Multirevolution integrators for differential equations with fast stochastic oscillations

Adrien Laurent

Joint work with Gilles Vilmart

SciCADE, University of Innsbruck, July 2019

The concept of multirevolutions

Multirevolution methods were initially introduced in Melendo, Palacios (1997) and Calvo, Jay, Montijano, Randez (2004) in the context of Astronomy. Consider an highly-oscillatory differential equation of the form

$$\frac{dx}{dt}(t) = \underbrace{\mathcal{O}(x(t))}_{\text{oscillatory part}} + \underbrace{\varepsilon P\left(x(t)\right)}_{\text{small perturbation}}, \quad x(0) = y.$$

- Issue: Standard integrators usually have a stepsize restriction $h \leq C\varepsilon$ for stability/accuracy.
- Goal of multirevolution methods: Integrate the equation after $\mathcal{O}(\varepsilon^{-1})$ periods with cost and accuracy independent of ε .
- Ideas:

The flow $\varphi_{\varepsilon,t}(y)=x(t)$ of is a perturbation of identity over one period T, i.e.

$$\varphi_{\varepsilon,t+T}(y) = \varphi_{\varepsilon,t}(y) + \mathcal{O}(\varepsilon).$$

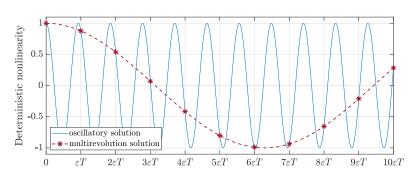
Approximate the flow $\varphi_{\varepsilon,t}(y)$ at the revolution times t = nT, n = 0, 1, 2, ...

Multirevolution methods for highly oscillatory problems

Previous work using multirevolutions with deterministic oscillatory terms...

 ...on ODEs (see Murua, Sanz-Serna (1999), Calvo, Montijano, Randez (2007) and Chartier, Makazaga, Murua, Vilmart (2014))

$$\frac{dx}{dt}(t) = \frac{1}{\varepsilon}Ax(t) + F(x(t))$$



Multirevolution methods for highly oscillatory problems

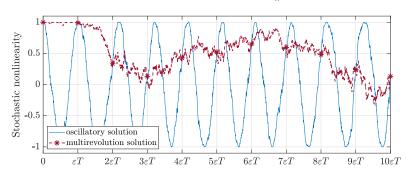
Previous work using multirevolutions with deterministic oscillatory terms...

 ...on ODEs (see Murua, Sanz-Serna (1999), Calvo, Montijano, Randez (2007) and Chartier, Makazaga, Murua, Vilmart (2014))

$$\frac{dx}{dt}(t) = \frac{1}{\varepsilon}Ax(t) + F(x(t))$$

• ...on SDEs (see Vilmart (2014))

$$dX(t) = \frac{1}{\varepsilon}AX(t)dt + F(X(t))dt + \sum_{k}G(X(t))dW_{k}(t)$$



Differential equations with fast stochastic oscillations

We consider differential equations with fast oscillations driven by a Stratonovich noise

$$dX(t) = \frac{1}{\sqrt{\varepsilon}}AX(t) \circ dW(t) + F(X(t))dt, \ t > 0, \ X(0) = X_0,$$

where $X(t) \in \mathbb{C}^d$, W is a standard one dimensional Brownian motion and

- $e^A = I_d$, that is $Sp(A) \subset 2i\pi \mathbb{Z}$,
- $\varepsilon \ll 1$,
- F is a smooth nonlinearity.

