Application of the Hopf algebra structures of exotic aromatic series to stochastic numerical analysis

> Adrien Laurent - INRIA Rennes Joint work with Eugen Bronasco

Stochastic Numerics with Applications to Sampling, SciCADE, 2024

Main reference of this talk:

E. Bronasco, A. Laurent. Hopf algebra structures for the backward error analysis of ergodic stochastic differential equations. *arxiv:2407.07451*.

Given a numerical integrator $y_{n\pm 1} = \Phi_h^f(y_n)$ for solving y' = f(y), there exists a (formal) modified vector field $h\tilde{f}$ such that

"The integrator is the exact solution of the modified ODE $\tilde{y}'(t) = \tilde{f}(\tilde{y}(t))$."

Given a numerical integrator $y_{n\pm 1} = \Phi_h^f(y_n)$ for solving y' = f(y), there exists a (formal) modified vector field $h\tilde{f}$ such that

"The integrator is the exact solution of the modified ODE $\tilde{y}'(t) = \tilde{f}(\tilde{y}(t))$."

Theorem (see Hairer, Lubich, Wanner, 2006)

The properties of the integrator are read on \tilde{f} :

- if $\tilde{f} = f + \mathcal{O}(h^p)$, the scheme has order p.
- if $f = J\nabla H$ and the scheme is symplectic, the scheme preserves a modified Hamiltonian and $\tilde{f} = J\nabla \tilde{H}$.
- if $\operatorname{div}(\tilde{f}) = \operatorname{div}(f) = 0$, the scheme is volume-preserving.

Given a numerical integrator $y_{n+1} = \Phi_h^f(y_n)$ for solving y' = f(y), there exists a (formal) modified vector field $h\tilde{f}$ such that

"The integrator is the exact solution of the modified ODE $\tilde{y}'(t) = \tilde{f}(\tilde{y}(t))$."

Theorem (see Hairer, Lubich, Wanner, 2006)

The properties of the integrator are read on \tilde{f} :

- if $\tilde{f} = f + \mathcal{O}(h^p)$, the scheme has order p.
- if $f = J\nabla H$ and the scheme is symplectic, the scheme preserves a modified Hamiltonian and $\tilde{f} = J\nabla \tilde{H}$.
- if $\operatorname{div}(\tilde{f}) = \operatorname{div}(f) = 0$, the scheme is volume-preserving.

Remark on modified equations: there also exists a modified vector field $h\tilde{f}$ such that: "The integrator applied to $\tilde{y}'(t) = \tilde{f}(\tilde{y}(t))$ is exact for y' = f(y)."

Given a numerical integrator $y_{n\pm 1} = \Phi_h^f(y_n)$ for solving y' = f(y), there exists a (formal) modified vector field $h\tilde{f}$ such that

"The integrator is the exact solution of the modified ODE $\tilde{y}'(t) = \tilde{f}(\tilde{y}(t))$."

Theorem (see Hairer, Lubich, Wanner, 2006)

The properties of the integrator are read on \tilde{f} :

- if $\tilde{f} = f + \mathcal{O}(h^p)$, the scheme has order p.
- if $f = J\nabla H$ and the scheme is symplectic, the scheme preserves a modified Hamiltonian and $\tilde{f} = J\nabla \tilde{H}$.
- if $\operatorname{div}(\tilde{f}) = \operatorname{div}(f) = 0$, the scheme is volume-preserving.

The modified vector field \tilde{f} can be conveniently computed with Butcher series:

$$\begin{split} h\tilde{f} &= hf - \frac{h^2}{2}f'f + h^3[\frac{1}{12}f''(f,f) + \frac{1}{3}f'f'f] + \dots, \\ &= hF_f(\bullet) - \frac{h^2}{2}F_f(\bullet) + h^3[\frac{1}{12}F_f(\bullet) + \frac{1}{3}F_f(\bullet)] + \dots \end{split}$$

Given a numerical integrator $y_{n\pm 1} = \Phi_h^f(y_n)$ for solving y' = f(y), there exists a (formal) modified vector field $h\tilde{f}$ such that

"The integrator is the exact solution of the modified ODE $\tilde{y}'(t) = \tilde{f}(\tilde{y}(t))$."

Theorem (see Hairer, Lubich, Wanner, 2006)

The properties of the integrator are read on \tilde{f} :

- if $\tilde{f} = f + \mathcal{O}(h^p)$, the scheme has order p.
- if $f = J\nabla H$ and the scheme is symplectic, the scheme preserves a modified Hamiltonian and $\tilde{f} = J\nabla \tilde{H}$.
- if $\operatorname{div}(\tilde{f}) = \operatorname{div}(f) = 0$, the scheme is volume-preserving.

