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An example with celestial mechanics
Newton model for the motion of earth around the Sun, with x(t) € R3 the
position of the earth at time t and P a small perturbation,

d’x x(t) dx

-t = - eP ( x(t), —-(t) ).
~—— —_—
oscillatory part small perturbation

o If the perturbation eP = 0, x is T-periodic with T =1 year.
o If € < 1, the motion is pseudo-periodic and x is a perturbation of identity,
le.x(t+ T)=x(t)+ O(e).

L|——EARTH with perturbation

—_

Example

Take the Solar system with or without
Jupiter. After 10 periods (see left Figure),
the Earth is almost at the same place as
without the perturbation.
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The concept of multirevolutions
Multirevolution methods were initially introduced in Melendo, Palacios (1997) and
Calvo, Jay, Montijano, Randez (2004) in the context of Astronomy.
The flow ¢ +(y) of an highly-oscillatory differential equation of the form
dx
H( = 0x(®) + ePxt) , x(0)=y
— —

oscillatory part small perturbation

is a perturbation of identity over one period T, i.e.

e irT(Y) = @et(y) + Ofe).

Goal of multirevolution methods: Integrate the equation after O(c!) periods
with cost and accuracy independent of ¢.
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The concept of multirevolutions
Multirevolution methods were initially introduced in Melendo, Palacios (1997) and
Calvo, Jay, Montijano, Randez (2004) in the context of Astronomy.
The flow ¢ +(y) of an highly-oscillatory differential equation of the form
dx
H( = 0x(®) + ePxt) , x(0)=y
— —

oscillatory part small perturbation
is a perturbation of identity over one period T, i.e.
Pet4T(y) = e (y) + O(e).

Goal of multirevolution methods: Integrate the equation after O(c!) periods
with cost and accuracy independent of ¢.

ldeas:
@ Approximate the flow ¢, +(y) at the revolution times t = nT, n=10,1,2,...
o Integrate over N = O(c 1) periods at each step using that

etanT(Y) = @t (y) + O(Ne).
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Multirevolution methods for highly oscillatory problems
Previous work using multirevolutions with deterministic oscillatory terms...
@ ...on ODEs (see Murua, Sanz-Serna (1999), Calvo, Montijano, Randez
(2007) and Chartier, Makazaga, Murua, Vilmart (2014))
dx 1

E(t) = gAx(t) + F(x(t))
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Multirevolution methods for highly oscillatory problems
Previous work using multirevolutions with deterministic oscillatory terms...
@ ...on ODEs (see Murua, Sanz-Serna (1999), Calvo, Montijano, Randez

(2007) and Chartier, Makazaga, Murua, Vilmart (2014))

dx 1

E(t) = gAx(t) + F(x(t))

@ ...on SDEs (see Vilmart (2014))

dX(t) = %AX(t)dt + F(X

dt+ZG
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Differential equations with fast stochastic oscillations

We consider differential equations with fast oscillations driven by a Stratonovich

noise
1

NG
where X (t) € C4, W is a standard one dimensional Brownian motion and
e e = Iy, that is Sp(A) < 2irZ,
0 c k1,

dX(t) AX(t) o dW(t) + F(X(t))dt, t >0, X(0) = Xo,

@ F is a smooth nonlinearity.
The above equation can be rewritten with the change of variable Y (t) = X(et)

and a rescaled Brownian motion W(t) = % (et) as

dY(t) = AY(t) o dW(t) + =F(Y(t))dt , t >0, Y(0) = Xo.
oscilla;c:ry part small pe;urbation

Related work on long time approximation of SDEs:

A. Laurent and G. Vilmart. Exotic aromatic B-series for the study of long time
integrators for a class of ergodic SDEs. To appear in Math. Comp., 2019.
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Behaviour in simple cases
Properties of the solution of

dY(t) = AY(t) o dW(t) +cF(Y(t))dt, £ >0, Y(0) = X,
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Behaviour in simple cases
Properties of the solution of

dY(t) = AY(t) o dW(t) +cF(Y(t))dt, £ >0, Y(0) = X,
o if F =0, then Y(t) = eAW(1 X,
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Behaviour in simple cases
Properties of the solution of

dY(t) = AY(t) o dW(t) +cF(Y(t))dt, £ >0, Y(0) = X,
o if F =0, then Y(t) = AW(0 X,

e if A=2im and F(y) = iy, we get a Kubo oscillator and
Y(t) — e2i7rW(t)eiatXO’