The above equation can be rewritten with the change of variable $Y(t)=X(\varepsilon t)$ and a rescaled Brownian motion $\widetilde{W}(t)=\frac{1}{\sqrt{\varepsilon}}W(\varepsilon t)$ as

$$dY(t) = \underbrace{AY(t) \circ d\widetilde{W}(t)}_{\text{oscillatory part}} + \underbrace{\varepsilon F(Y(t)) dt}_{\text{small perturbation}}, \ t > 0, \ Y(0) = X_0.$$

Related work on long time approximation of SDEs:

A. Laurent and G. Vilmart. Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs. *To appear in Math. Comp.*, 2019.

Properties of the solution of

$$dY(t) = AY(t) \circ d\widetilde{W}(t) + \varepsilon F(Y(t))dt, \ t > 0, \ Y(0) = X_0$$

Properties of the solution of

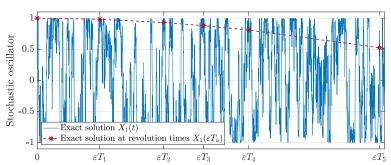
$$dY(t) = AY(t) \circ d\widetilde{W}(t) + \varepsilon F(Y(t))dt, \ t > 0, \ Y(0) = X_0$$

• if F = 0, then $Y(t) = e^{A\widetilde{W}(t)}X_0$,

Properties of the solution of

$$dY(t) = AY(t) \circ d\widetilde{W}(t) + \varepsilon F(Y(t))dt, \ t > 0, \ Y(0) = X_0$$

- if F = 0, then $Y(t) = e^{A\widetilde{W}(t)}X_0$,
- if $A=2i\pi$ and F(y)=iy, we get a Kubo oscillator and $Y(t)=e^{2i\pi\widetilde{W}(t)}e^{i\varepsilon t}X_0$,

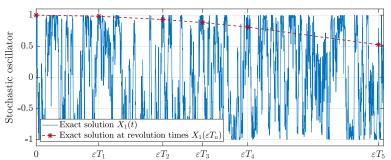


Properties of the solution of

$$dY(t) = AY(t) \circ d\widetilde{W}(t) + \varepsilon F(Y(t))dt, \ t > 0, \ Y(0) = X_0$$

- if F = 0, then $Y(t) = e^{A\widetilde{W}(t)}X_0$,
- if $A=2i\pi$ and F(y)=iy, we get a Kubo oscillator and $Y(t)=e^{2i\pi\widetilde{W}(t)}e^{i\varepsilon t}X_0$,
- in the general case, the variation of constants formula yields

$$Y(t) = e^{A\widetilde{W}(t)}X_0 + e^{A\widetilde{W}(t)}\varepsilon \int_0^t e^{-A\widetilde{W}(s)}F(Y(s))ds.$$



Highly-oscillatory SDEs in fiber optics

The equation governing the amplitude of the pulse going through an optical fiber with a varying dispersion coefficient is the following nonlinear Schrödinger equation with white noise dispersion (see Marty (2006), Agrawal (2007, 2008), De Bouard, Debussche (2010))

$$\left\{ \begin{array}{ll} du(t) &= \frac{i}{\sqrt{\varepsilon}} \Delta u(t) \circ dW(t) + F(u(t)) dt, \quad x \in \mathbb{T}^d, \quad t > 0, \\ u(0) &= u_0, \quad x \in \mathbb{T}^d. \end{array} \right.$$

A spectral discretization with K modes yields the following differential equation with fast stochastic oscillations

$$dX(t) = \frac{1}{\sqrt{\varepsilon}}AX(t) \circ dW(t) + F(X(t))dt, \ t > 0, \ X(0) = X_0,$$

with $A = \text{Diag}(-2i\pi k^2, |k| \leqslant K)$ and $e^A = I_d$.

Related work on numerical integrators for $\varepsilon=1$: exponential integrators (Cohen (2012), Cohen, Dujardin (2017), Erdoğan, Lord (2018)), split-step method (Marty (2006)) or Crank-Nicholson scheme (Belaouar, De Bouard, Debussche (2015)).

Contents

Derivation of the multirevolution scheme with asymptotic expansions

2 Robust integrators using Fourier series

Numerical experiments

Stroboscopic approximation for highly oscillatory ODEs

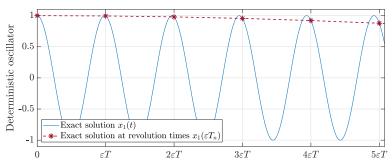
Example

Linear oscillator: $\frac{dx}{dt}(t) = \frac{2i\pi}{\varepsilon}x(t) + ix(t)$

Exact solution: $x(t) = e^{2i\pi\varepsilon^{-1}t}e^{it}x_0$

Revolution times: $T_n = n$

Exact solution evaluated at revolution times: $x(\varepsilon T_n) = \underbrace{e^{2i\pi T_n}}_{=I_d} e^{i\varepsilon T_n} x_0$



