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The concept of multirevolutions

Multirevolution methods were initially introduced in Melendo, Palacios (1997) and
Calvo, Jay, Montijano, Randez (2004) in the context of Astronomy.
Consider an highly-oscillatory differential equation of the form

K= o) + L) . xO)=y.
—_—— —_——

oscillatory part small perturbation

@ lIssue: Standard integrators usually have a stepsize restriction h < Ce for
stability /accuracy.

e Goal of multirevolution methods: Integrate the equation after O(c7!)
periods with cost and accuracy independent of ¢.

o ldeas:
The flow @, ¢(y) = x(t) of is a perturbation of identity over one period T, i.e.

PetrT(Y) = @et(y) + O(e).

Approximate the flow ¢, ((y) at the revolution times t = nT, n=0,1,2,...
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Multirevolution methods for highly oscillatory problems
Previous work using multirevolutions with deterministic oscillatory terms...
@ ...on ODEs (see Murua, Sanz-Serna (1999), Calvo, Montijano, Randez
(2007) and Chartier, Makazaga, Murua, Vilmart (2014))
dx 1

E(t) = gAx(t) + F(x(t))
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Multirevolution methods for highly oscillatory problems
Previous work using multirevolutions with deterministic oscillatory terms...
@ ...on ODEs (see Murua, Sanz-Serna (1999), Calvo, Montijano, Randez
(2007) and Chartier, Makazaga, Murua, Vilmart (2014))

dx 1
E(t) = gAx(t) + F(x(t))

@ ...on SDEs (see Vilmart (2014))

dX(t) = éAX(t)dt + F(X(t))dt + Z G(X(t))dWi(t)
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Differential equations with fast stochastic oscillations

We consider differential equations with fast oscillations driven by a Stratonovich
noise
X () = %AX(t) o dW(t) + F(X(£))dt, t >0, X(0) = Xo,

where X(t) € C¢, W is a standard one dimensional Brownian motion and

e " = Iy, that is Sp(A) c 2inZ,

0 c«1,

@ F is a smooth nonlinearity.
The above equation can be rewritten with the change of variable Y (t) = X(et)

and a rescaled Brownian motion W(t) = \/LEW(Et) as

dY(t) = AY(t) o dW(t) + =F(Y(t))dt , t >0, Y(0) = Xo.
oscilla;c:ry part small pe;urbation

Related work on long time approximation of SDEs:

A. Laurent and G. Vilmart. Exotic aromatic B-series for the study of long time
integrators for a class of ergodic SDEs. To appear in Math. Comp., 2019.
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Behaviour in simple cases
Properties of the solution of

dY(t) = AY(t) o dW(t) +cF(Y(t))dt, £ >0, Y(0) = X,
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Behaviour in simple cases
Properties of the solution of

dY(t) = AY(t) o dW(t) +cF(Y(t))dt, £ >0, Y(0) = X,
o if F =0, then Y(t) = eAW(1 X,
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Behaviour in simple cases
Properties of the solution of
dY(t) = AY(t) o dW(t) +cF(Y(t))dt, £ >0, Y(0) = X,

o if F =0, then Y(t) = AW(0 X,
e if A=2im and F(y) = iy, we get a Kubo oscillator and
Y(t) — e2i7rW(t)eiatX0’

1y

0.5

Stochastic oscillator

| il
Exact solution X (¢)
- %- Exact solution at revolution times X, (e7T},)
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Behaviour in simple cases
Properties of the solution of
dY(t) = AY(t) o dW(t) +cF(Y(t))dt, £ >0, Y(0) = X,

o if F =0, then Y(t) = e"W(t) Xy,

e if A=2im and F(y) = iy, we get a Kubo oscillator and
Y(t) — e2i7rW(t)eiatXO’

@ in the general case, the variation of constants formula yields

r\, N t r\,
Y(£) = A0 X, 4 AW J AW E(y (5))ds.
0

SR T

Exact solution X (t)
- %- Exact solution at revolution times X, (e7T},)
1 1 1

1y
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Stochastic oscillator
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Highly-oscillatory SDEs in fiber optics