Stochastic oscillator

Exact solution X ()
- % -Exact solution at revolution times X, (¢7},)
I I I

-1
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Behaviour in simple cases
Properties of the solution of

dY(t) = AY(t) o dW(t) +cF(Y(t))dt, £ >0, Y(0) = X,

o if F =0, then Y(t) = e"W(t) Xy,

e if A=2im and F(y) = iy, we get a Kubo oscillator and
Y(t) — e2i7rW(t)eiatXO’

@ in the general case, the variation of constants formula yields

r\, N t r\,
Y(£) = A0 X, 4 AW J AW E(y (5))ds.
0

Stochastic oscillator

Exact solution X ()
- % -Exact solution at revolution times X, (¢7},)
I I I
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The nonlinear Schrodinger equation in fiber optics

The equation governing the amplitude of the pulse going through an optical fiber
with varying dispersion coefficient m is the following nonlinear Schrédinger
equation

Oeu(t,x) = ivm(t)u(t,x) + v*F(u(t,x)), u(t=0,x) = up(x).

where F is typically of the form F(u) = i|u|2 u.
When v tends to 0, u”(t, x) = u(t/v?, x) converges to the solution of the
nonlinear Schrédinger equation with white noise dispersion,

dru(t,x) = id2u(t,x) o thV(t) + F(u(t,x)), u(t=0,x)=up(x).

In the context of SPDEs, see Marty (2006), Agrawal (2007, 2008), De Bouard,
Debussche (2010).
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Highly-oscillatory SDEs in fiber optics

If the initial data is small, we derive the following more general SPDE
du(t) = ﬁAu(t) odW(t) + F(u(t))dt, xeTI t>0,
u(0) =u, xeT9.

A spectral discretization with K modes yields the following real differential
equation with fast stochastic oscillations
1
\E

with A = Diag(—2i7k?, |k| < K) and e* = I.

dX(t) AX(t) o dW(t) + F(X(t))dt, t >0, X(0) = Xo,

Related work on numerical integrators for e = 1: exponential integrators (Cohen
(2012), Cohen, Dujardin (2017), Erdogan, Lord (2018)), split-step method (Marty
(2006)) or Crank-Nicholson scheme (Belaouar, De Bouard, Debussche (2015)).
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Aim of the talk

o Integrate numerically the following highly oscillatory SDE when ¢ « 1,

X (t) = %AX(t) o dW(t) + F(X(£)dt, t >0, X(0) = Xo.

@ Study the asymptotic regime ¢ — 0.

@ Derive and analyse a new numerical method of weak order 2 based on the
idea of multirevolutions and an invariant preserving modification.

Method A (Explicit integrator of weak order two in H = Neg)

Yo = Xo
for m> 0 do

Y1 = Yo+ H Y Q(Ym)ald + H2 S (V) (Y)Y
keZ p,kEZ

end for
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Contents

Q Derivation of the multirevolution scheme with asymptotic expansions

© Robust integrators using Fourier series

© Numerical experiments
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Deriving a local expansion in e: variation of constants
Change of variable t — £ with a rescaled Brownian motion W(t) = ﬁW(st):

dY(t) = AY(t) o dW(t) +eF(Y(t))dt, t >0, Y(0) = y.
Notation
We denote ¢ +(y) = Y(t) the flow of the equation above. J

Goal: approximate ¢ ((y) at time with size O(s™!) with a cost independent of ¢.
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Deriving a local expansion in e: variation of constants

Change of variable t — £ with a rescaled Brownian motion W(t) = ﬁW(st):

dY(t) = AY(t) o dW(t) +eF(Y(t))dt, t >0, Y(0) = y.

Notation
We denote ¢ +(y) = Y(t) the flow of the equation above. J

Goal: approximate ¢ ((y) at time with size O(s™!) with a cost independent of ¢.