Revolution times

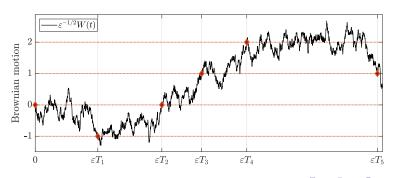
Issue: $e^{A\widetilde{W}(t)}$ is not periodic in contrast to e^{At} .

We define the revolution times of $\widetilde{W}(t)$ as the random variables

$$T_0 = 0,$$

$$T_{n+1} = \inf \left\{ t > T_n, \left| \widetilde{W}(t) - \widetilde{W}(T_n) \right| \geqslant 1 \right\}, \ n = 0, 1, \dots$$

Then as $e^A = I_d$, we find $e^{A\widetilde{W}(T_n)} = I_d$.



Stroboscopic approximation for the Kubo oscillator

Example

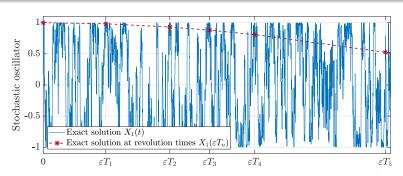
Kubo oscillator: $dX(t) = \frac{2i\pi}{\sqrt{\varepsilon}}X(t) \circ dW(t) + iX(t)dt$

Exact solution: $X(t) = e^{2i\pi\varepsilon^{-1/2}W(t)}e^{it}X_0$

Revolution times: $T_0 = 0$, $T_{n+1} = \inf \left\{ t > T_n, \left| \widetilde{W}(t) - \widetilde{W}(T_n) \right| \geqslant 1 \right\}$

Exact solution evaluated at revolution times:

$$X(\varepsilon T_n) = e^{2i\pi\varepsilon^{-1/2}W(\varepsilon T_n)}e^{i\varepsilon T_n}X_0 = e^{2i\pi\widetilde{W}(T_n)}e^{i\varepsilon T_n}X_0 = e^{i\varepsilon T_n}X_0$$



Deriving a local expansion in ε : iterative expansions

Variation of constants formula:

$$\varphi_{\varepsilon,t}(y) = e^{AW(t)}y + \varepsilon \int_0^t e^{A(W(t) - W(s))} F(\varphi_{\varepsilon,s}(y)) ds.$$

We formally derive local expansions of the exact solution at any order. Order 0:

$$\varphi_{\varepsilon,t}(y) = e^{AW(t)}y + \mathcal{O}(\varepsilon t)$$

Deriving a local expansion in ε : iterative expansions

Variation of constants formula:

$$\varphi_{\varepsilon,t}(y) = e^{AW(t)}y + \varepsilon \int_0^t e^{A(W(t)-W(s))}F(\varphi_{\varepsilon,s}(y))ds.$$

We formally derive local expansions of the exact solution at any order. Order 0:

$$\varphi_{\varepsilon,t}(y) = e^{AW(t)}y + \mathcal{O}(\varepsilon t)$$

Order 1:

$$\varphi_{\varepsilon,t}(y) = e^{AW(t)}y + \varepsilon e^{AW(t)} \int_0^t e^{-AW(s)} F(e^{AW(s)}y) ds + \mathcal{O}((\varepsilon t)^2)$$

Deriving a local expansion in ε : iterative expansions

Variation of constants formula:

$$\varphi_{\varepsilon,t}(y) = e^{AW(t)}y + \varepsilon \int_0^t e^{A(W(t)-W(s))}F(\varphi_{\varepsilon,s}(y))ds.$$

We formally derive local expansions of the exact solution at any order. Order 0:

$$\varphi_{\varepsilon,t}(y) = e^{AW(t)}y + \mathcal{O}(\varepsilon t)$$

Order 1:

$$\varphi_{\varepsilon,t}(y) = e^{AW(t)}y + \varepsilon e^{AW(t)} \int_0^t e^{-AW(s)} F(e^{AW(s)}y) ds + \mathcal{O}((\varepsilon t)^2)$$

