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The beginning of molecular dynamics

@ 1827, Robert Brown: observation of stochastic dynamics

@ 1905, Albert Einstein: mathematical definition of Brownian motion

f(x, t): density of particles at x and time t,
px(y,T): probability that a particle in x moves to x + y in a time 7.
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@ 1905, Albert Einstein: mathematical definition of Brownian motion

f(x,t): density of particles at x and time t,
px(y,T): probability that a particle in x moves to x + y in a time 7.
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A Taylor expansion gives:
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The beginning of molecular dynamics

@ 1827, Robert Brown: observation of stochastic dynamics

@ 1905, Albert Einstein: mathematical definition of Brownian motion

f(x, t): density of particles at x and time t,
px(y,T): probability that a particle in x moves to x + y in a time 7.

+o0o
Flx,t+7) = f F(x =y, t)prly, )dy

A Taylor expansion gives:

of 1 02f ol T)
E(X’t) 392 HOL y ———dy

2
The solution is f(x,t) = \/ﬁe 20t , j.e. the probability distribution of a
Gaussian random variable .47(0, Dt)
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The definition of Brownian motion

Definition
A stochastic process W is a Brownian motion if
e W(0)=0ae.

o VO<s<t, W(t)— W(s)~ A4(0,t—5)
VO <t <tp<..<ty, W(t), W(t)— W(ty), ..., W(t,) — W(t, — 1) are
independent random variables.

Some Brownian trajectories
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The Langevin equation

Take N particles moving in a fluid (with N ~ 10?%). Let g(t) be their positions
and p(t) their velocities. The particles are submitted to

@ a potential V and the associated force —VV,

@ a friction force —yp,
@ a collision term 2%dW.

Then applying the fundamental principle of dynamic, we find the Langevin
equation.

d(t) = p(t)dt
dp(t) = (~VV(q(t)) — vp())dt + 1/ ZdW(t)
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Friction limit
If v — 00, we assume the acceleration is negligible. It is called the friction limit. It
means the dynamic is dominated by collisions. Then

da(t) = p(t)dt
0 = (—VV(q(t)) — 7p(t)dt + /ZdW/(2)

dq(t) = —y~'VV(q(t))dt + \/WzﬂdW(t).

In this talk, we focus on this following simplified equation called the overdamped
Langevin equation:

and finally

dX(t) = f(X(t))dt + cdW(t)
where f = =V V.
This is a Stochastic Differential Equation (SDE). It means that X satisfies

X(t) = X(0) + Lt F(X(s))ds + o W(t).
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First schemes: the strong Euler-Maruyama method
Overdamped Langevin equation:

dX = f(X)dt + odW, f=-VV
The strong Euler-Maruyama method:

Xns1 = Xo + hf(Xo) + o(W((n + 1)h) — W(nh)).

Strong Euler-Maruyama method

Adrien Laurent (University of Geneva) Exotic aromatic B-series 18th Graduate Colloquium, 2017 9 /34



First schemes: the weak Euler-Maruyama method
Overdamped Langevin equation:

dX = f(X)dt + odW, f=-VV
The Euler-Maruyama method:
Xni1 = Xo + hf(X,) + oVhe,,

where &, ~ N(0, l4) are independent standard Gaussian variables.
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First schemes: the weak Euler-Maruyama method
Overdamped Langevin equation:

dX = f(X)dt + cdW, f=-VV
The Euler-Maruyama method:
Xps1 = Xo + hf(X,) + o b,
where &, ~ N(0, l4) are independent standard Gaussian variables.

Weak Euler-Maruyama method
T T T T

T T
—Exact solution
—Numerical approximation|
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The weak convergence: definition and tools

Definition

A numerical scheme is said to have local weak order p if for all smooth ¢ with
polynomial growth,

E[6(X1)|Xo = x] — E[6(X(h))|X(0) = x]| < C(x, $)h"*".

For example, the Euler-Maruyama method has weak order 1.
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The weak convergence: definition and tools

Definition

A numerical scheme is said to have local weak order p if for all smooth ¢ with
polynomial growth,

E[6(X1)|Xo = x] — E[6(X(h))|X(0) = x]| < C(x, $)h"*".

For example, the Euler-Maruyama method has weak order 1.

Let u(x, t) = E[¢(X(t))|X(0) = x], x e RY, t > 0, then under certain
assumptions, u satisfies the following backward Kolmogorov equation:

L

¥rs Vuf+"Au—$u
(x,0) = ()-

E ’\J"
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Classical tools for the weak convergence

We develop the exact solution in Taylor series:

h2
E[o(X(h)|X(0) = x] = ¢(x) + hLo(x) + 7$2¢(X) + o
We compare with the Taylor series of the numerical approximation:

E[¢(X1)[Xo = x] = ¢(x) + hAod(x) + h* A1(x) + ...