Properties on ¢, ¢(y):
o if F =0, then ¢, ((y) = eAW(t)y,

@ in the general case, the variation of constants formula yields

t

peely) = Oy 4 EJ AWO-WEF (o (y))ds.
0
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Stroboscopic approximation for highly oscillatory ODEs

Example

Linear oscillator: 2£(t) = 2Zx(t) + ix(t)

. ire—lt i

Exact solution: x(t) = %™ teltx,

Revolution times: T, = n

Exact solution evaluated at revolution times: x(eT,) = €2 e’=Tnx,
——

Deterministic oscillator

—— Exact solution z; ()
| |- % -Exact solution at revolution times z(eT,)

0 eT 2eT 3eT 4eT 5eT
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Revolution times
Issue: e*W(t) is not periodic in contrast to e,

We define the revolution times of W(t) as the random variables

T0:07

Top1 = inf{t > T, [W(t) = W(T,)

Then as e = I, we find eAW(To) = |,

—wQ

Brownian motion

0 T, T Ts T Ts
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Stroboscopic approximation for the Kubo oscillator
Example

Kubo oscillator: dX(t) = %X(t) odW(t) + iX(t)dt

Exact solution: X(t) = e?ms *W()git x;

Revolution times: To =0, T,+1 = inf {t > T,,

~

W(t) - W(T,)

> 1}
Exact solution evaluated at revolution times:

g —1/2 5 . T c g
X(E Tn) _ e2lﬂ'6 W(eT,) eleT,,XO — e2l7rW(T,,)elsT,,X0 — eleT,,XO

1% . ‘ B m ]
. -
S
s 0.5 h 3
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Exact solution X (t)
_1 - % ‘Exact solution at revolution times X1(eT)
T T T 1
0 ETl ETZ ETg ET4 ET5
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Deriving a local expansion in ¢: iterative expansions
Variation of constants formula:
t

peely) = MWy + Ef AWOWEF (o, (y))ds.
0

We formally derive local expansions of the exact solution at any order.
Order 0:

pei(y) = MOy + O(ct)
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Deriving a local expansion in ¢: iterative expansions
Variation of constants formula:
t

peely) = MWy + EJ AWOWEF (o, (y))ds.
0

We formally derive local expansions of the exact solution at any order.
Order 0:

poily) = MWy 4+ O(et)
Order 1:

t

Pealy) = €Wy 4 20 [ o AVEIF(AS)y) s 1 O((ct))
0
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Deriving a local expansion in ¢: iterative expansions
Variation of constants formula:
t

peely) = MWy + Ef AWOWEF (o, (y))ds.
0

We formally derive local expansions of the exact solution at any order.
Order 0:

eily) = MWWy + O(et)
Order 1:

t

Pealy) = €Wy 4 20 [ o AVEIF(AS)y) s 1 O((ct))
0

Order 2:
t
Pee(y) = 6AW(t)y+seAW(t)J e AW F(AW(S) ) ds
0
t

+€2eAW(t') J efAW(s) F/(eAW(s)y) (eAW(S) JS e,Aw(r) F(eAW(r)y)dr> ds
0 0

+0((et)*) = vi(y) + O((e1)?)
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Deriving a local expansion in €: approximation at Ty

We now consider t = Ty (revolution time), the exact flow ¢, 7, (y) simplifies to
the following perturbation of identity:

Tn

Pe, Ty (Y) = y+aj e~ AW(s) F(eAW(s)y) ds
0

T s
+52J Ne,Aw(s)/_—/(eAW(s)y) <eAW(s)J eAW(r)/_—(eAW(r)y)dr) ds
0 0

+0((eTw)%)
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Deriving a local expansion in €: approximation at Ty

We now consider t = Ty (revolution time), the exact flow ¢, 7, (y) simplifies to
the following perturbation of identity:

Tn

Pe, Ty (Y) = y+aj e~ AW(s) F(eAW(s)y) ds
0

T s
+52J N e,Aw(s)/_—/(eAW(s)y) <eAW(s)J eAW(r)/_—(eAW(r)y)dr) ds
0 0

+O0((eTw)®) = Vo7, (¥) + O((e Tw)?)
—_—

77

Adrien Laurent (University of Geneva) Multirevolutions for highly-oscillatory SDEs ENS Lyon, May 2019 16 / 31



Deriving a local expansion in €: approximation at Ty
We now consider t = Ty (revolution time), the exact flow ¢, 7, (y) simplifies to
the following perturbation of identity:

Tn

Pe, Ty (Y) = y+aj e~ AW(s) F(eAW(s)y) ds
0

T s
+€2J N e,AW(s)/_—/(eAW(s)y) <eAW(s)J eAW(r)/_—(eAW(r)y)dr> ds
0 0

+O((eTn)?) = Yo7, (v) + O(( Tw)?)
—_—

77

Proposition

e, 1y (y) is a strong order 2 approximation of . 1,(y), that is

E[lpe m(y) — e 0)F] - < €+ IyI¥) @)
—

H3
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Deriving a local expansion in €: approximation at Ty

Proposition

e, 1y (y) is a strong order 2 approximation of ¢, 1,(y), that is

1/2
E{lpe,ru () = YemaIF] " < CA+ 1) (N3
H3

Proof.