Order 2:

$$\varphi_{\varepsilon,t}(y) = e^{AW(t)}y + \varepsilon e^{AW(t)} \int_0^t e^{-AW(s)}F(e^{AW(s)}y)ds$$

$$+ \varepsilon^2 e^{AW(t)} \int_0^t e^{-AW(s)}F'(e^{AW(s)}y) \left(e^{AW(s)} \int_0^s e^{-AW(r)}F(e^{AW(r)}y)dr\right)ds$$

$$+ \mathcal{O}((\varepsilon t)^3) = \psi_{\varepsilon,t}(y) + \mathcal{O}((\varepsilon t)^3)$$

Deriving a local expansion in ε : approximation at T_N

We now consider $t=T_N$ (revolution time), the exact flow $\varphi_{\varepsilon,T_N}(y)$ simplifies to the following perturbation of identity:

$$\varphi_{\varepsilon,T_N}(y) = y + \varepsilon \int_0^{T_N} e^{-AW(s)} F(e^{AW(s)} y) ds$$

$$+ \varepsilon^2 \int_0^{T_N} e^{-AW(s)} F'(e^{AW(s)} y) \left(e^{AW(s)} \int_0^s e^{-AW(r)} F(e^{AW(r)} y) dr \right) ds$$

$$+ \mathcal{O}((\varepsilon T_N)^3)$$

Deriving a local expansion in ε : approximation at T_N

We now consider $t=T_N$ (revolution time), the exact flow $\varphi_{\varepsilon,T_N}(y)$ simplifies to the following perturbation of identity:

$$\varphi_{\varepsilon,T_{N}}(y) = y + \varepsilon \int_{0}^{T_{N}} e^{-AW(s)} F(e^{AW(s)}y) ds$$

$$+ \varepsilon^{2} \int_{0}^{T_{N}} e^{-AW(s)} F'(e^{AW(s)}y) \left(e^{AW(s)} \int_{0}^{s} e^{-AW(r)} F(e^{AW(r)}y) dr\right) ds$$

$$+ \mathcal{O}((\varepsilon T_{N})^{3}) = \psi_{\varepsilon,T_{N}}(y) + \underbrace{\mathcal{O}((\varepsilon T_{N})^{3})}_{277}$$

Deriving a local expansion in ε : approximation at T_N

We now consider $t=T_N$ (revolution time), the exact flow $\varphi_{\varepsilon,T_N}(y)$ simplifies to the following perturbation of identity:

$$\begin{split} \varphi_{\varepsilon,T_{N}}(y) &= y + \varepsilon \int_{0}^{T_{N}} e^{-AW(s)} F(e^{AW(s)}y) ds \\ &+ \varepsilon^{2} \int_{0}^{T_{N}} e^{-AW(s)} F'(e^{AW(s)}y) \left(e^{AW(s)} \int_{0}^{s} e^{-AW(r)} F(e^{AW(r)}y) dr \right) ds \\ &+ \mathcal{O}((\varepsilon T_{N})^{3}) = \psi_{\varepsilon,T_{N}}(y) + \underbrace{\mathcal{O}((\varepsilon T_{N})^{3})}_{???} \end{split}$$

Proposition (L., Vilmart)

 $\psi_{arepsilon, T_N}(y)$ is a strong order 2 approximation of $\varphi_{arepsilon, T_N}(y)$, that is

$$\mathbb{E}\left[\left|\varphi_{\varepsilon,T_{N}}(y)-\psi_{\varepsilon,T_{N}}(y)\right|^{2}\right]^{1/2}\leqslant C(1+\left|y\right|^{K})\underbrace{\left(\varepsilon N\right)^{3}}_{-H^{3}}.$$

We obtain the following order 2 approximation of $\varphi_{\varepsilon,T_N}(y)$:

$$\psi_{\varepsilon,T_N}(y) = y + \varepsilon \int_0^{T_N} e^{-AW(s)} F(e^{AW(s)}y) ds$$
$$+ \varepsilon^2 \int_0^{T_N} e^{-AW(s)} F'(e^{AW(s)}y) \left(e^{AW(s)} \int_0^s e^{-AW(r)} F(e^{AW(r)}y) dr \right) ds$$

Issue: The above long time integrals involve F and F'.