The modified vector field \tilde{f} can be conveniently computed with Butcher series:

$$\begin{split} h\tilde{f} &= hf - \frac{h^2}{2}f'f + h^3[\frac{1}{12}f''(f,f) + \frac{1}{3}f'f'f] + \dots, \\ &= hF_f(\bullet) - \frac{h^2}{2}F_f(\bullet) + h^3[\frac{1}{12}F_f(\bullet) + \frac{1}{3}F_f(\bullet)] + \dots \end{split}$$

Question: do backward error analysis and the Butcher tree interpretation extend to the stochastic context?

Adrien Laurent

Ergodicity of overdamped Langevin dynamics

Consider overdamped Langevin dynamics in \mathbb{R}^d or on embedded manifolds \mathcal{M} :

$$dX(t) = (\Pi_{\mathcal{M}} f)(X(t))dt + \Pi_{\mathcal{M}}(X(t)) \circ dW(t), \quad f = -\nabla V,$$

Euler-Maruyama method:

$$X_{n+1} = X_n + hf(X_n) + \Delta W_n.$$

Ergodicity of overdamped Langevin dynamics

Consider overdamped Langevin dynamics in \mathbb{R}^d or on embedded manifolds \mathcal{M} :

$$dX(t) = (\Pi_{\mathcal{M}} f)(X(t))dt + \Pi_{\mathcal{M}}(X(t)) \circ dW(t), \quad f = -\nabla V,$$

Euler-Maruyama method:

$$X_{n+1} = X_n + hf(X_n) + \Delta W_n.$$

Different types of convergence:

- Strong (approximation of a single trajectory for a realization of W(t)),
- Weak (approximation of the law of X(t)),
- Invariant measure (approximation of the law of X(t) at equilibrium).

Ergodicity of overdamped Langevin dynamics

Consider overdamped Langevin dynamics in \mathbb{R}^d or on embedded manifolds \mathcal{M} :

$$dX(t) = (\Pi_{\mathcal{M}} f)(X(t))dt + \Pi_{\mathcal{M}}(X(t)) \circ dW(t), \quad f = -\nabla V,$$

Euler-Maruyama method:

$$X_{n+1} = X_n + hf(X_n) + \Delta W_n.$$

Ergodicity properties:

$$\lim_{T \to +\infty} \frac{1}{T} \int_0^T \phi(X(s)) ds = \int_{\mathcal{M}} \phi(y) d\mu_{\infty}(y) \quad \text{almost surely,}$$
$$\lim_{N \to +\infty} \frac{1}{N+1} \sum_{n=0}^N \phi(X_n) = \int_{\mathcal{M}} \phi(y) d\mu^h(y)(y) \quad \text{almost surely.}$$

• Shardlow, 2006; Zygalakis, 11: there is no general strong or weak stochastic backward error analysis!

• Shardlow, 2006; Zygalakis, 11: there is no general strong or weak stochastic backward error analysis!

• Debussche, Faou, 12 ; Abdulle, Vilmart, Zygalakis, 14: BUT, for ergodic dynamics, the measure μ^h is the invariant measure of a modified SDE with a formal modified vector field \tilde{f} :

$$d\widetilde{Y}(t) = \widetilde{f}(\widetilde{Y}(t))dt + dW(t), \quad \mu^h = \widetilde{\mu_{\infty}} = \mu_{\infty} + h\mu^{[1]} + h^2\mu^{[2]} + \dots$$

Remark: a method is invariant-measure-preserving if

$$\operatorname{div}(\widetilde{f}) + \langle f, \widetilde{f} \rangle = \operatorname{div}(f) + \langle f, f \rangle.$$

• Shardlow, 2006; Zygalakis, 11: there is no general strong or weak stochastic backward error analysis!

• Debussche, Faou, 12 ; Abdulle, Vilmart, Zygalakis, 14: BUT, for ergodic dynamics, the measure μ^h is the invariant measure of a modified SDE with a formal modified vector field \tilde{f} :

$$d\widetilde{Y}(t) = \widetilde{f}(\widetilde{Y}(t))dt + dW(t), \quad \mu^h = \widetilde{\mu_{\infty}} = \mu_{\infty} + h\mu^{[1]} + h^2\mu^{[2]} + \dots$$

Remark: a method is invariant-measure-preserving if

$$\operatorname{div}(\widetilde{f}) + \langle f, \widetilde{f} \rangle = \operatorname{div}(f) + \langle f, f \rangle.$$