Theorem (Talay, Tubaro (1990) and Milstein, Tretyakov (2004))

Under assumptions, the scheme is of weak order p if

1 _. .
j_lgj = .Ajfl, = ].7 ceey P

= Tree formalism of B-series for deterministic problems: Butcher (1972) and
Hairer, Wanner (1974),...

= Tree formalism for strong and weak errors on finite time: Burrage K., Burrage
P.M. (1996); Komori, Mitsui, Sugiura (1997); RoBler (2004/2006), ...
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Ergodicity, invariant measure
Ergodicity property: there exists a (unique) invariant measure py, such that

To>+w

lim lfqb ds-fgb y)px(y)dy as..
0

Under ergodicity assumption, pg, is
) a steady state of the Fokker-Planck
equation, i.e.

L¥py, = 0.

For Brownian dynamics
dX = =V V(X)dt +/2dW, we have
pr(x) = Ze= V),

15 -1 05 0 05 1 15
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Order of convergence for the invariant measure

Definition (Convergence for the invariant measure)

We call error of the invariant measure the quantity

1 N
e(¢,h) = Nlﬁin;%,\,—ﬂémxn)— |, PWp=(y)dy

The scheme is of order p if for all test function ¢, e(¢, h) < C(x, ¢)hP.

Theorem (Abdulle, Vilmart, Zygalakis (2014);
Related work: Debussche, Faou (2012); Kopec (2013))

Under technical assumptions, ifAJ’-"p»,, =0,j=2,...p—1, ie for all test
functions ¢,

f Aj¢pﬁdy:07 j:27"'7p_17
Rd

then the numerical scheme has order p for the invariant measure.
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Example: the #-method

Overdamped Langevin equation:
dX = f(X)dt + odW, f=-VV
The §-method:
Xns1 = Xn + h(1 = 0)F(Xa) + hOF (Xny1) + oV,
where &, ~ N(0, I;) are independent standard Gaussian variables.

Methodology:
@ Compute the Taylor expansion of Xi,
@ Compute the Taylor expansion of ¢(Xi) ,
© Compute E[¢(X1)] and deduce the A;¢,

Q Simplify § A;jd(y)ps(y)dy.
]Rd
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Example: the #-method

We have (for & ~ N(0, I4))

X1 _x+\Fog+hf+h\feof'§+h29f'f+h29 F1(€,€) +

It yields E[¢(X1)|Xo = x] = ¢(x) + hLp(x) + hA1é(x) + ..., where
A =E[9'FF + %(b”(f 1+ 200 + 0070 (0

o2

S 0(f.66 + ¢><4)(§ £ 9.
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Grafted aromatic forests

Differential trees and B-series used for numerical analysis: Butcher (1972) and

Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher
(2008))

We use trees as a powerful notation for our differentials. We denote F()(¢) the
elementary differential of a tree 7.

o F(o)(¢) = ¢
o F)(9) = ¢'F

°H\%W=Wmﬂﬂ
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Grafted aromatic forests

Differential trees and B-series used for numerical analysis: Butcher (1972) and
Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher

(2008))
We use trees as a powerful notation for our differentials. We denote F()(¢) the
elementary differential of a tree 7.

o F(o)(¢) = ¢
o F()(¢) = ¢'F
° F(Vx@ = ¢"(f, F'F)

Aromatic forests: introduced by Chartier, Murua (2007) (See also Bogfjellmo
(2015))

F(OOI)(¢) = div(f) x (2 a,-g-ajf,-) x ¢'f
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Grafted aromatic forests
Differential trees and B-series used for numerical analysis: Butcher (1972) and
Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher

(2008))
We use trees as a powerful notation for our differentials. We denote F()(¢) the
elementary differential of a tree 7.

o F(o)(¢) = ¢
o F()(¢) = ¢'F
° F(Vx@ = ¢"(f, F'F)

Aromatic forests: introduced by Chartier, Murua (2007) (See also Bogfjellmo
(2015))

F(OOI)(¢) = div(f) x (2 a,-g-ajf,-) x &'
Grafted aromatic forests: ¢ is represented by crosses (in the spirit of P-series)
F(R/)(sb) =¢"(f'¢,€) and F(Y)(cb) = ¢'f"(£,6).
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Grafted forests for the -method

For the # method,
E[¢(X1)|Xo = x] = ¢(x) + hLp(x) + h2A1(x) + ...
and A; is given by
Arp =E[0¢'f'f + %(b”(f, f) + 9%2¢’f”(€,§) +00%9" ('¢,€)

2

+ Zo0f .60+ Lo (e .6, 6)]
2 b) bl 24 b b) b

BN
_ElF<0+§ +7 + fo

+ %2'\I/ + g—:W> (¢)].
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New exotic aromatic forests : adding lianas
We add lianas to the aromatic forests.