The equation governing the amplitude of the pulse going through an optical fiber
with a varying dispersion coefficient is the following nonlinear Schrodinger
equation with white noise dispersion (see Marty (2006), Agrawal (2007, 2008), De
Bouard, Debussche (2010))

du(t) = ﬁAu(t) odW(t) + F(u(t))dt, xeTI t>0,
u(0) =u, xeT9.
A spectral discretization with K modes yields the following differential equation
with fast stochastic oscillations
1

dX(t) = ﬁAX(t) odW(t) + F(X(t))dt, t >0, X(0) = Xo,

with A = Diag(—2imk?, |k| < K) and e* = I,.
Related work on numerical integrators for € = 1: exponential integrators (Cohen

(2012), Cohen, Dujardin (2017), Erdogan, Lord (2018)), split-step method (Marty
(2006)) or Crank-Nicholson scheme (Belaouar, De Bouard, Debussche (2015)).

Adrien Laurent (University of Geneva) Multirevolutions for highly-oscillatory SDEs SciCADE, July 2019 6 /25



Contents

Q Derivation of the multirevolution scheme with asymptotic expansions

© Robust integrators using Fourier series

© Numerical experiments

Adrien Laurent (University of Geneva) Multirevolutions for highly-oscillatory SDEs



Stroboscopic approximation for highly oscillatory ODEs

Example

Linear oscillator: 2£(t) = 2Zx(t) + ix(t)
| ,

Exact solution: x(t) = %™ teltx,

Revolution times: T, = n

Exact solution evaluated at revolution times: x(eT,) = €2 e’=Tnx,

—— Exact solution z;(t)
_1 LI- % Exact solution at revolution times x,(cT,)
1 1

Deterministic oscillator

0 eT 2eT 3eT 4eT 5eT

Adrien Laurent (University of Geneva) Multirevolutions for highly-oscillatory SDEs SciCADE, July 2019

8/25



Revolution times
Issue: e*W(t) is not periodic in contrast to e,

We define the revolution times of W(t) as the random variables

T0:07

Top1 = inf{t > T, [W(t) = W(T,)

Then as e = I, we find eAW(To) = |,

,
o 2 é ‘V
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Stroboscopic approximation for the Kubo oscillator
Example

Kubo oscillator: dX(t) = %X(t) odW(t) + iX(t)dt

Exact solution: X(t) = e?ms *W()git x;
Revolution times: To =0, T,+1 = inf {t > T,,

Exact solution evaluated at revolution times:

~

W(t) - W(T,)

>1}

g —1/2 5 . T c g
X(E Tn) _ e2lﬂ'6 W(eT,) eleT,,XO — e2l7rW(T,,)elsT,,X0 — eleT,,XO

TN T

I
Exact solution X, (£)

- % Exact solution at revolution times X (¢7,,)
L L L
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Deriving a local expansion in ¢: iterative expansions
Variation of constants formula:
t

peely) = MWy + Ef AWOWEF (o, (y))ds.
0

We formally derive local expansions of the exact solution at any order.
Order 0:

pei(y) = MOy + O(ct)
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Deriving a local expansion in ¢: iterative expansions
Variation of constants formula:
t

peely) = MWy + EJ AWOWEF (o, (y))ds.
0

We formally derive local expansions of the exact solution at any order.
Order 0:

poily) = MWy 4+ O(et)
Order 1:

t

Pealy) = €Wy 4 20 [ o AVEIF(AS)y) s 1 O((ct))
0
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Deriving a local expansion in ¢: iterative expansions
Variation of constants formula:
t

peely) = MWy + Ef AWOWEF (o, (y))ds.
0

We formally derive local expansions of the exact solution at any order.
Order 0:

eily) = MWWy + O(et)
Order 1:

t

Pealy) = €Wy 4 20 [ o AVEIF(AS)y) s 1 O((ct))
0

Order 2:
t
Pee(y) = 6AW(t)y+seAW(t)J e AW F(AW(S) ) ds
0
t

+€2eAW(t') J efAW(s) F/(eAW(s)y) (eAW(S) JS e,Aw(r) F(eAW(r)y)dr> ds
0 0

+0((et)*) = vi(y) + O((e1)?)
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Deriving a local expansion in €: approximation at Ty