• L., Vilmart, 2020 & 2022:

The modified vector field \tilde{f} can be conveniently computed with exotic aromatic series up to order 3 in \mathbb{R}^d and order 2 on \mathcal{M} :

$$\begin{split} h\tilde{f} &= hf + h^2 [f'f + \Delta f + \operatorname{div}(f)f + \langle f, f \rangle f] + \dots \\ &= hF_f(\bullet) + h^2 [F_f(\bullet) + F_f(\textcircled{0}) + F_f(\textcircled{0} \bullet) + F_f(\bullet \bullet)] + \dots \end{split}$$

• Shardlow, 2006; Zygalakis, 11: there is no general strong or weak stochastic backward error analysis!

• Debussche, Faou, 12 ; Abdulle, Vilmart, Zygalakis, 14: BUT, for ergodic dynamics, the measure μ^h is the invariant measure of a modified SDE with a formal modified vector field \tilde{f} :

$$d\widetilde{Y}(t) = \widetilde{f}(\widetilde{Y}(t))dt + dW(t), \quad \mu^h = \widetilde{\mu_{\infty}} = \mu_{\infty} + h\mu^{[1]} + h^2\mu^{[2]} + \dots$$

Remark: a method is invariant-measure-preserving if

$$\operatorname{div}(\widetilde{f}) + \langle f, \widetilde{f} \rangle = \operatorname{div}(f) + \langle f, f \rangle.$$

Main result:

Theorem (Bronasco, L., 2024)

Under mild algebraic assumptions on the integrator, its modified vector field \tilde{f} writes as an exotic aromatic B-series at any order and is given by an explicit formula.

Exotic aromatic series¹

Prototypes of exotic aromatic forests *EAF*:

$$F_f(\stackrel{\bullet}{\bullet}) = f'f, \quad F_f(\stackrel{\bullet}{\bullet}) = \operatorname{div}(f), \quad F_f(\stackrel{\bullet}{\bullet}) = \langle f, f \rangle, \quad F_f(\stackrel{\bullet}{\bullet}) = \Delta f.$$

Example:

$$\pi = \overset{\textcircled{0}}{\overset{\textcircled{0}}{\longleftrightarrow}} \overset{\textcircled{0}}{\underset{\bullet}{\Longrightarrow}} \overset{\textcircled{0}}{\underset{\bullet}{\Rightarrow}} \overset{\textcircled{0}}{\underset{\bullet}{\Rightarrow}} \overset{\textcircled{0}}{\underset{\bullet}{\Rightarrow}} F_f(\pi)[\phi] = \sum_{i,j,s,h_1,h_2=1}^d f_{ih}^i f^s f_{h_2}^s f_{h_1}^j \phi_{jh_2}.$$

Given $a \in EAF^*$, an exotic aromatic S-series is a formal series indexed by exotic aromatic forests:

$$S_f^h(a) = \sum_{\pi \in EAF} h^{|\pi|} \frac{a(\pi)}{\sigma(\pi)} F_f(\pi).$$

Example: exact flow of dX = f(X) + dW:

$$\mathbb{E}[\phi(X(h))] = \phi(x) + h\left[\phi'f + \frac{1}{2}\Delta\phi\right] + h^2\left[\frac{1}{2}\phi'f'f + \frac{1}{4}\phi'\Delta f + \frac{1}{2}\phi''(f,f) + \dots\right]$$
$$= \mathbb{1} + h\left[\bullet + \frac{1}{2}\odot\odot\right] + h^2\left[\frac{1}{2}\bullet + \frac{1}{4}\odot\odot + \frac{1}{2}\bullet \bullet + \dots\right]$$

Exotic aromatic series¹

Prototypes of exotic aromatic forests EAF:

$$F_f(\mathbf{I}) = f'f, \quad F_f(\mathbf{O}) = \operatorname{div}(f), \quad F_f(\mathbf{I}) = \langle f, f \rangle, \quad F_f(\mathbf{I}) = \Delta f.$$

Example:

¹Aromatic B-series: Iserles, Quispel, Tse, 2007 ; Chartier, Murua, 2007 ; ...

Exotic aromatic series¹

Prototypes of exotic aromatic forests EAF:

$$F_f(\mathbf{I}) = f'f, \quad F_f(\mathbf{O}) = \operatorname{div}(f), \quad F_f(\mathbf{e}) = \langle f, f \rangle, \quad F_f(\mathbf{O}) = \Delta f.$$

Example:

Proposition (L., Munthe-Kaas, 2024)

Exotic aromatic B-series are exactly the smooth local orthogonal equivariant maps.