We obtain the following order 2 approximation of $\varphi_{\varepsilon,T_N}(y)$:

$$\psi_{\varepsilon,T_N}(y) = y + \varepsilon \int_0^{T_N} e^{-AW(s)} F(e^{AW(s)}y) ds$$
$$+ \varepsilon^2 \int_0^{T_N} e^{-AW(s)} F'(e^{AW(s)}y) \left(e^{AW(s)} \int_0^s e^{-AW(r)} F(e^{AW(r)}y) dr \right) ds$$

Issue: The above long time integrals involve F and F'. If $c_k^0(y)$ is the k^{th} Fourier coefficient of $g_\theta^0(y) = e^{-A\theta}F(e^{A\theta}y)$, $c_\rho^1(y)$ the ρ^{th} Fourier coefficient of $g_\theta^1(y) = e^{-A\theta}F'(e^{A\theta}y)(e^{A\theta}\cdot)$, then

$$\psi_{\varepsilon,T_N}(y) = y + (\varepsilon N) \sum_k c_k^0(y) \frac{1}{N} \int_0^{T_N} e^{2i\pi kW(s)} ds$$
$$+ (\varepsilon N)^2 \sum_{p,k} c_p^1(y) (c_k^0(y)) \frac{1}{N^2} \int_0^{T_N} e^{2i\pi pW(s)} \int_0^s e^{2i\pi kW(r)} dr ds$$

We obtain the following order 2 approximation of $\varphi_{\varepsilon,T_N}(y)$:

$$\psi_{\varepsilon,T_N}(y) = y + \varepsilon \int_0^{T_N} e^{-AW(s)} F(e^{AW(s)}y) ds$$
$$+ \varepsilon^2 \int_0^{T_N} e^{-AW(s)} F'(e^{AW(s)}y) \left(e^{AW(s)} \int_0^s e^{-AW(r)} F(e^{AW(r)}y) dr \right) ds$$

Issue: The above long time integrals involve F and F'. If $c_k^0(y)$ is the k^{th} Fourier coefficient of $g_\theta^0(y) = e^{-A\theta}F(e^{A\theta}y)$, $c_\rho^1(y)$ the ρ^{th} Fourier coefficient of $g_\theta^1(y) = e^{-A\theta}F'(e^{A\theta}y)(e^{A\theta}\cdot)$, then

$$\psi_{\varepsilon,T_N}(y) = y + (\varepsilon N) \sum_k c_k^0(y) \frac{1}{N} \int_0^{T_N} e^{2i\pi kW(s)} ds$$
$$+ (\varepsilon N)^2 \sum_{p,k} c_p^1(y) (c_k^0(y)) \frac{1}{N^2} \int_0^{T_N} e^{2i\pi pW(s)} \int_0^s e^{2i\pi kW(r)} dr ds$$

We obtain the following order 2 approximation of $\varphi_{\varepsilon,T_N}(y)$:

$$\psi_{\varepsilon,T_N}(y) = y + \varepsilon \int_0^{T_N} e^{-AW(s)} F(e^{AW(s)}y) ds$$
$$+ \varepsilon^2 \int_0^{T_N} e^{-AW(s)} F'(e^{AW(s)}y) \left(e^{AW(s)} \int_0^s e^{-AW(r)} F(e^{AW(r)}y) dr \right) ds$$

Issue: The above long time integrals involve F and F'. If $c_k^0(y)$ is the k^{th} Fourier coefficient of $g_\theta^0(y) = e^{-A\theta}F(e^{A\theta}y)$, $c_\rho^1(y)$ the ρ^{th} Fourier coefficient of $g_\theta^1(y) = e^{-A\theta}F'(e^{A\theta}y)(e^{A\theta}\cdot)$, then

$$\psi_{\varepsilon,T_N}(y) = y + (\varepsilon N) \sum_k c_k^0(y) \alpha_k^N + (\varepsilon N)^2 \sum_{p,k} c_p^1(y) (c_k^0(y)) \beta_{p,k}^N$$