We now consider t = Ty (revolution time), the exact flow ¢, 1, (y) simplifies to
the following perturbation of identity:

Tn

pe,Tu(y) = y—l—sj e W) F(eA(G) ) ds
0

TN S
+€2 J efAW(s) /_—/(eAW(s)y) (eAW(s) f efAW(r) F(eAW(r)y)dr> ds
0 0

+0((eTw)%)
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Deriving a local expansion in €: approximation at Ty

We now consider t = Ty (revolution time), the exact flow ¢, 1, (y) simplifies to
the following perturbation of identity:

Tn

pe,Tu(y) = y—l—sj e W) F(eA(G) ) ds
0

TN S
+€2 J efAW(s) /_—/(eAW(s)y) (eAW(s) f efAW(r) F(eAW(r)y)dr> ds
0 0

+0((eTw)?) = Yo7, (v) + O((e Tw)?)
—_—

77
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Deriving a local expansion in €: approximation at Ty

We now consider t = Ty (revolution time), the exact flow ¢, 1, (y) simplifies to
the following perturbation of identity:

Tn
pe,Tu(y) = y+aj e W) F(eA(G) ) ds
0

TN S
+€2 J efAW(s) FI(eAW(s)y) (eAW(s) f efAW(r) F(eAW(r)y)dr) ds
0 0

+0((eTw)?) = Yo7, (v) + O((e Tw)?)
—_—

77

Proposition (L., Vilmart)

e, 1y(y) is a strong order 2 approximation of . 1,(y), that is

E[lper) — e 0)P] " < €+ lyI) M)
—

—H3
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Construction of the methods

We obtain the following order 2 approximation of ¢, 71, (y):
Tn

Ve,mu(y) =y + ef e MW F(AVE) ) ds
0

T
+ 62j " efAW(s) F/(eAW(s)y) (eAW(s) 1[5 efAW(r) F(eAW(r)y)dr) ds
0 0

Issue: The above long time integrals involve F and F’'.
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Construction of the methods

We obtain the following order 2 approximation of ¢ 71, (y):
Tn

wa,TN (Y) =y+ EJ e AW (s) F(eAW(s)y) ds
0

TN S
+ 62 f efAW(s) F/(eAW(s)y) (eAW(s) f efAW(r) F(eAW(r)y)dr> ds
0 0

Issue: The above long time integrals involve F and F'.
If c)(y) is the k™ Fourier coefficient of gJ(y) = e "?F(e"’y), c}(y) the p™
Fourier coefficient of gi(y) = e A?F'(e"?y)(e?"), then

1™ .
we,TN (y) =y+ (EN) Z CE(y)N J eZIﬂ'kW(s) ds
k 0

1 Tn . S i
PR S [ | s
p,k
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Construction of the methods

We obtain the following order 2 approximation of ¢ 71, (y):

Tn

wa,TN (Y) =y+ EJ e AW (s) F(eAW(s)y) ds
0

Tn s
+ 62 f efAW(s) F/(eAW(s)y) (eAW(s) f efAW(r) F(eAW(r)y)dr) ds
0 0

Issue: The above long time integrals involve F and F'.
If c)(y) is the k™ Fourier coefficient of gJ(y) = e "?F(e"’y), c}(y) the p™
Fourier coefficient of gi(y) = e A?F'(e"?y)(e?"), then

1 (™ .
’(/}E,TN (}/) =Yy + (EN) Z CE(}/)N f teTrkW(s) ds
k 0

1

v s
PR SO [ | s
p.k
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Construction of the methods
We obtain the following order 2 approximation of . 7,(y):