¹Aromatic B-series: Iserles, Quispel, Tse, 2007 ; Chartier, Murua, 2007 ; ...

New algebraic tools for backward error analysis

Idea of stochastic backward error analysis: consider

- the exact flow $\mathbb{E}[\phi(X(h))] = S_f^h(e)[\phi] = \phi + h\mathcal{L}\phi + \frac{h^2}{2}\mathcal{L}^2\phi + \dots$,
- the numerical flow $\mathbb{E}[\phi(X_1)] = S_f^h(a)[\phi] = \phi + h\mathcal{A}_1\phi + h^2\mathcal{A}_2\phi + \dots$,
- a flow $\varphi^h[\phi]$ preserves the invariant measure if

.

$$\int arphi^{h}[\phi] d\mu_{\infty} = \int \phi d\mu_{\infty}.$$

Then, we want $h\tilde{f} = B_f^h(b)$ written as an exotic aromatic B-series such that "the exact flow of the modified problem has the same invariant measure as the integrator".

New algebraic tools for backward error analysis

Idea of stochastic backward error analysis: consider

- the exact flow $\mathbb{E}[\phi(X(h))] = S_f^h(e)[\phi] = \phi + h\mathcal{L}\phi + \frac{h^2}{2}\mathcal{L}^2\phi + \dots$,
- the numerical flow $\mathbb{E}[\phi(X_1)] = S_f^h(a)[\phi] = \phi + h\mathcal{A}_1\phi + h^2\mathcal{A}_2\phi + \dots$,
- a flow $\varphi^h[\phi]$ preserves the invariant measure if

$$\int arphi^{h}[\phi] d\mu_{\infty} = \int \phi d\mu_{\infty}.$$

Then, we want $h\tilde{f} = B_f^h(b)$ written as an exotic aromatic B-series such that "the exact flow of the modified problem has the same invariant measure as the integrator".

Difficulties:

O Compute the exact flow $\mathbb{E}[\phi(\tilde{X}(h))]$ of the modified problem

$$d\tilde{X} = \tilde{f}(\tilde{X}) + dW, \quad h\tilde{f} = B_f^h(b) = hf + h^2 \alpha f' f + h^2 \beta \Delta f + \dots$$

② Find *t̃* such that E[φ(*X̃*(*h*))] and E[φ(*X*₁)] have same invariant measure.
③ the aromas (Bogfjellmo, 2019). (idea of clumping)

Tool 1: Hopf algebra for the substitution² Characters satisfy $b(\pi_1 \cdot \pi_2) = b(\pi_1)b(\pi_2)$.

Theorem (Bronasco, L., 2024)

The substitution hf $\leftarrow B_f^h(b)$ in $S_f^h(a)$ is $S_f^h(b \star a)$, with $b \star a = (b \otimes a) \circ \Delta_{CEM}$,

$$\Delta_{CEM}(\pi) := \sum_{p \subset \pi} p \otimes \pi/_p.$$

²see also Chartier, Hairer, Vilmart, 2010; Calaque, Ebrahimi-Fard, Manchon, 2011; Bogfjellmo, 2019

Tool 2: The integration by parts

Goal: reduce operators to order one differential operators

$$\int S_f^h(a)[\phi] d\mu_{\infty} = \int \phi' \tilde{f} d\mu_{\infty}, \quad \tilde{f} = B_f^h(b).$$

Integration by parts (L., Vilmart, '20-'22):

$$\int \Delta \phi d\mu_{\infty} = -\int \phi' f d\mu_{\infty}, \quad \text{ for } \sim -2_{\bullet}, \quad \text{ for } \sim -\mathbb{Q}_{\bullet}^{\textcircled{1}} \sim -\mathbb{Q}_{\bullet}^{\textcircled{1}} - 2_{\bullet}^{\textcircled{1}}.$$

Proposition (Bronasco, 2023)

If a is a character over exotic forests, there exists an exotic B-series $h\tilde{f} = B_f^h(b)$ such that $\int S_f^h(a)[\phi]d\mu_{\infty} = \int (\phi + h\phi'\tilde{f})d\mu_{\infty}$.

Remark 1: the extension in the manifold case is open. Remark 2: \sim has a kernel:

Exotic aromatic series for backward error analysis

Theorem (Bronasco, L., 2024)

Consider a consistent method $S_f^h(a)$ for solving Langevin dynamics with $a \in Char(\mathcal{EF}, \cdot)$, then, there exists a modified vector field $h\tilde{f} = B_f^h(b)$ with $b: \mathcal{ET} \to \mathbb{R}$ satisfying $b(\bullet) = 1$, $b_c \star e \sim a$, and given by an explicit formula.