The Gronwall lemma yields an estimate of the form
[pet(y) = Ve (V)] < C(L+ [y| et (et)®.
Thus when evaluated at Ty, one gets
1/2
E[lee )~ ver P < €O+ BT T,

The existence of the Laplace transform E[e*™*] of T; for all s small enough
implies E[e“* 7" (e Ty)3] < C(eN)3 for all £ < g¢. Hence the result.
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Construction of the methods

We obtain the following order 2 approximation of ¢, 71, (y):
Tn

Ve,mu(y) =y + ef e MW F(AVE) ) ds
0

T
+ 62j " efAW(s) F/(eAW(s)y) (eAW(s) 1[5 efAW(r) F(eAW(r)y)dr) ds
0 0

Issue: The above long time integrals involve F and F’'.
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Construction of the methods

We obtain the following order 2 approximation of . 7,(y):

Tn

’(/}5’7—1\1 (y) =y+ €J e_AW(S) F(eAW(s)y) ds
0

T s
+ &_2 J N e_AW(s) F/(eAW(s)y) (eAW(s) J e—AW(r) F(GAWU)_)/)C/F) ds
0 0

Issue: The above long time integrals involve F and F’.
If c(y) is the k™ Fourier coefficient of gf(y) = e *’F(e"y), c}(y) the p*"
Fourier coefficient of g}(y) = e "/F'(e"?y)(e”?"), then

1 (™
wa,TN ()/) =y+ (6/\/) Z CE(y)N J;J e2l7rkW(5) ds
k

p.k

1 (™. s .
+ (5/\/)22 & (¥) (CE(Y)W L e?mPW(s) L e2mkw(r) drds)
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Construction of the methods

We obtain the following order 2 approximation of . 7,(y):

Tn

’(/}E’TN (y) =y+ <€J e_AW(S) F(eAW(s)y) ds
0

T s
+ &_2 J N e_AW(s) F/(eAW(s)y) (eAW(s) J e—AW(r) F(eAW(r)y)dr) ds
0 0

Issue: The above long time integrals involve F and F’.
If c(y) is the k™ Fourier coefficient of gf(y) = e *’F(e"y), c}(y) the p*"
Fourier coefficient of g}(y) = e "/F'(e"?y)(e”?"), then

1 (™
we,TN(Y) =y+ (6N)Zc£(y)NL e2l7rkW(s)ds
k

p.k

1 (™ s
+ (5N)2Z C;()’) (CB()/),\P Jo e2imPW(s) L 2Tk (r) drds)
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Construction of the methods
We obtain the following order 2 approximation of . 7,(y):

Tn

Ve, (y) =y + af e MW F(AVE) ) ds
0

T s
+ 62 J N e_AW(s) F/(eAW(s)y) (eAW(s) J e—AW(r) F(eAW(r)y)dr) ds
0 0

Issue: The above long time integrals involve F and F’.
If c{(y) is the k™ Fourier coefficient of gJ(y) = e “F(e"’y), c}(y) the p™
Fourier coefficient of g}(y) = e "/F'(e"?y)(e”?"), then

Yeru(y) =y + (eN) DLl (y)ay! + (eN)* Dy (1) (L (v)Bpl)

k p.k
with
N 1 T 2im kW
P =—J e mV(s) s
N Jo
1 TN S
F,;Vk _ e2/7rpW(s) J e2lﬂ‘kW(I’) drds.
s N2
0 0
Adrien Laurent (University of Geneva) Multirevolutions for highly-oscillatory SDEs ENS Lyon, May 2019

18 / 31



Construction of the methods

We deduce the following numerical scheme of order 2 for approximating the exact
solution ¢ 7, (Xo), m=0,1,....