Examples
FE) = 2 ¢"(F(e), e).
F(O) =X ¢"(ei, &) = D,

70

F(E) = X 6" (er, (e, &1, @) = 10" (&1, (AFY(&)).

ij
If v is the following forest

then F(3)(9) = X5 4y div(dif) x ¢/ (O ) (F" (0T, OuF)))-

Remark: our forests do not depend on the dimension.
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Computing the expectation using lianas

ij,k

E [F (\I/) (¢)] E[¢'f"(£,6)] = ) 0:.04 i E[&k]

=Y. 0i9.05f: = ¢/ AF
ij

—F <T> ()
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Main tool 1: expectation of a grafted exotic aromatic forest

Theorem

If v is a grafted exotic aromatic rooted forest with an even number of crosses,
E[F(7)(4)] is the sum of all possible forests obtained by linking the crosses of
pairwisely with lianas.

E[F (V) (0)] = BI0W (€ £,6. 6] = 3, dmeElignc]

ijkl

= 2. 0idB[E]] + 3 ) OB [EIELE]]
’ s

=3 o = 3F (“2) (¢).

ij
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Explicit formula for A;
The operator A; given by

E[6(X1)[Xo = x] = ¢(x) + hLo(x) + h* Arg(x) +

is now convenient to write with exotic aromatic trees.

0.2
Aa6 = BJOG P 4 3 (1) + - 77(6.0) 4 00%6 (16,0

2

o 3 LA
+ Zo(F,6,0) + 709 (6,666

:ElF<0£+%'\/’+ 6%2\1/+002I\/
+%2\V+g—:\\f/>(¢)]
(I 1'\./'+ T+9 T+ 5 'I‘+%4C-i)) ().
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Integrating by parts exotic aromatic forests

Goal: simplify § Aj¢p..dy, i.e. write it as { ¢/(f)p..dy.
E E

[ @ty =3[ 52t
o ~- Prdy = 2 Je (9X,'(9Xjaxj iPody
_ op  Of; 0o dpx
B = [ re OXi0X 6xjp%dy * R 6X,-6Xjf' 0x; a ]

Adrien Laurent (University of Geneva) Exotic aromatic B-series 18th Graduate Colloquium, 2017 24 /34



Integrating by parts exotic aromatic forests

Goal: simplify § Aj¢p..dy, i.e. write it as { ¢/(f)p..dy.
E E

[ @ty =3[ 52t
R N prdy = i R 6x,0x,6xj 1xdy
_ a¢ of; aQb 6ﬂm
B = [ re OXi0X 6xjp%dy * R 6X,-6xjf' 0x; a ]

If f ==VV, ps(x) = Ze V™ and Vp,. = Zfp,. Then

| FC YOy = - | FE@psdy -5 | FCO@pady.
R R g R

We write

Lo %'\/‘
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Main tool 2: integration by parts

Theorem

Integrating by part an exotic aromatic forest v amounts to unplug a liana from
the root, to plug it either to another node of v or to connect it to a new node,
transform the liana in an edge and multiply by % Then

» f )P dy.

FeU(v,e)

f F(7)(®)prdy = —
Rd

Example

e 2A %Iﬁ+%\/’~—_f E %’\/’

o2

Theorem

Take a method of order p. If A, = F(v,) for a certain linear combination of

exotic aromatic forests 7y, if v, ~ Yp and F(4,) = 0, then the method is at least

of order p + 1 for the invariant measure.