Exotic aromatic series for backward error analysis

Theorem (Bronasco, L., 2024)

Consider a consistent method $S_f^h(a)$ for solving Langevin dynamics with $a \in Char(\mathcal{EF}, \cdot)$, then, there exists a modified vector field $h\tilde{f} = B_f^h(b)$ with $b: \mathcal{ET} \to \mathbb{R}$ satisfying $b(\bullet) = 1$, $b_c \star e \sim a$, and given by an explicit formula.

Application: The constrained Euler scheme on the sphere:

$$X_{n+1} = X_n + hf(X_{n+1}) + \sqrt{h}\xi_n + \lambda_n X_{n+1}, \quad |X_{n+1}| = 1.$$

has order 2 for the invariant measure when applied with the modified vector field

$$\begin{split} \widetilde{f} &= f + h \bigg[-\frac{1}{2} f' f - \frac{1}{4} \Delta f + \frac{3}{4} f - \frac{1}{4} \operatorname{div}(n) f - \frac{1}{2} \langle n, f \rangle f - \frac{1}{4} f' n - \frac{1}{4} \operatorname{div}(n) f' n \\ &- \frac{1}{2} \langle n, f \rangle f' n - \frac{1}{4} f''(n, n) + \frac{1}{2} \langle n, f \rangle \langle n, f' n \rangle n + \frac{1}{4} \langle n, f''(n, n) \rangle n - \frac{1}{4} \operatorname{div}(f) ' n n \\ &- \frac{1}{2} \langle n, f' f \rangle n + \frac{1}{4} \langle n, f' n \rangle n + \frac{1}{4} \operatorname{div}(n) (n, f' n \rangle n + \frac{1}{2} \langle n, f \rangle^2 n - \frac{3}{4} \langle n, f \rangle n \\ &+ \frac{1}{4} \operatorname{div}(n) \langle n, f \rangle n \bigg]. \end{split}$$

Conclusion and outlooks

Summary:

- The concept of backward error analysis extends to the stochastic context through the approximation of the invariant measure of ergodic systems.
- We introduced the exotic aromatic formalism. It provides an algebraic framework for the calculations of order conditions.
- We present the Hopf algebra structures of composition and substitution of exotic aromatic S-series and apply them to provide an explicit algebraic description of stochastic backward error analysis at any order.
- The exotic aromatic series are natural objects that satisfy universal geometric and algebraic properties.

Outlooks and future works:

- \bullet Understanding of \sim and backward error analysis for projection methods.
- Creation of discretisations that preserve the invariant measure exactly, in the spirit of volume-preserving methods (see L., MacLachlan, Munthe-Kaas, Verdier).
- Creation of high-order intrinsic methods on manifolds (see Bharath, Lewis, Sharma, Tretyakov, 2024).
- Study of exotic aromatic rough paths, algebraic structure of clumping,...

S-series, characters and primitive elements Exact flow of y' = f(y):

$$y(h) = y_0 + hf + \frac{h^2}{2}f'f + \frac{h^3}{6}[f''(f, f) + f'f'f] + \dots$$

= $y_0 + hF_f(\bullet) + \frac{h^2}{2}F_f(\bullet) + \frac{h^3}{6}[F_f(\bullet) + F_f(\bullet)] + \dots$

Numerical flow $y_1 = y_0 + \sum_i b_i f(Y_i)$, $Y_i = y_0 + \sum_j a_{ij} f(Y_j)$:

$$y_{1} = y_{0} + h \sum_{i} b_{i}f + h^{2} \sum_{i} b_{i}c_{i}f'f + h^{3}[\frac{1}{2}\sum_{i} b_{i}c_{i}^{2}f''(f,f) + \sum_{i} b_{i}a_{ij}c_{j}f'f'f] + \dots$$
$$= y_{0} + h \sum_{i} b_{i}F_{f}(\bullet) + h^{2} \sum_{i} b_{i}c_{i}F_{f}(\bullet) + h^{3}[\frac{1}{2}\sum_{i} b_{i}c_{i}^{2}F_{f}(\bullet) + \sum_{i} b_{i}a_{ij}c_{j}F_{f}(\bullet)] + \dots$$

S-series, characters and primitive elements Exact flow of y' = f(y):

$$\begin{split} \phi(y(h)) &= \phi(y_0) + h\phi'f + \frac{h^2}{2} [\phi'f'f + \phi''(f,f)] + \dots \\ &= \phi(y_0) + h_{\bullet} + h^2 [\frac{1}{2} \bullet + \frac{1}{2} \bullet \bullet] + h^3 [\frac{1}{6} \lor + \frac{1}{6} \bullet + \frac{1}{2} \bullet \bullet \bullet + \frac{1}{6} \bullet \bullet \bullet] + \dots \end{split}$$