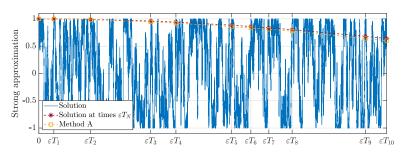
with

$$\begin{split} \alpha_k^N &= \frac{1}{N} \int_0^{T_N} e^{2i\pi kW(s)} ds \\ \beta_{p,k}^N &= \frac{1}{N^2} \int_0^{T_N} e^{2i\pi pW(s)} \int_0^s e^{2i\pi kW(r)} dr ds. \end{split}$$

We deduce the following numerical scheme of order 2 for approximating the exact solution $\varphi_{\varepsilon,T_{Nm}}(X_0)=X(\varepsilon T_{Nm}),\ m=0,1,\ldots$

Method A (Explicit integrator of strong order two in $H = N\varepsilon$)

$$Y_{m+1} = Y_m + H \sum_{k \in \mathbb{Z}} c_k^0(Y_m) \alpha_k^N + H^2 \sum_{p,k \in \mathbb{Z}} c_p^1(Y_m) (c_k^0(Y_m) \beta_{p,k}^N)$$



Issue: a standard approximation of the integrals $\alpha_k^N = \frac{1}{N} \int_0^{T_N} e^{2i\pi kW(s)} ds$ and $\beta_{p,k}^N = \frac{1}{N^2} \int_0^{T_N} e^{2i\pi pW(s)} \int_0^s e^{2i\pi kW(r)} dr ds$ has a cost $\mathcal{O}(\varepsilon^{-1})$.

Contents

Derivation of the multirevolution scheme with asymptotic expansions

2 Robust integrators using Fourier series

Numerical experiments

Weak order 2 approximation of the weak integrals

We obtained the following strong/weak approximation of order 2:

$$\psi_{\varepsilon,T_N}(y) = y + H \sum_k c_k^0(y) \alpha_k^N + H^2 \sum_{p,k} c_p^1(y) (c_k^0(y)) \beta_{p,k}^N.$$

However, computing exactly α_k^N and $\beta_{p,k}^N$ has a cost in $\mathcal{O}(\varepsilon^{-1})$. We introduce

$$\widehat{\psi}_{\varepsilon,N}(y) = y + H \sum_k c_k^0(y) \widehat{\alpha}_k^N + H^2 \sum_{p,k} c_p^1(y) (c_k^0(y)) \widehat{\beta}_{p,k}^N,$$

where we replaced α_k^N and $\beta_{p,k}^N$ with cheap discrete approximations with same first moments $\hat{\alpha}_k^N$ and $\hat{\beta}_{p,k}^N$ (see Milstein, Tretyakov (2004)), that is

$$\begin{split} \mathbb{E}[\widehat{\alpha}_{k}^{N}] &= \mathbb{E}[\alpha_{k}^{N}], \ \mathbb{E}[\widehat{\beta}_{p,k}^{N}] = \mathbb{E}[\beta_{p,k}^{N}], \\ \mathbb{E}[\widehat{\alpha}_{k_{1}}^{N}\widehat{\alpha}_{k_{2}}^{N}] &= \mathbb{E}[\alpha_{k_{1}}^{N}\alpha_{k_{2}}^{N}]. \end{split}$$