Method A (Explicit integrator of strong order two in H = Ne)
Yo = Xo
for m >0 do

Ym+1 = Y +HZ Ck Oék +H2 Z C;(Ym)(clg(ym) Q{k)

keZ p,kEZ
end for
[ I T
e T L1
o "”“‘ N l
2 *1-
= 0.5 n
|
g
g2 0r
o
= L
ERY I I
2 ——Solution
N - % -Solution at times eTy
1 Method A
1 1 1 1
0 Ty el eTy €Ty eTs Ty eT7 €Ty eTy €Ty
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Construction of the methods

We deduce the following numerical scheme of order 2 for approximating the exact
solution ¢, 7, (X0), m=0,1,....

Method A (Explicit integrator of strong order two in H = Ne)
Yo = Xo
for m> 0 do

Ym+1 = Y + HZ Ck Oék + H2 Z C;(Ym)(clg(ym) Q{k)
keZ p,keZ

end for

Remark: This method can be generalized to create strong numerical schemes of
any order under proper regularity assumptions on the nonlinearity F.

Issue: a standard approximation of the integrals oy and ﬁf’,\{k has a cost in
O(e 1.
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© Robust integrators using Fourier series
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Weak order 2 approximation of the weak integrals
We obtained the following strong/weak approximation of order 2:

Yoty y) =y +HY Q) +H Y ()R )BN)-
k p,k

However, computing exactly !/ and BF’,"k has a cost in O(c~!). We introduce

benly) =y +HY RQ)al + H2 Y ()3,
k p,k

where we replaced o}’ and [)’Q{k with cheap discrete approximations with same first
moments & and @L\’k (see Milstein, Tretyakov (2004)), that is

E[6)] = E[o}], E[5)] = E[5)],

E[Re(0;) Re(d,)] = E[Re(a,) Re(a,)],
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First and second moments of oY and Bﬁ’,\’k

Proposition
The following random variables
aLv _ % STN e2imkW(s) 4s
,/xk _ /\}2 T g2impW(s SS 2imkW (r) drdls
satisfy
lifk=0
Elog]  =dc= { 0 else
1+ %N ifp=k=0
E[aﬁ’aﬁ’] = 7Tp—perifp—i—k=0,p,k;f'50
0 else
2 + 3N ifp=k=0
27r2k2N ifp=0, k#0
EBY] =15 zopmw ifp#0, k=0
0 else
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Proof and an application

Idea of proof.

The 1td formula applied to e?™W(s) for k # 0 yields

N i (™ simkws)
- Tk (S) g1y (s).
Yk wkNL € dW(s)

The Doob theorem allows to conclude as t + §; €™ ()dW/(s) is a martingale. o

V.

Remark (Stochastic Fourier series)

Let f be a L? function on )0, 1[ extended on R by 1-periodicity, whose Fourier
coefficients are denoted as (cx)kez, then

T1 1 T
EUO f(W(s))ds] :cozfo £(0)do andEUo |F(W(s))| ds] Z|ck|
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Euler method and asymptotic regime ¢ — 0

We have the following approximation of order 1:

ben(y) =y +HY Q).
k

If we replace o) by &) = E[a]] = &k, we get the Euler method

ymi1 = ym + Hed (ym).
It has weak order 1 in H = Ne and cost independent of N and ¢.

Theorem (Asymptotic model)

Under regularity assumptions on F, the exact solution ¢. 1,,.(Xo) = Y(T7/c)
converges weakly as € — 0 to the solution at time T of the deterministic ODE

(iit = g%y (_ Ll —AVF (A yt)de), vo = Xo.

Remark: This asymptotic model is the same one as for deterministic oscillations.
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Euler method and asymptotic regime ¢ — 0
We have the following approximation of order 1:

Yen(y) =y +HY Ry)ey.
k

If we replace Y by a)) = E[a}'] = &k, we get the Euler method

ym1 = ym + He (ym)-
It has weak order 1 in H = Ne and cost independent of N and ¢.

Example

On the Kubo oscillator dY = AY o dW + ie Ydt, this amounts to do the
approximation

] T
efTv ~ 1 + iHWN + O(H?) (strong approximation)

~1+iHE [%] +O(H?) (weak approximation)

=1
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New robust order 2 method

Method A (Explicit integrator of weak order two in H = Ne¢)
Yo =Xo
for m> 0 do

Y1 =Y+ H Y (Ym)al + H Y cp(Ym) (c2(Ym) BN

P p,k
keZ p,kEZ

end for

Theorem (Weak convergence of order 2)

Under regularity assumption on F, Method A is a weak order 2 integrator for
approximating @e 1y, (Xo) ® Ym with m=0,1,..., that is

IE[6 (e, Tam (X0))] = E[6(Ym)]| < CH2(1 + E[|X0|¥]).