Numerical flow $y_1 = y_0 + \sum_i b_i f(Y_i)$, $Y_i = y_0 + \sum_j a_{ij} f(Y_j)$:

$$\phi(y_1) = \phi(y_0) + h \sum_i b_i \bullet + h^2 [\sum_i b_i c_i \bullet + \frac{1}{2} (\sum_i b_i)^2 \bullet \bullet]$$

+ $h^3 [\frac{1}{2} \sum_i b_i c_i^2 • \bullet + \sum_i b_i a_{ij} c_j \bullet + (\sum_i b_i) (\sum_i b_i c_i) \bullet \bullet + \frac{1}{6} (\sum_i b_i)^3 \bullet \bullet \bullet] + \dots$

S-series, characters and primitive elements Exact flow of y' = f(y):

$$\begin{split} \phi(y(h)) &= \phi(y_0) + h\phi'f + \frac{h^2}{2} [\phi'f'f + \phi''(f,f)] + \dots \\ &= \phi(y_0) + h_{\bullet} + h^2 [\frac{1}{2} \bullet + \frac{1}{2} \bullet \bullet] + h^3 [\frac{1}{6} \lor + \frac{1}{6} \bullet + \frac{1}{2} \bullet \bullet \bullet + \frac{1}{6} \bullet \bullet \bullet] + \dots \end{split}$$

Numerical flow $y_1 = y_0 + \sum_i b_i f(Y_i)$, $Y_i = y_0 + \sum_j a_{ij} f(Y_j)$:

$$\phi(y_1) = \phi(y_0) + h \sum_i b_i \bullet + h^2 \left[\sum_i b_i c_i \bullet + \frac{1}{2} (\sum_i b_i)^2 \bullet \bullet \right]$$

+
$$h^3 \left[\frac{1}{2} \sum_i b_i c_i^2 \bullet + \sum_i b_i a_{ij} c_j \bullet + (\sum_i b_i) (\sum_i b_i c_i) \bullet \bullet + \frac{1}{6} (\sum_i b_i)^3 \bullet \bullet \bullet \right] + \dots$$

Characters satisfy $a(\pi_1 \cdot \pi_2) = a(\pi_1)a(\pi_2)$ Primitive elements = elements that cannot be split

$$a(\bullet \lor \checkmark) = a(\bullet)a(\bullet)a(\checkmark)$$

Problem: In stochastic, 11 is primitive!

Adrien Laurent

Exotic aromatic series for backward error analysis

Theorem (Bronasco, L., 2024)

Consider a consistent method $S_f^h(a)$ for solving Langevin dynamics with $a \in Char(\mathcal{EF}, \cdot)$, then, there exists a modified vector field $h\tilde{f} = B_f^h(b)$ with $b \colon \mathcal{ET} \to \mathbb{R}$ satisfying $b(\bullet) = 1$, $b_c \star e \sim a$, and given by

$$b = \delta_{\bullet} + A\Big(\sum_{k=0}^{\infty} (-1)^k A_{\check{\star}e}^k(a-e)\Big),$$

where $A_{\tilde{\star}e}(x) = A(x)\tilde{\star}e$ and for all $\tau \in ET$ such that $|\tau| > 1$, we define

$$\tilde{\Delta}_{\textit{CEM}}(\tau) = \Delta_{\textit{CEM}}(\tau) - \bullet \otimes \tau - \tau \otimes \bullet, \quad \textit{and} \quad b_{n-1,c} \tilde{\star} e = (b_{n-1,c} \otimes e) \circ \tilde{\Delta}_{\textit{CEM}}.$$

Theorem (Bronasco, L., 2024)

• $(\mathcal{EAF}, \mathbf{1}, \diamond, \epsilon_{\mathcal{EA}}, \Delta_{\mathcal{EA}}, S_{\diamond})$ forms a Grossman-Larson Hopf algebroid.

- $(CEF, \mathbf{1}, \diamond, \epsilon, \Delta, S^{C}_{\diamond})$ forms a Grossman-Larson Hopf algebra.
- $(\mathcal{CEF}, \mathbf{1}, \cdot, \mathbf{1}^*, \Delta_{CEM}, S)$ forms a Hopf algebra.

