)
o i | —L10T(d e A(5 e d)) — 36T (d o A(3 # d2)) + DT (8 o d*2) + 8(b7d)% — 1267d + 3
oo L | 207d*? — 5T(6 e d?) +bTd — 1
O L | b2 — 5pT (5 e d*?) + 1b7d — 1
1T ( A((Q 1 —36) ¢ d*2)) — b7 (d*% o Ad) + 2b7(d » Ad)
ot o L | +(2Td — DT + (1 — 20T d)bT (5 d*?) + (b7d)? — 56Td + 5
e os 0o b 8(5.c)+2de—§
e Ooll | —LbT(Gec) — L0 (50d?) +207d — 1
b7 (co A((1 —06) o d)) +bT(de A((3-1 —5) «d))
oeododl| —bT(de A5 ec)) + 30T (5o c) + 20T (5% d*?) +2(b7d)? — 6b7d + 3
OO Ll | LT (5 ed*?) + 107d -1
167 (d*2 ¢ A((1 — 8) o d)) — 107 (d » A(5 » d*?))
O ololl| +107(de A((3-1 = 6) o d)) + 36T (5 ¢ d*2) + (b7d)? — 367d + 3
bT(d e (Ad)*2) + 36T (d » A(d e+ A(1 — §) + d)))
—307(d o (A((1 — 8) ¢ d))*?) + 107 (d o A(5 # d))
+(207d — )07 (d o Ad) + 107 (d*2 ¢ A((1 + 6) # d))
oL olod L] 1107 (de A(36d*?)) — 367(5 & d*3) + 15b7(6 ¢ d*?) — (b7 d)? + LpTd — 1

Table 2 (Part 5/5): Coefficients in exotic aromatic B-series of the operator A¢ = >.a’(y)F(v)(¢)

for consistent Runge-Kutta methods of the form ({3.1.2]).
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