Remarks: The cost is linear in the number of Fourier modes.
The method can be adapted to approximate the solution at a deterministic time
T with the same cost and accuracy.
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New geometric robust order 2 method

Geometric modification based on the implicit middle point method for preserving
quadratic invariants, where Ef’xk = I’J\{k — ﬁ For example, for the Schrédinger
equation, if F(y) = i|y|2a y, the L2 norm Q(y) = y "y is preserved.

Method B (Geometric integrator of weak order two in H = Ne)
Yo = Xo
for m >0 do

Ym+ Ym ~
Vi1 = Ym+HY (“) ay
keZ 2

Yoo+ Ym Yoo+ Ym ~
+ H? Z c (+2 +1) (CﬁJ <+2 +1>) )

p.keZ

end for

Theorem

Under regularity assumption on F, Method B is a weak order 2 algorithm for
approximating e 1, (Xo) with m = 0,1,... and preserves quadratic invariants.
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Weak order of convergence

We solve numerically the following equation for the linear F(u) = iu (left) and the

non-linear F(u) = i(1 + R(u)® + S(uv)®)u (right)

B 2im

dX(t) = NG

X(t) o dW(t) + F(X(t))dt, X(0)=1.

We plot on a logarithmic scale an estimate of the weak error (~ 10° trajectories)
with both methods for approximating X at time T = 1073 Ty where
E[T] = 0.256. We observe a convergence of order 2, which corroborates the weak

order 2 convergence theorems of Method A and B.

1072
= =
<] <]
= =
= =
3} 5}
21074 4
< <
° °
= g —%— Euler method = e —%— Euler method
[ Method A e Method A
—#—Method B —#—Method B
10-6 ---.Slope 1 10-6 ---.Slope 1
=-=-=-Slope 2 =-=-=-Slope 2
1072 107! 1072 107!
H
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Highly oscillatory NLS with white noise dispersion

We apply our algorithms to a spatial discretization (with 27 modes) of the SPDE

du = \/;gAu o dW + i |uf* udt, up(x) = exp(—3x* + x?), x € [-,7].

T T T T T T T 20 - T
1.24|—t=0 —t=0
——t = eTeo ——t = eT00
1 L|——t = eTha00 15—t =T
t = eTis00 t = eTis00
0.8
= =
EP =10
0.4
| | \ LI TN “W |
0.2 [
W r/\ W F j/ W‘ﬂjﬂ\iwlf‘& il \
0 '\/\4 /“\'\)\/ Mf""
-3 -2 -1 0 1 2 3 0 1 2

Figure: Approximation of |u| and |dxu| for 0 = 4 and £ = 1072
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Behaviour of L2 and H! norms

Properties of the equation du = ﬁAu o dW + F(u)dt with F(u) = i |u*” u:

@ The L2 norm of the exact solution is constant.
e Conjecture of Belaouar, De Bouard, Debussche (2015): the H* norm of the
exact solution explodes in finite time for o > 4 (critical exponent in

deterministic case o > 2).

-3
10 % 10 ‘
—— Euler method
Method A
- = -Method B
: :
2 =
N B
-2
0 5 10 15

—— Euler method
Method A

- = -Method B

b}

Figure: Evolution of the quantity || :(u0)|| — | to]|| with the discrete L> and H* norms

for o0 = 4, e = 1072 and wo(x) = exp(—3x* + x?).
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Summary

@ We give a method to obtain asymptotic expansions in ¢ of the flow of

X () = \/iEAX(t) o dW(t) + F(X(£))dt, ¢ >0, X(0) = Xo.

@ We build a method of weak order two based on the idea of multirevolutions
with computational cost and accuracy both independent of the stiffness of
the oscillations e.

@ We propose a geometric modification that conserves exactly quadratic
invariants.

@ There exists an asymptotic model (¢ — 0) and it is the same one as for
deterministic oscillations.

@ Possible further research on uniformly accurate schemes.

Main reference of this talk:

A. Laurent and G. Vilmart. Multirevolution integrators for differential equations
with fast stochastic oscillations. Submitted, arXiv:1902.01716, 2019.
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