Composition of exotic aromatic S-series

Theorem (Bronasco, 2023)

Let S(a) and S(b) be two exotic aromatic S-series. Then,

 $S(a)[S(b)[\phi]] = S(a * b)[\phi], \quad \text{with } a * b = (a \otimes b) \circ \Delta_{BCK},$

with $\Delta_{BCK}(\pi) := \sum_{\pi_0 \subset \pi} (\pi \setminus \pi_0) \otimes \pi_0$.

Example:

$$\Delta_{BCK}(\overset{\textcircled{0}}{\bigcirc}\overset{\textcircled{0}}{\checkmark}) = \mathbf{1} \otimes \overset{\textcircled{0}}{\bigcirc}\overset{\textcircled{0}}{\checkmark} + \underset{\textcircled{0}}{\textcircled{0}} \otimes \overset{\textcircled{0}}{\checkmark} + \underset{\textcircled{0}}{\textcircled{0}} \otimes \overset{\textcircled{0}}{\checkmark} + \underset{\textcircled{0}}{\textcircled{0}} \otimes \overset{\textcircled{0}}{\checkmark} + \overset{\textcircled{0}}{\bigcirc}\overset{\textcircled{0}}{\checkmark} \otimes \overset{\textcircled{0}}{\updownarrow} + \overset{\textcircled{0}}{\bigcirc} \otimes \overset{\textcircled{0}}{\checkmark} + \overset{\textcircled{0}}{\bigcirc} \otimes \overset{\textcircled{0}}{\checkmark} + \overset{\textcircled{0}}{\bigcirc} \otimes \overset{\textcircled{0}}{\checkmark} + \overset{\textcircled{0}}{\bigcirc} \overset{\textcircled{0}}{\checkmark} \otimes \overset{\textcircled{0}}{\textcircled} + \overset{\textcircled{0}}{\bigcirc} \overset{\textcircled{0}}{\textcircled} \otimes \overset{\textcircled{0}}{\textcircled} + \overset{\textcircled{0}}{\textcircled} \overset{\textcircled{0}}{\textcircled} \otimes \overset{\end{array}{0}{\textcircled} + \overset{\textcircled{0}}{\textcircled} \overset{\textcircled{0}}{\textcircled} \oplus \overset{\end{array}{0}{\textcircled} + \overset{\textcircled{0}}{\textcircled} \overset{\end{array}{0}{\textcircled} \oplus \overset{\end{array}{0}{\textcircled} \odot \overset{\end{array}{0}{\textcircled} \bullet \overset{\end{array}{0}{\textcircled} \end{array} \oplus \overset{\end{array}{0}{\textcircled} \bullet \overset{\end{array}{0}{\textcircled} \bullet \overset{\end{array}{0}{\textcircled} \end{array}$$

Composition of exotic aromatic S-series

Theorem (Bronasco, 2023)

Let S(a) and S(b) be two exotic aromatic S-series. Then,

 $S(a)[S(b)[\phi]] = S(a * b)[\phi], \text{ with } a * b = (a \otimes b) \circ \Delta_{BCK},$

with $\Delta_{BCK}(\pi) := \sum_{\pi_0 \subset \pi} (\pi \setminus \pi_0) \otimes \pi_0$.

Application: The exact flow in \mathbb{R}^d is

$$S^{h}(e)[\phi], \quad e = \exp^{*}(I) := \sum_{n=0}^{\infty} \frac{1}{n!} I^{*n}, \quad \delta_{\sigma}(I) = \mathbf{I} + \frac{1}{2}$$

The first terms of e in \mathbb{T}^d are

$$\delta_{\sigma}(\mathbf{e}) = \mathbf{1} + \mathbf{\bullet} + \frac{1}{2} \mathbf{O} \mathbf{O} + \frac{1}{2} \mathbf{\bullet} + \frac{1}{2} \mathbf{\bullet} \mathbf{\bullet} + \frac{1}{2} \mathbf{\bullet} \mathbf{O} \mathbf{O} + \frac{1}{4} \mathbf{O} \mathbf{O} + \frac{1}{2} \mathbf{O} \mathbf{O} + \frac{1}{8} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} + \cdots$$

Applications to the calculation of weak order conditions, postprocessors (see Vilmart, 2015),...