First and second moments of α_k^N and $\beta_{p,k}^N$

Proposition

The following random variables

$$\begin{array}{ll} \alpha_k^N & = \frac{1}{N} \int_0^{T_N} \mathrm{e}^{2i\pi kW(s)} ds \\ \beta_{p,k}^N & = \frac{1}{N^2} \int_0^{T_N} \mathrm{e}^{2i\pi pW(s)} \int_0^s \mathrm{e}^{2i\pi kW(r)} dr ds \end{array}$$

satisfy

$$\mathbb{E}[\alpha_{k}^{N}] = \delta_{k} = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{else} \end{cases}$$

$$\mathbb{E}[\alpha_{p}^{N}\alpha_{k}^{N}] = \begin{cases} 1 + \frac{2}{3N} & \text{if } p = k = 0 \\ \frac{1}{\pi^{2}p^{2}N} & \text{if } p + k = 0, \ p, k \neq 0 \\ 0 & \text{else} \end{cases}$$

$$\mathbb{E}[\beta_{p,k}^{N}] = \begin{cases} \frac{1}{2} + \frac{1}{3N} & \text{if } p = k = 0 \\ \frac{1}{2\pi^{2}k^{2}N} & \text{if } p = 0, \ k \neq 0 \\ \frac{1}{2\pi^{2}p^{2}N} & \text{if } p \neq 0, \ k = 0 \\ \frac{1}{2\pi^{2}p^{2}N} & \text{if } p + k = 0, \ p, k \neq 0 \end{cases}$$

$$0 & \text{else}$$

Euler method and asymptotic regime $\varepsilon \to 0$

We have the following approximation of order 1:

$$\psi_{\varepsilon,N}(y) = y + H \sum_{k} c_k^0(y) \alpha_k^N.$$

If we replace α_k^N by $\hat{\alpha}_k^N = \mathbb{E}[\alpha_k^N] = \delta_k$, we get the Euler method

$$y_{M+1} = y_M + Hc_0^0(y_M).$$

It has weak order 1 in $H = N\varepsilon$ and cost independent of N and ε .

Theorem (L., Vilmart)

Under regularity assumptions on F, the exact solution $\varphi_{\varepsilon,T_{T/\varepsilon}}(X_0)=Y(T_{T/\varepsilon})$ converges weakly as $\varepsilon\to 0$ to the solution at time T of the deterministic ODE

$$\frac{dy_t}{dt} = \langle g^0 \rangle (y_t) \left(= \int_0^1 e^{-A\theta} F(e^{A\theta} y_t) d\theta \right), \ y_0 = X_0.$$

Remark: This asymptotic model is the same one as for deterministic oscillations.

18 / 25

New robust order 2 method

Method A (Explicit integrator of weak order two in $H = N\varepsilon$)

$$Y_{m+1} = Y_m + H \sum_{k \in \mathbb{Z}} c_k^0(Y_m) \hat{\alpha}_k^N + H^2 \sum_{p,k \in \mathbb{Z}} c_p^1(Y_m) (c_k^0(Y_m) \hat{\beta}_{p,k}^N)$$

Theorem (L., Vilmart)

Under regularity assumptions on F, Method A is a weak order 2 integrator for approximating $\varphi_{\varepsilon,T_{Nm}}(X_0)=X(\varepsilon T_{Nm})\approx Y_m$ with $m=0,1,\ldots$, that is

$$|\mathbb{E}[\phi(\varphi_{\varepsilon,T_{Nm}}(X_0))] - \mathbb{E}[\phi(Y_m)]| \leqslant CH^2(1 + \mathbb{E}[|X_0|^K]).$$

Remarks:

- The cost is linear in the number of Fourier modes (indexed by k).
- The method can be adapted to approximate the solution at a deterministic time T with the same cost and accuracy.

New geometric robust order 2 method

Geometric modification based on the implicit middle point method for preserving quadratic invariants, where $\widetilde{\beta}_{p,k}^N = \beta_{p,k}^N - \frac{\alpha_p^N \alpha_k^N}{2}$. For example, for the Schrödinger equation, if $F(y) = i |y|^{2\sigma} y$, the L^2 norm $Q(y) = y^T y$ is preserved.

Method B (Geometric integrator of weak order two in $H = N\varepsilon$)

$$Y_{m+1} = Y_m + H \sum_{k \in \mathbb{Z}} c_k^0 \left(\frac{Y_m + Y_{m+1}}{2} \right) \widehat{\alpha}_k^N$$
$$+ H^2 \sum_{p,k \in \mathbb{Z}} c_p^1 \left(\frac{Y_m + Y_{m+1}}{2} \right) \left(c_k^0 \left(\frac{Y_m + Y_{m+1}}{2} \right) \right) \widehat{\beta}_{p,k}^N$$

Theorem (L., Vilmart)

Under regularity assumptions on F, Method B is a weak order 2 integrator for approximating $\varphi_{\varepsilon,T_{Nm}}(X_0)=X(\varepsilon T_{Nm})$ with $m=0,1,\ldots$ and preserves quadratic invariants.