Tn

Ve, (y) =y + af e MW F(AVE) ) ds
0

T s
+ 62 J N e_AW(s) F/(eAW(s)y) (eAW(s) J e—AW(r) F(eAW(r)y)dr) ds
0 0

Issue: The above long time integrals involve F and F’.
If c{(y) is the k™ Fourier coefficient of gJ(y) = e “F(e"’y), c}(y) the p™
Fourier coefficient of g}(y) = e "/F'(e"?y)(e”?"), then

Ye,mu(y) =y + (N) D R (y)ai + (eN)? D o (0(eR (1) By
p.k

k
with
N 1 T 2im kW
o) = —J e mV(s) s
N Jo
1 Tn S
F,;Vk _ e2/7rpW(s) J e2lﬂ‘kW(I’) drds.
s N2
0 0
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Construction of the methods

We deduce the following numerical scheme of order 2 for approximating the exact
solution ¢ 7, (X0) = X(e Tym), m=0,1,....

Method A (Explicit integrator of strong order two in H = Ne)
Y1 = Ym + H Y. Q(Ym)ak + H? D7 ch(Ym) (R (Ym)BY)

keZ p,keZ
14 I T
O TR Nl 1 1.
g [ il - l
= ™17
05 i
£
g
2 0F
=¥
= o L
2070‘5 I 1
S — Solution
A - % -Solution at times Ty
S1d Method A
| | | |
0 eTy Ty eTy €Ty eTs €Ty eT7 €Ty eTy €Ty

L . T,
Issue: a standard approximation of the integrals o) = 1 {," €™ (*)ds and

N = STN 2impW(s) (* e2mkW(r) drds has a cost O(e1).
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Weak order 2 approximation of the weak integrals

We obtained the following strong/weak approximation of order 2:

Vo) =y +HY Q) +H Y ()R ()Y
k p,k

However, computing exactly ) and 3, has a cost in O(c'). We introduce
Genly) =y +HY QA + H > eh ()5
P

p.k

where we replaced oz/’(V and ﬁgk with cheap discrete approximations with same first

moments &l and §£Ik (see Milstein, Tretyakov (2004)), that is

E[a}] = E[«], E[3).] = E[5}.],

B[al/al'] = Elallal].
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First and second moments of oY and Bﬁ’,\’k

Proposition
The following random variables
aLv _ % STN e2imkW(s) 4s
,/xk _ /\}2 T g2impW(s SS 2imkW (r) drdls
satisfy
lifk=0
Elog]  =dc= { 0 else
1+ %N ifp=k=0
E[aﬁ’aﬁ’] = 7Tp—perifp—i—k=0,p,k;f'50
0 else
2 + 3N ifp=k=0
27r2k2N ifp=0, k#0
EBY] =15 zopmw ifp#0, k=0
0 else
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Euler method and asymptotic regime ¢ — 0

We have the following approximation of order 1:

ben(y) =y +HY Q).
k

If we replace o) by &) = E[a]] = &k, we get the Euler method

ymi1 = ym + Hed (ym).
It has weak order 1 in H = Ne and cost independent of N and ¢.

Theorem (L., Vilmart)

Under regularity assumptions on F, the exact solution ¢. 1,,.(Xo) = Y(T7/c)
converges weakly as € — 0 to the solution at time T of the deterministic ODE

(iit = g%y (_ Ll —AVF (A yt)de), vo = Xo.

Remark: This asymptotic model is the same one as for deterministic oscillations.
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New robust order 2 method

Method A (Explicit integrator of weak order two in H = Ne)

Yie1 = Yo+ H DL Q(Ym)al + H2 > ch(Yim)(cR(Yim)BY,)
keZ p.keZ

Theorem (L., Vilmart)

Under regularity assumptions on F, Method A is a weak order 2 integrator for
approximating ¢e 1, (Xo) = X(€ Tym) & Ym with m=0,1,..., that is

B[} (02, T (X0))] — E[$(Yam)]| < CH?(1 + E[| o] ]).