Composition of exotic aromatic S-series

Theorem (Bronasco, 2023)

Let S(a) and S(b) be two exotic aromatic S-series. Then,

 $S(a)[S(b)[\phi]] = S(a * b)[\phi], \quad \text{with } a * b = (a \otimes b) \circ \Delta_{BCK},$

with $\Delta_{BCK}(\pi) := \sum_{\pi_0 \subset \pi} (\pi \setminus \pi_0) \otimes \pi_0.$

Application: The exact flow in \mathbb{R}^d is

$$S^{h}(e)[\phi], \quad e = \exp^{*}(I) := \sum_{n=0}^{\infty} \frac{1}{n!} I^{*n}, \quad \delta_{\sigma}(I) = {}_{\bullet} + \frac{1}{2}$$

Problem: the S-series of the exact flow is not the exponential of a combination of trees, but the exponential of a combination of forests. The primitive elements of exotic forests do not reduce to exotic trees:

$$\mathcal{ET} \subsetneq \mathsf{Prim}(\mathcal{EF}), \quad \mathcal{T} = \mathsf{Prim}(\mathcal{F}).$$

13/10

Consider the overdamped Langevin dynamics on a Riemannian manifold (\mathcal{M}, g) ,

$$dX(t) = -\nabla V(X(t))dt + dB^{\mathcal{M}}(t).$$

In local coordinates, it is given by

$$dX^{i} = \left[-g^{ij}(X(t))\partial_{j}V(X(t)) + -\frac{1}{2}g^{kj}(X(t))\Gamma^{i}_{kj}(X(t))\right]dt + g^{1/2,ij}(X(t))dW_{j}(t).$$

Consider the overdamped Langevin dynamics on a Riemannian manifold (\mathcal{M}, g) ,

$$dX(t) = -\nabla V(X(t))dt + dB^{\mathcal{M}}(t).$$

Motivations for finding new methods:

- Projection methods are not intrinsic and they rely on an embedding.
- A variety of manifolds are already implemented in some packages (for instance, Manifolds.jl), with the geodesics, the parallel transport,...
- The high order theory of projection methods is difficult and no exact formula exists for the moment.
- There is no proof that sampling projection methods of order more than 2 exist on manifolds.

Consider the overdamped Langevin dynamics on a Riemannian manifold (\mathcal{M}, g) ,

$$dX(t) = -\nabla V(X(t))dt + dB^{\mathcal{M}}(t).$$

Nomizu classification of manifolds with invariant connections (1954):

	R = 0	$\nabla R = 0$
T = 0	Euclidean space	Symmetric space
$\nabla T = 0$	Lie group	Reductive homogeneous space

Consider the overdamped Langevin dynamics on a Riemannian manifold (\mathcal{M}, g) ,

$$dX(t) = -\nabla V(X(t))dt + dB^{\mathcal{M}}(t).$$

Nomizu classification of manifolds with invariant connections (1954):

	R = 0	$\nabla R = 0$
T = 0	Euclidean space	Symmetric space
$\nabla T = 0$	Lie group	Reductive homogeneous space

Example (Lie-group approach)

New method of weak order 1 and order 2 for the invariant measure on a Lie group with a bi-invariant metric (following Celledoni, Marthinsen, Owren, 2003).

$$H_n = \exp\left(-h\nabla V(Y_n) + \sqrt{h}\hat{\xi}_n\right)Y_n$$

$$Y_{n+1} = \exp\left(-\frac{h}{2}\nabla V(H_n)\right)\exp\left(-\frac{h}{2}\nabla V(Y_n) + \sqrt{h}\hat{\xi}_n\right)Y_n$$

Consider the overdamped Langevin dynamics on a Riemannian manifold (\mathcal{M}, g) ,

$$dX(t) = -\nabla V(X(t))dt + dB^{\mathcal{M}}(t).$$

Nomizu classification of manifolds with invariant connections (1954):

	R = 0	$\nabla R = 0$
T = 0	Euclidean space	Symmetric space
$\nabla T = 0$	Lie group	Reductive homogeneous space

Example (From Bharath, Lewis, Sharma, Tretyakov, 2023)

The geodesic Euler/Riemannian Langevin method has weak order one:

$$X_{n+1} = \exp_{X_n}(-\nabla V(X_n)dt + \sqrt{h}\xi_n)$$

Consider the overdamped Langevin dynamics on a Riemannian manifold (\mathcal{M}, g) ,

$$dX(t) = -\nabla V(X(t))dt + dB^{\mathcal{M}}(t).$$

Nomizu classification of manifolds with invariant connections (1954):

	R = 0	$\nabla R = 0$
T = 0	Euclidean space	Symmetric space
$\nabla T = 0$	Lie group	Reductive homogeneous space

Ongoing/future works:

- High order theory for stochastic Lie-group and geodesic methods,
- Backward error analysis and modified equations on manifolds,
- Geometric characterization of (exotic) planar B-series,
- Machine learning techniques and modified equations,
- Creation of exact sampling methods, with variational calculus and Noether theory.