Contents

Derivation of the multirevolution scheme with asymptotic expansions

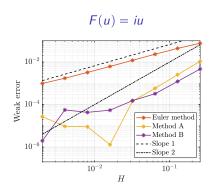
Robust integrators using Fourier series

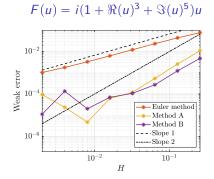
3 Numerical experiments

Weak order of convergence

$$dX(t) = \frac{2i\pi}{\sqrt{\varepsilon}}X(t) \circ dW(t) + F(X(t))dt, \ X(0) = 1$$

We plot on a logarithmic scale an estimate of the weak error ($\sim 10^6$ trajectories) with both methods for approximating X at time $T=10^{-3}\,T_{2^8}$ where $\mathbb{E}[T]=0.256$. We observe a convergence of order 2, which corroborates the weak order 2 convergence theorems of Method A and B.

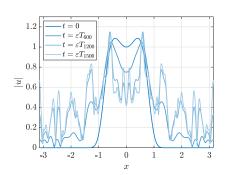




Highly oscillatory NLS with white noise dispersion

We apply our algorithms to a spatial discretization (with 2⁷ modes) of the SPDE

$$du = \frac{i}{\sqrt{\varepsilon}} \Delta u \circ dW + i \left| u \right|^{2\sigma} u dt, \ u_0(x) = \exp(-3x^4 + x^2), \ x \in [-\pi, \pi].$$



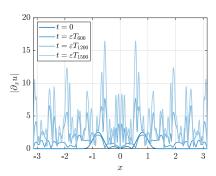
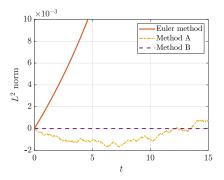


Figure: Approximation of |u| and $|\partial_x u|$ for $\sigma=4$ and $\varepsilon=10^{-2}$.

Behaviour of L^2 and H^1 norms

Properties of the equation $du = \frac{i}{\sqrt{\varepsilon}} \Delta u \circ dW + F(u) dt$ with $F(u) = i |u|^{2\sigma} u$:

- The L^2 norm of the exact solution is constant.
- Conjecture of Belaouar, De Bouard, Debussche (2015) for $\varepsilon = 1$: the H^1 norm of the exact solution explodes in finite time for $\sigma \geqslant 4$ (critical exponent in the deterministic case $\sigma \geqslant 2$).



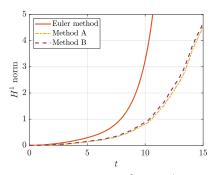


Figure: Evolution of the quantity $|\|\psi_{\varepsilon,t}(u_0)\| - \|u_0\||$ with the discrete L^2 and H^1 norms for $\sigma = 4$, $\varepsilon = 10^{-2}$ and $u_0(x) = \exp(-3x^4 + x^2)$.

Summary

ullet We give a method to obtain asymptotic expansions in arepsilon of the flow of

$$dX(t) = \frac{1}{\sqrt{\varepsilon}}AX(t) \circ dW(t) + F(X(t))dt, \ t > 0, \ X(0) = X_0.$$

- ullet We build a method of weak order two based on the idea of multirevolutions with computational cost and accuracy both independent of the stiffness of the oscillations arepsilon.
- We propose a geometric modification that conserves exactly quadratic invariants.
- There exists an asymptotic model ($\varepsilon \to 0$) and it is the same one as for deterministic oscillations.
- Possible further research on uniformly accurate schemes.

Preprint available:

A. Laurent and G. Vilmart. Multirevolution integrators for differential equations with fast stochastic oscillations. *Submitted*, arXiv:1902.01716, 2019.