Remarks:

@ The cost is linear in the number of Fourier modes (indexed by k).

@ The method can be adapted to approximate the solution at a deterministic
time T with the same cost and accuracy.
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New geometric robust order 2 method

Geometric modification based on the implicit middle point method for preserving

N _N
quadratic invariants, where BLV,( = /Iavk — =% For example, for the Schrédinger

equation, if F(y) = i|y|20 y, the L2 norm Q(y) = y "y is preserved.

Method B (Geometric integrator of weak order two in H = Ne)

Yim + Ym ~
Yime1 = Ym+HZCE ("‘+1> ay
keZ 2

Yo+ Vi1 Yo+ Y1\ 2
o B e () (4

p,kEZ

Theorem (L., Vilmart)

Under regularity assumptions on F, Method B is a weak order 2 integrator for

approximating e 1y, (Xo) = X(e Tym) with m=0,1,... and preserves quadratic
invariants.
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Weak order of convergence

2im

dX(t) = _aX(t) odW(t) + F(X(t))dt, X(0) =1

\E

We plot on a logarithmic scale an estimate of the weak error (~ 10° trajectories)
with both methods for approximating X at time T = 1073 Ty where

E[T] = 0.256. We observe a convergence of order 2, which corroborates the weak
order 2 convergence theorems of Method A and B.

102

Weak error
=
(=]
L

10°6

—#— Euler method
Method A
—#—Method B
---.Slope 1
=-=-=-Slope 2

1072

H

107!

‘Weak error

F(u) =i(1+R(v)® + S(v)®)u

102
10
—#— Euler method
''''' Method A
—#—Method B
106 ---Slope 1
=-=-=-Slope 2
1072 107!
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Highly oscillatory NLS with white noise dispersion

We apply our algorithms to a spatial discretization (with 27 modes) of the SPDE

du = \/;gAu o dW + i |uf* udt, up(x) = exp(—3x* + x?), x € [-,7].

T T T T T T T 20 - T
1.24|—t=0 —t=0
——t = eTeo ——t = eT00
1 L|——t = eTha00 15—t =T
t = eTis00 t = eTis00
0.8
= =
EP =10
0.4
| | \ LI TN “W |
0.2 [
W r/\ W F j/ W‘ﬂjﬂ\iwlf‘& il \
0 '\/\4 /“\'\)\/ Mf""
-3 -2 -1 0 1 2 3 0 1 2

Figure: Approximation of |u| and |dxu| for 0 = 4 and £ = 1072
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Behaviour of L? and H! norms
Properties of the equation du = —=Awu o dW + F(u)dt with F(u) = i |u]*’ u:

NG

@ The L2 norm of the exact solution is constant.

e Conjecture of Belaouar, De Bouard, Debussche (2015) for ¢ = 1: the H!

norm of the exact solution explodes in finite time for o > 4 (critical exponent
in the deterministic case o > 2).

-3
10 % 10 ‘
—— Euler method
Method A
- = -Method B
g
=t
=}
=}
o~
~
-2
0 5 10 1

9

H' norm

—— Euler method
Method A

- = -Method B

b}

Figure: Evolution of the quantity || :(u0)|| — | to]|| with the discrete L> and H* norms

for o0 = 4, e = 1072 and wo(x) = exp(—3x* + x?).
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Summary

@ We give a method to obtain asymptotic expansions in ¢ of the flow of

X (¢) = \/igAX(t) o dW(t) + F(X(£)dt, t >0, X(0) = Xo.

@ We build a method of weak order two based on the idea of multirevolutions
with computational cost and accuracy both independent of the stiffness of
the oscillations ¢.

@ We propose a geometric modification that conserves exactly quadratic
invariants.

@ There exists an asymptotic model (¢ — 0) and it is the same one as for
deterministic oscillations.

@ Possible further research on uniformly accurate schemes.

Preprint available:

A. Laurent and G. Vilmart. Multirevolution integrators for differential equations
with fast stochastic oscillations. Submitted, arXiv:1902.01716, 2019.
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