V.
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Order conditions using exotic aromatic forests
In particular, if
E[¢(X1)|Xo = x] = F()(9) + D} ha(mF()(@) +...,

yeEAT

1<lvI<p

and if A, = F(~,) then

and
"~ i = (a&) -2+ Bty - A o)h (am ~a(l)
+ a(I’) - %a( ‘ ')> Uy <a(\/) . %a( I') LA )))'\./'
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Order conditions for stochastic RK methods

Theorem (Conditions for order p for the invariant measure)

Conditions for consistency and order 2 for stochastic Runge-Kutta methods:

5]
YP=Xp+hY ayf(YP) +diovVhEn,  i=1,..s,
j=1

s
Xos1 = Xo +h Y bif(Y") + ovhén,
i=1

Order | Tree T | F(7)(¢) Order condition

1 ! o'f Sh=1

2 E ¢Iflf Zb,’C,’-2Zb,’d,'= —%

! $AF | X bd2 -2 bid; = —1

y
Adrien Laurent (University of Geneva)
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Postprocessors

Idea: extend to the context of ergodic SDEs the popular idea of effective order for
ODEs from Butcher (1969),

Yot1 = Xh© Kn o X5 (Vn)s Yn = Xn° Kil o X5 (%0)-
Postprocessing: X, = G,(X,), with weak Taylor series expansion

E(¢(Gn(x))) = d(x) + hP Ap(x) + O(h**).

Theorem (Vilmart (2015))

Under technical assumptions, assume that X, — X,41 and X, satisfy
A;kpw = 07 ./ < P,

(Ap + [Evﬂp])*Pao =0,

then the scheme has order p + 1 for the invariant measure.

Remark: the postprocessing is needed only at the end of the time interval (not at
each time step).
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Postprocessors
Theorem

If we denote v the exotic aromatic B-series such that F(vy) = (A, + [£, Ap]) and
if v ~ 0, then X, is of order p + 1 for the invariant measure.

Theorem (Conditions for order p using postprocessors)

Order | Tree T Order conditions

2 E Sbici— 2 bid; — 23 b; + 2dp- = —1
77

U | Shd—2bd-Yb+d =1

Example (first introduced in Leimkhuler, Matthews, 2013)

Xopr = Xo+ hf (X + ZVhE) + oVhEn, Ko = Xo + ZoVHE,.
Xn has order 1 of accuracy for the invariant measure, but X,, has order 2.
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Partitioned methods

Problem: solve dX = f(X)dt + cdW with f = f; + f, applying different numerical
treatments for each f;. For example, if f; is stiff and £, is non-stiff, we want to
apply an implicit method to f; and an explicit one to f.

Theorem
Order | Tree T | F(7)(¢) Order condition
1 ! o' Yh=1
! &' Ybi=1
2 E ¢Ifllf1 Zb,'C,'—22b,'d,'—2ZFi+2d_02:_%
E @' Zb;a—ZZb;d;—ZE—ZE+2702=—%
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Partitioned methods

Examples (Two methods of order 2)
Xny1 = Xp + gfl(XnJrl + %U\/Efn) + gfl(XrHl + %U\/Efn)
+hh(Xn + o/hEn) + o hé,,
X, =X, + %a\/hg,,.

It can be put in Runge-Kutta form with s = 0 and dy = % for the postprocessor
and the following Butcher tableau:

) 0ojlo o o0 |0|0 0 012
clale|Ald 1|0 12 12|1[1 0 0|12
5| |5 110 1/2 12]1]1 0 032

0 12 12| |1 0 0]

If we add a family of independent noises (x,), independent of (£,),, we get the
following order 2 method:

Xn+1 = Xn ar hﬂ(Xn+l ar %U\/ZXn) ar th(Xn ar %U\/Eé.n) ar O'\/an,
X, =X, + %a\/hg,,.
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Isometric equivariance of exotic aromatic B-series

Definition
Affine equivariant map: invariant under an affine coordinates map.
Isometric equivariant map: invariant under an isometric coordinates map.

Local affine equivariant maps are exactly aromatic B-series methods
(Munthe-Kaas, Verdier (2016) and McLachlan, Modin, Munthe-Kaas, Verdier
(2016))

Theorem J

Exotic aromatic B-series methods are isometric equivariant.

Remark: the converse is ongoing work.
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Summary

e We introduced a new algebraic formalism of exotic aromatic trees to study the
order for the invariant measure of numerical integrators for overdamped Langevin
equation.

e The exotic aromatic forests formalism inherits the properties of the previously
introduced tree formalisms, as a composition law and a universal geometric
property.

o We recover efficient numerical methods (up to order 3), systematic methodology
to improve order and formal simplification of any numerical method that can be
developed in exotic aromatic B-series.

e Possible applications and extensions to more general SDEs where f is not a
gradient or to SDEs of the form

dX = f(X)dt + £2dw.

Main reference of this talk:

A. Laurent and G. Vilmart. Exotic aromatic B-series for the study of long time
integrators for a class of ergodic SDEs. Submitted, arXiv:1707.02877, 2017.
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